![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mgpplusgg | GIF version |
Description: Value of the group operation of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) |
Ref | Expression |
---|---|
mgpval.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
mgpval.2 | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
mgpplusgg | ⊢ (𝑅 ∈ 𝑉 → · = (+g‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgpval.2 | . . . 4 ⊢ · = (.r‘𝑅) | |
2 | mulrslid 12752 | . . . . 5 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
3 | 2 | slotex 12648 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑅) ∈ V) |
4 | 1, 3 | eqeltrid 2280 | . . 3 ⊢ (𝑅 ∈ 𝑉 → · ∈ V) |
5 | plusgslid 12733 | . . . 4 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
6 | 5 | setsslid 12672 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ · ∈ V) → · = (+g‘(𝑅 sSet 〈(+g‘ndx), · 〉))) |
7 | 4, 6 | mpdan 421 | . 2 ⊢ (𝑅 ∈ 𝑉 → · = (+g‘(𝑅 sSet 〈(+g‘ndx), · 〉))) |
8 | mgpval.1 | . . . 4 ⊢ 𝑀 = (mulGrp‘𝑅) | |
9 | 8, 1 | mgpvalg 13422 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑀 = (𝑅 sSet 〈(+g‘ndx), · 〉)) |
10 | 9 | fveq2d 5559 | . 2 ⊢ (𝑅 ∈ 𝑉 → (+g‘𝑀) = (+g‘(𝑅 sSet 〈(+g‘ndx), · 〉))) |
11 | 7, 10 | eqtr4d 2229 | 1 ⊢ (𝑅 ∈ 𝑉 → · = (+g‘𝑀)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 Vcvv 2760 〈cop 3622 ‘cfv 5255 (class class class)co 5919 ndxcnx 12618 sSet csts 12619 +gcplusg 12698 .rcmulr 12699 mulGrpcmgp 13419 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-iota 5216 df-fun 5257 df-fn 5258 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-inn 8985 df-2 9043 df-3 9044 df-ndx 12624 df-slot 12625 df-sets 12628 df-plusg 12711 df-mulr 12712 df-mgp 13420 |
This theorem is referenced by: rngass 13438 rngcl 13443 isrngd 13452 rngpropd 13454 dfur2g 13461 srgcl 13469 srgass 13470 srgideu 13471 srgidmlem 13477 issrgid 13480 srg1zr 13486 srgpcomp 13489 srgpcompp 13490 ringcl 13512 crngcom 13513 iscrng2 13514 ringass 13515 ringideu 13516 ringidmlem 13521 isringid 13524 ringidss 13528 ringpropd 13537 crngpropd 13538 isringd 13540 iscrngd 13541 ring1 13558 oppr1g 13581 unitgrp 13615 unitlinv 13625 unitrinv 13626 rdivmuldivd 13643 rngidpropdg 13645 invrpropdg 13648 dfrhm2 13653 rhmmul 13663 isrhm2d 13664 rhmunitinv 13677 subrgugrp 13739 issubrg3 13746 rhmpropd 13753 rnglidlmmgm 13995 rnglidlmsgrp 13996 cnfldexp 14076 expghmap 14106 lgseisenlem3 15229 lgseisenlem4 15230 |
Copyright terms: Public domain | W3C validator |