| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspssp | GIF version | ||
| Description: The ideal span of a set of elements in a ring is contained in any subring which contains those elements. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| Ref | Expression |
|---|---|
| rspcl.k | ⊢ 𝐾 = (RSpan‘𝑅) |
| rspssp.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
| Ref | Expression |
|---|---|
| rspssp | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ⊆ 𝐼) → (𝐾‘𝐺) ⊆ 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlmlmod 14226 | . . . 4 ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod) | |
| 2 | 1 | 3ad2ant1 1021 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ⊆ 𝐼) → (ringLMod‘𝑅) ∈ LMod) |
| 3 | simp2 1001 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ⊆ 𝐼) → 𝐼 ∈ 𝑈) | |
| 4 | rspssp.u | . . . . . . 7 ⊢ 𝑈 = (LIdeal‘𝑅) | |
| 5 | lidlvalg 14233 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (LIdeal‘𝑅) = (LSubSp‘(ringLMod‘𝑅))) | |
| 6 | 4, 5 | eqtrid 2250 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑈 = (LSubSp‘(ringLMod‘𝑅))) |
| 7 | 6 | eleq2d 2275 | . . . . 5 ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑈 ↔ 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅)))) |
| 8 | 7 | 3ad2ant1 1021 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ⊆ 𝐼) → (𝐼 ∈ 𝑈 ↔ 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅)))) |
| 9 | 3, 8 | mpbid 147 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ⊆ 𝐼) → 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅))) |
| 10 | simp3 1002 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ⊆ 𝐼) → 𝐺 ⊆ 𝐼) | |
| 11 | eqid 2205 | . . . 4 ⊢ (LSubSp‘(ringLMod‘𝑅)) = (LSubSp‘(ringLMod‘𝑅)) | |
| 12 | eqid 2205 | . . . 4 ⊢ (LSpan‘(ringLMod‘𝑅)) = (LSpan‘(ringLMod‘𝑅)) | |
| 13 | 11, 12 | lspssp 14165 | . . 3 ⊢ (((ringLMod‘𝑅) ∈ LMod ∧ 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅)) ∧ 𝐺 ⊆ 𝐼) → ((LSpan‘(ringLMod‘𝑅))‘𝐺) ⊆ 𝐼) |
| 14 | 2, 9, 10, 13 | syl3anc 1250 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ⊆ 𝐼) → ((LSpan‘(ringLMod‘𝑅))‘𝐺) ⊆ 𝐼) |
| 15 | rspcl.k | . . . . . 6 ⊢ 𝐾 = (RSpan‘𝑅) | |
| 16 | rspvalg 14234 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (RSpan‘𝑅) = (LSpan‘(ringLMod‘𝑅))) | |
| 17 | 15, 16 | eqtrid 2250 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐾 = (LSpan‘(ringLMod‘𝑅))) |
| 18 | 17 | fveq1d 5578 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝐾‘𝐺) = ((LSpan‘(ringLMod‘𝑅))‘𝐺)) |
| 19 | 18 | sseq1d 3222 | . . 3 ⊢ (𝑅 ∈ Ring → ((𝐾‘𝐺) ⊆ 𝐼 ↔ ((LSpan‘(ringLMod‘𝑅))‘𝐺) ⊆ 𝐼)) |
| 20 | 19 | 3ad2ant1 1021 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ⊆ 𝐼) → ((𝐾‘𝐺) ⊆ 𝐼 ↔ ((LSpan‘(ringLMod‘𝑅))‘𝐺) ⊆ 𝐼)) |
| 21 | 14, 20 | mpbird 167 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ⊆ 𝐼) → (𝐾‘𝐺) ⊆ 𝐼) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2176 ⊆ wss 3166 ‘cfv 5271 Ringcrg 13758 LModclmod 14049 LSubSpclss 14114 LSpanclspn 14148 ringLModcrglmod 14196 LIdealclidl 14229 RSpancrsp 14230 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-pre-ltirr 8037 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-ltxr 8112 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-5 9098 df-6 9099 df-7 9100 df-8 9101 df-ndx 12835 df-slot 12836 df-base 12838 df-sets 12839 df-iress 12840 df-plusg 12922 df-mulr 12923 df-sca 12925 df-vsca 12926 df-ip 12927 df-0g 13090 df-mgm 13188 df-sgrp 13234 df-mnd 13249 df-grp 13335 df-minusg 13336 df-subg 13506 df-mgp 13683 df-ur 13722 df-ring 13760 df-subrg 13981 df-lmod 14051 df-lssm 14115 df-lsp 14149 df-sra 14197 df-rgmod 14198 df-lidl 14231 df-rsp 14232 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |