| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mgpplusgg | GIF version | ||
| Description: Value of the group operation of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) |
| Ref | Expression |
|---|---|
| mgpval.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
| mgpval.2 | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| mgpplusgg | ⊢ (𝑅 ∈ 𝑉 → · = (+g‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgpval.2 | . . . 4 ⊢ · = (.r‘𝑅) | |
| 2 | mulrslid 13079 | . . . . 5 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
| 3 | 2 | slotex 12974 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑅) ∈ V) |
| 4 | 1, 3 | eqeltrid 2294 | . . 3 ⊢ (𝑅 ∈ 𝑉 → · ∈ V) |
| 5 | plusgslid 13059 | . . . 4 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
| 6 | 5 | setsslid 12998 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ · ∈ V) → · = (+g‘(𝑅 sSet 〈(+g‘ndx), · 〉))) |
| 7 | 4, 6 | mpdan 421 | . 2 ⊢ (𝑅 ∈ 𝑉 → · = (+g‘(𝑅 sSet 〈(+g‘ndx), · 〉))) |
| 8 | mgpval.1 | . . . 4 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 9 | 8, 1 | mgpvalg 13800 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑀 = (𝑅 sSet 〈(+g‘ndx), · 〉)) |
| 10 | 9 | fveq2d 5603 | . 2 ⊢ (𝑅 ∈ 𝑉 → (+g‘𝑀) = (+g‘(𝑅 sSet 〈(+g‘ndx), · 〉))) |
| 11 | 7, 10 | eqtr4d 2243 | 1 ⊢ (𝑅 ∈ 𝑉 → · = (+g‘𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2178 Vcvv 2776 〈cop 3646 ‘cfv 5290 (class class class)co 5967 ndxcnx 12944 sSet csts 12945 +gcplusg 13024 .rcmulr 13025 mulGrpcmgp 13797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-inn 9072 df-2 9130 df-3 9131 df-ndx 12950 df-slot 12951 df-sets 12954 df-plusg 13037 df-mulr 13038 df-mgp 13798 |
| This theorem is referenced by: rngass 13816 rngcl 13821 isrngd 13830 rngpropd 13832 dfur2g 13839 srgcl 13847 srgass 13848 srgideu 13849 srgidmlem 13855 issrgid 13858 srg1zr 13864 srgpcomp 13867 srgpcompp 13868 ringcl 13890 crngcom 13891 iscrng2 13892 ringass 13893 ringideu 13894 ringidmlem 13899 isringid 13902 ringidss 13906 ringpropd 13915 crngpropd 13916 isringd 13918 iscrngd 13919 ring1 13936 oppr1g 13959 unitgrp 13993 unitlinv 14003 unitrinv 14004 rdivmuldivd 14021 rngidpropdg 14023 invrpropdg 14026 dfrhm2 14031 rhmmul 14041 isrhm2d 14042 rhmunitinv 14055 subrgugrp 14117 issubrg3 14124 rhmpropd 14131 rnglidlmmgm 14373 rnglidlmsgrp 14374 cnfldexp 14454 expghmap 14484 lgseisenlem3 15664 lgseisenlem4 15665 |
| Copyright terms: Public domain | W3C validator |