![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rspssp | GIF version |
Description: The ideal span of a set of elements in a ring is contained in any subring which contains those elements. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
Ref | Expression |
---|---|
rspcl.k | ⊢ 𝐾 = (RSpan‘𝑅) |
rspssp.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
Ref | Expression |
---|---|
rspssp | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ⊆ 𝐼) → (𝐾‘𝐺) ⊆ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlmlmod 13963 | . . . 4 ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod) | |
2 | 1 | 3ad2ant1 1020 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ⊆ 𝐼) → (ringLMod‘𝑅) ∈ LMod) |
3 | simp2 1000 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ⊆ 𝐼) → 𝐼 ∈ 𝑈) | |
4 | rspssp.u | . . . . . . 7 ⊢ 𝑈 = (LIdeal‘𝑅) | |
5 | lidlvalg 13970 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (LIdeal‘𝑅) = (LSubSp‘(ringLMod‘𝑅))) | |
6 | 4, 5 | eqtrid 2238 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑈 = (LSubSp‘(ringLMod‘𝑅))) |
7 | 6 | eleq2d 2263 | . . . . 5 ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑈 ↔ 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅)))) |
8 | 7 | 3ad2ant1 1020 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ⊆ 𝐼) → (𝐼 ∈ 𝑈 ↔ 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅)))) |
9 | 3, 8 | mpbid 147 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ⊆ 𝐼) → 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅))) |
10 | simp3 1001 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ⊆ 𝐼) → 𝐺 ⊆ 𝐼) | |
11 | eqid 2193 | . . . 4 ⊢ (LSubSp‘(ringLMod‘𝑅)) = (LSubSp‘(ringLMod‘𝑅)) | |
12 | eqid 2193 | . . . 4 ⊢ (LSpan‘(ringLMod‘𝑅)) = (LSpan‘(ringLMod‘𝑅)) | |
13 | 11, 12 | lspssp 13902 | . . 3 ⊢ (((ringLMod‘𝑅) ∈ LMod ∧ 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅)) ∧ 𝐺 ⊆ 𝐼) → ((LSpan‘(ringLMod‘𝑅))‘𝐺) ⊆ 𝐼) |
14 | 2, 9, 10, 13 | syl3anc 1249 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ⊆ 𝐼) → ((LSpan‘(ringLMod‘𝑅))‘𝐺) ⊆ 𝐼) |
15 | rspcl.k | . . . . . 6 ⊢ 𝐾 = (RSpan‘𝑅) | |
16 | rspvalg 13971 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (RSpan‘𝑅) = (LSpan‘(ringLMod‘𝑅))) | |
17 | 15, 16 | eqtrid 2238 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐾 = (LSpan‘(ringLMod‘𝑅))) |
18 | 17 | fveq1d 5557 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝐾‘𝐺) = ((LSpan‘(ringLMod‘𝑅))‘𝐺)) |
19 | 18 | sseq1d 3209 | . . 3 ⊢ (𝑅 ∈ Ring → ((𝐾‘𝐺) ⊆ 𝐼 ↔ ((LSpan‘(ringLMod‘𝑅))‘𝐺) ⊆ 𝐼)) |
20 | 19 | 3ad2ant1 1020 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ⊆ 𝐼) → ((𝐾‘𝐺) ⊆ 𝐼 ↔ ((LSpan‘(ringLMod‘𝑅))‘𝐺) ⊆ 𝐼)) |
21 | 14, 20 | mpbird 167 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ⊆ 𝐼) → (𝐾‘𝐺) ⊆ 𝐼) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ⊆ wss 3154 ‘cfv 5255 Ringcrg 13495 LModclmod 13786 LSubSpclss 13851 LSpanclspn 13885 ringLModcrglmod 13933 LIdealclidl 13966 RSpancrsp 13967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-ltirr 7986 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-ndx 12624 df-slot 12625 df-base 12627 df-sets 12628 df-iress 12629 df-plusg 12711 df-mulr 12712 df-sca 12714 df-vsca 12715 df-ip 12716 df-0g 12872 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-grp 13078 df-minusg 13079 df-subg 13243 df-mgp 13420 df-ur 13459 df-ring 13497 df-subrg 13718 df-lmod 13788 df-lssm 13852 df-lsp 13886 df-sra 13934 df-rgmod 13935 df-lidl 13968 df-rsp 13969 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |