Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mgpplusgg | GIF version |
Description: Value of the group operation of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) |
Ref | Expression |
---|---|
mgpval.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
mgpval.2 | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
mgpplusgg | ⊢ (𝑅 ∈ 𝑉 → · = (+g‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgpval.2 | . . . 4 ⊢ · = (.r‘𝑅) | |
2 | mulrslid 12542 | . . . . 5 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
3 | 2 | slotex 12455 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑅) ∈ V) |
4 | 1, 3 | eqeltrid 2262 | . . 3 ⊢ (𝑅 ∈ 𝑉 → · ∈ V) |
5 | plusgslid 12525 | . . . 4 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
6 | 5 | setsslid 12478 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ · ∈ V) → · = (+g‘(𝑅 sSet 〈(+g‘ndx), · 〉))) |
7 | 4, 6 | mpdan 421 | . 2 ⊢ (𝑅 ∈ 𝑉 → · = (+g‘(𝑅 sSet 〈(+g‘ndx), · 〉))) |
8 | mgpval.1 | . . . 4 ⊢ 𝑀 = (mulGrp‘𝑅) | |
9 | 8, 1 | mgpvalg 12928 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑀 = (𝑅 sSet 〈(+g‘ndx), · 〉)) |
10 | 9 | fveq2d 5511 | . 2 ⊢ (𝑅 ∈ 𝑉 → (+g‘𝑀) = (+g‘(𝑅 sSet 〈(+g‘ndx), · 〉))) |
11 | 7, 10 | eqtr4d 2211 | 1 ⊢ (𝑅 ∈ 𝑉 → · = (+g‘𝑀)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2146 Vcvv 2735 〈cop 3592 ‘cfv 5208 (class class class)co 5865 ndxcnx 12425 sSet csts 12426 +gcplusg 12492 .rcmulr 12493 mulGrpcmgp 12925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-inn 8891 df-2 8949 df-3 8950 df-ndx 12431 df-slot 12432 df-sets 12435 df-plusg 12505 df-mulr 12506 df-mgp 12926 |
This theorem is referenced by: dfur2g 12938 srgcl 12946 srgass 12947 srgideu 12948 srgidmlem 12954 issrgid 12957 srg1zr 12963 srgpcomp 12966 srgpcompp 12967 ringcl 12989 crngcom 12990 iscrng2 12991 ringass 12992 ringideu 12993 ringidmlem 12998 isringid 13001 ringpropd 13009 crngpropd 13010 isringd 13012 iscrngd 13013 |
Copyright terms: Public domain | W3C validator |