ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfinfwlpolem GIF version

Theorem nninfinfwlpolem 7287
Description: Lemma for nninfinfwlpo 7289. (Contributed by Jim Kingdon, 8-Dec-2024.)
Hypotheses
Ref Expression
nninfwlpoimlemg.f (𝜑𝐹:ω⟶2o)
nninfwlpoimlemg.g 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o))
nninfinfwlpoimlem.eq (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o))
Assertion
Ref Expression
nninfinfwlpolem (𝜑DECID𝑛 ∈ ω (𝐹𝑛) = 1o)
Distinct variable groups:   𝑖,𝐹,𝑛,𝑥   𝑛,𝐺,𝑥   𝜑,𝑖,𝑛,𝑥
Allowed substitution hint:   𝐺(𝑖)

Proof of Theorem nninfinfwlpolem
StepHypRef Expression
1 eqeq1 2213 . . . 4 (𝑥 = 𝐺 → (𝑥 = (𝑖 ∈ ω ↦ 1o) ↔ 𝐺 = (𝑖 ∈ ω ↦ 1o)))
21dcbid 840 . . 3 (𝑥 = 𝐺 → (DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) ↔ DECID 𝐺 = (𝑖 ∈ ω ↦ 1o)))
3 nninfinfwlpoimlem.eq . . 3 (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o))
4 nninfwlpoimlemg.f . . . 4 (𝜑𝐹:ω⟶2o)
5 nninfwlpoimlemg.g . . . 4 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o))
64, 5nninfwlpoimlemg 7284 . . 3 (𝜑𝐺 ∈ ℕ)
72, 3, 6rspcdva 2883 . 2 (𝜑DECID 𝐺 = (𝑖 ∈ ω ↦ 1o))
84, 5nninfwlpoimlemginf 7285 . . 3 (𝜑 → (𝐺 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑛 ∈ ω (𝐹𝑛) = 1o))
98dcbid 840 . 2 (𝜑 → (DECID 𝐺 = (𝑖 ∈ ω ↦ 1o) ↔ DECID𝑛 ∈ ω (𝐹𝑛) = 1o))
107, 9mpbid 147 1 (𝜑DECID𝑛 ∈ ω (𝐹𝑛) = 1o)
Colors of variables: wff set class
Syntax hints:  wi 4  DECID wdc 836   = wceq 1373  wral 2485  wrex 2486  c0 3461  ifcif 3572  cmpt 4109  suc csuc 4416  ωcom 4642  wf 5272  cfv 5276  1oc1o 6502  2oc2o 6503  xnninf 7228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1o 6509  df-2o 6510  df-er 6627  df-map 6744  df-en 6835  df-fin 6837  df-nninf 7229
This theorem is referenced by:  nninfinfwlpo  7289
  Copyright terms: Public domain W3C validator