| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspssp | GIF version | ||
| Description: The ideal span of a set of elements in a ring is contained in any subring which contains those elements. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| Ref | Expression |
|---|---|
| rspcl.k | ⊢ 𝐾 = (RSpan‘𝑅) |
| rspssp.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
| Ref | Expression |
|---|---|
| rspssp | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ⊆ 𝐼) → (𝐾‘𝐺) ⊆ 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlmlmod 14197 | . . . 4 ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod) | |
| 2 | 1 | 3ad2ant1 1020 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ⊆ 𝐼) → (ringLMod‘𝑅) ∈ LMod) |
| 3 | simp2 1000 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ⊆ 𝐼) → 𝐼 ∈ 𝑈) | |
| 4 | rspssp.u | . . . . . . 7 ⊢ 𝑈 = (LIdeal‘𝑅) | |
| 5 | lidlvalg 14204 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (LIdeal‘𝑅) = (LSubSp‘(ringLMod‘𝑅))) | |
| 6 | 4, 5 | eqtrid 2249 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑈 = (LSubSp‘(ringLMod‘𝑅))) |
| 7 | 6 | eleq2d 2274 | . . . . 5 ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑈 ↔ 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅)))) |
| 8 | 7 | 3ad2ant1 1020 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ⊆ 𝐼) → (𝐼 ∈ 𝑈 ↔ 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅)))) |
| 9 | 3, 8 | mpbid 147 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ⊆ 𝐼) → 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅))) |
| 10 | simp3 1001 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ⊆ 𝐼) → 𝐺 ⊆ 𝐼) | |
| 11 | eqid 2204 | . . . 4 ⊢ (LSubSp‘(ringLMod‘𝑅)) = (LSubSp‘(ringLMod‘𝑅)) | |
| 12 | eqid 2204 | . . . 4 ⊢ (LSpan‘(ringLMod‘𝑅)) = (LSpan‘(ringLMod‘𝑅)) | |
| 13 | 11, 12 | lspssp 14136 | . . 3 ⊢ (((ringLMod‘𝑅) ∈ LMod ∧ 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅)) ∧ 𝐺 ⊆ 𝐼) → ((LSpan‘(ringLMod‘𝑅))‘𝐺) ⊆ 𝐼) |
| 14 | 2, 9, 10, 13 | syl3anc 1249 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ⊆ 𝐼) → ((LSpan‘(ringLMod‘𝑅))‘𝐺) ⊆ 𝐼) |
| 15 | rspcl.k | . . . . . 6 ⊢ 𝐾 = (RSpan‘𝑅) | |
| 16 | rspvalg 14205 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (RSpan‘𝑅) = (LSpan‘(ringLMod‘𝑅))) | |
| 17 | 15, 16 | eqtrid 2249 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐾 = (LSpan‘(ringLMod‘𝑅))) |
| 18 | 17 | fveq1d 5577 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝐾‘𝐺) = ((LSpan‘(ringLMod‘𝑅))‘𝐺)) |
| 19 | 18 | sseq1d 3221 | . . 3 ⊢ (𝑅 ∈ Ring → ((𝐾‘𝐺) ⊆ 𝐼 ↔ ((LSpan‘(ringLMod‘𝑅))‘𝐺) ⊆ 𝐼)) |
| 20 | 19 | 3ad2ant1 1020 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ⊆ 𝐼) → ((𝐾‘𝐺) ⊆ 𝐼 ↔ ((LSpan‘(ringLMod‘𝑅))‘𝐺) ⊆ 𝐼)) |
| 21 | 14, 20 | mpbird 167 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ⊆ 𝐼) → (𝐾‘𝐺) ⊆ 𝐼) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 ⊆ wss 3165 ‘cfv 5270 Ringcrg 13729 LModclmod 14020 LSubSpclss 14085 LSpanclspn 14119 ringLModcrglmod 14167 LIdealclidl 14200 RSpancrsp 14201 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-pre-ltirr 8036 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-ltxr 8111 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-7 9099 df-8 9100 df-ndx 12806 df-slot 12807 df-base 12809 df-sets 12810 df-iress 12811 df-plusg 12893 df-mulr 12894 df-sca 12896 df-vsca 12897 df-ip 12898 df-0g 13061 df-mgm 13159 df-sgrp 13205 df-mnd 13220 df-grp 13306 df-minusg 13307 df-subg 13477 df-mgp 13654 df-ur 13693 df-ring 13731 df-subrg 13952 df-lmod 14022 df-lssm 14086 df-lsp 14120 df-sra 14168 df-rgmod 14169 df-lidl 14202 df-rsp 14203 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |