| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mgpplusgg | GIF version | ||
| Description: Value of the group operation of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) |
| Ref | Expression |
|---|---|
| mgpval.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
| mgpval.2 | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| mgpplusgg | ⊢ (𝑅 ∈ 𝑉 → · = (+g‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgpval.2 | . . . 4 ⊢ · = (.r‘𝑅) | |
| 2 | mulrslid 13165 | . . . . 5 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
| 3 | 2 | slotex 13059 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑅) ∈ V) |
| 4 | 1, 3 | eqeltrid 2316 | . . 3 ⊢ (𝑅 ∈ 𝑉 → · ∈ V) |
| 5 | plusgslid 13145 | . . . 4 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
| 6 | 5 | setsslid 13083 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ · ∈ V) → · = (+g‘(𝑅 sSet 〈(+g‘ndx), · 〉))) |
| 7 | 4, 6 | mpdan 421 | . 2 ⊢ (𝑅 ∈ 𝑉 → · = (+g‘(𝑅 sSet 〈(+g‘ndx), · 〉))) |
| 8 | mgpval.1 | . . . 4 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 9 | 8, 1 | mgpvalg 13886 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑀 = (𝑅 sSet 〈(+g‘ndx), · 〉)) |
| 10 | 9 | fveq2d 5631 | . 2 ⊢ (𝑅 ∈ 𝑉 → (+g‘𝑀) = (+g‘(𝑅 sSet 〈(+g‘ndx), · 〉))) |
| 11 | 7, 10 | eqtr4d 2265 | 1 ⊢ (𝑅 ∈ 𝑉 → · = (+g‘𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 Vcvv 2799 〈cop 3669 ‘cfv 5318 (class class class)co 6001 ndxcnx 13029 sSet csts 13030 +gcplusg 13110 .rcmulr 13111 mulGrpcmgp 13883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-inn 9111 df-2 9169 df-3 9170 df-ndx 13035 df-slot 13036 df-sets 13039 df-plusg 13123 df-mulr 13124 df-mgp 13884 |
| This theorem is referenced by: rngass 13902 rngcl 13907 isrngd 13916 rngpropd 13918 dfur2g 13925 srgcl 13933 srgass 13934 srgideu 13935 srgidmlem 13941 issrgid 13944 srg1zr 13950 srgpcomp 13953 srgpcompp 13954 ringcl 13976 crngcom 13977 iscrng2 13978 ringass 13979 ringideu 13980 ringidmlem 13985 isringid 13988 ringidss 13992 ringpropd 14001 crngpropd 14002 isringd 14004 iscrngd 14005 ring1 14022 oppr1g 14045 unitgrp 14080 unitlinv 14090 unitrinv 14091 rdivmuldivd 14108 rngidpropdg 14110 invrpropdg 14113 dfrhm2 14118 rhmmul 14128 isrhm2d 14129 rhmunitinv 14142 subrgugrp 14204 issubrg3 14211 rhmpropd 14218 rnglidlmmgm 14460 rnglidlmsgrp 14461 cnfldexp 14541 expghmap 14571 lgseisenlem3 15751 lgseisenlem4 15752 |
| Copyright terms: Public domain | W3C validator |