![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mgpplusgg | GIF version |
Description: Value of the group operation of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) |
Ref | Expression |
---|---|
mgpval.1 | β’ π = (mulGrpβπ ) |
mgpval.2 | β’ Β· = (.rβπ ) |
Ref | Expression |
---|---|
mgpplusgg | β’ (π β π β Β· = (+gβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgpval.2 | . . . 4 β’ Β· = (.rβπ ) | |
2 | mulrslid 12609 | . . . . 5 β’ (.r = Slot (.rβndx) β§ (.rβndx) β β) | |
3 | 2 | slotex 12507 | . . . 4 β’ (π β π β (.rβπ ) β V) |
4 | 1, 3 | eqeltrid 2276 | . . 3 β’ (π β π β Β· β V) |
5 | plusgslid 12590 | . . . 4 β’ (+g = Slot (+gβndx) β§ (+gβndx) β β) | |
6 | 5 | setsslid 12531 | . . 3 β’ ((π β π β§ Β· β V) β Β· = (+gβ(π sSet β¨(+gβndx), Β· β©))) |
7 | 4, 6 | mpdan 421 | . 2 β’ (π β π β Β· = (+gβ(π sSet β¨(+gβndx), Β· β©))) |
8 | mgpval.1 | . . . 4 β’ π = (mulGrpβπ ) | |
9 | 8, 1 | mgpvalg 13238 | . . 3 β’ (π β π β π = (π sSet β¨(+gβndx), Β· β©)) |
10 | 9 | fveq2d 5534 | . 2 β’ (π β π β (+gβπ) = (+gβ(π sSet β¨(+gβndx), Β· β©))) |
11 | 7, 10 | eqtr4d 2225 | 1 β’ (π β π β Β· = (+gβπ)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 = wceq 1364 β wcel 2160 Vcvv 2752 β¨cop 3610 βcfv 5231 (class class class)co 5891 ndxcnx 12477 sSet csts 12478 +gcplusg 12555 .rcmulr 12556 mulGrpcmgp 13235 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-cnex 7920 ax-resscn 7921 ax-1re 7923 ax-addrcl 7926 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-iota 5193 df-fun 5233 df-fn 5234 df-fv 5239 df-ov 5894 df-oprab 5895 df-mpo 5896 df-inn 8938 df-2 8996 df-3 8997 df-ndx 12483 df-slot 12484 df-sets 12487 df-plusg 12568 df-mulr 12569 df-mgp 13236 |
This theorem is referenced by: rngass 13254 rngcl 13259 isrngd 13268 rngpropd 13270 dfur2g 13277 srgcl 13285 srgass 13286 srgideu 13287 srgidmlem 13293 issrgid 13296 srg1zr 13302 srgpcomp 13305 srgpcompp 13306 ringcl 13328 crngcom 13329 iscrng2 13330 ringass 13331 ringideu 13332 ringidmlem 13337 isringid 13340 ringidss 13344 ringpropd 13353 crngpropd 13354 isringd 13356 iscrngd 13357 ring1 13372 oppr1g 13393 unitgrp 13427 unitlinv 13437 unitrinv 13438 rdivmuldivd 13455 rngidpropdg 13457 invrpropdg 13460 dfrhm2 13465 rhmmul 13475 isrhm2d 13476 rhmunitinv 13489 subrgugrp 13548 issubrg3 13555 rnglidlmmgm 13773 rnglidlmsgrp 13774 cnfldexp 13841 |
Copyright terms: Public domain | W3C validator |