| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mgpplusgg | GIF version | ||
| Description: Value of the group operation of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) |
| Ref | Expression |
|---|---|
| mgpval.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
| mgpval.2 | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| mgpplusgg | ⊢ (𝑅 ∈ 𝑉 → · = (+g‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgpval.2 | . . . 4 ⊢ · = (.r‘𝑅) | |
| 2 | mulrslid 12997 | . . . . 5 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
| 3 | 2 | slotex 12892 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑅) ∈ V) |
| 4 | 1, 3 | eqeltrid 2292 | . . 3 ⊢ (𝑅 ∈ 𝑉 → · ∈ V) |
| 5 | plusgslid 12977 | . . . 4 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
| 6 | 5 | setsslid 12916 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ · ∈ V) → · = (+g‘(𝑅 sSet 〈(+g‘ndx), · 〉))) |
| 7 | 4, 6 | mpdan 421 | . 2 ⊢ (𝑅 ∈ 𝑉 → · = (+g‘(𝑅 sSet 〈(+g‘ndx), · 〉))) |
| 8 | mgpval.1 | . . . 4 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 9 | 8, 1 | mgpvalg 13718 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑀 = (𝑅 sSet 〈(+g‘ndx), · 〉)) |
| 10 | 9 | fveq2d 5582 | . 2 ⊢ (𝑅 ∈ 𝑉 → (+g‘𝑀) = (+g‘(𝑅 sSet 〈(+g‘ndx), · 〉))) |
| 11 | 7, 10 | eqtr4d 2241 | 1 ⊢ (𝑅 ∈ 𝑉 → · = (+g‘𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2176 Vcvv 2772 〈cop 3636 ‘cfv 5272 (class class class)co 5946 ndxcnx 12862 sSet csts 12863 +gcplusg 12942 .rcmulr 12943 mulGrpcmgp 13715 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-iota 5233 df-fun 5274 df-fn 5275 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-inn 9039 df-2 9097 df-3 9098 df-ndx 12868 df-slot 12869 df-sets 12872 df-plusg 12955 df-mulr 12956 df-mgp 13716 |
| This theorem is referenced by: rngass 13734 rngcl 13739 isrngd 13748 rngpropd 13750 dfur2g 13757 srgcl 13765 srgass 13766 srgideu 13767 srgidmlem 13773 issrgid 13776 srg1zr 13782 srgpcomp 13785 srgpcompp 13786 ringcl 13808 crngcom 13809 iscrng2 13810 ringass 13811 ringideu 13812 ringidmlem 13817 isringid 13820 ringidss 13824 ringpropd 13833 crngpropd 13834 isringd 13836 iscrngd 13837 ring1 13854 oppr1g 13877 unitgrp 13911 unitlinv 13921 unitrinv 13922 rdivmuldivd 13939 rngidpropdg 13941 invrpropdg 13944 dfrhm2 13949 rhmmul 13959 isrhm2d 13960 rhmunitinv 13973 subrgugrp 14035 issubrg3 14042 rhmpropd 14049 rnglidlmmgm 14291 rnglidlmsgrp 14292 cnfldexp 14372 expghmap 14402 lgseisenlem3 15582 lgseisenlem4 15583 |
| Copyright terms: Public domain | W3C validator |