| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspcl | GIF version | ||
| Description: The span of a set of ring elements is an ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| rspcl.k | ⊢ 𝐾 = (RSpan‘𝑅) |
| rspcl.b | ⊢ 𝐵 = (Base‘𝑅) |
| rspcl.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
| Ref | Expression |
|---|---|
| rspcl | ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ⊆ 𝐵) → (𝐾‘𝐺) ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlmlmod 14020 | . . 3 ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod) | |
| 2 | rspcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | rlmbasg 14011 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(ringLMod‘𝑅))) | |
| 4 | 2, 3 | eqtrid 2241 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐵 = (Base‘(ringLMod‘𝑅))) |
| 5 | 4 | sseq2d 3213 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝐺 ⊆ 𝐵 ↔ 𝐺 ⊆ (Base‘(ringLMod‘𝑅)))) |
| 6 | 5 | biimpa 296 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ⊆ 𝐵) → 𝐺 ⊆ (Base‘(ringLMod‘𝑅))) |
| 7 | eqid 2196 | . . . 4 ⊢ (Base‘(ringLMod‘𝑅)) = (Base‘(ringLMod‘𝑅)) | |
| 8 | eqid 2196 | . . . 4 ⊢ (LSubSp‘(ringLMod‘𝑅)) = (LSubSp‘(ringLMod‘𝑅)) | |
| 9 | eqid 2196 | . . . 4 ⊢ (LSpan‘(ringLMod‘𝑅)) = (LSpan‘(ringLMod‘𝑅)) | |
| 10 | 7, 8, 9 | lspcl 13947 | . . 3 ⊢ (((ringLMod‘𝑅) ∈ LMod ∧ 𝐺 ⊆ (Base‘(ringLMod‘𝑅))) → ((LSpan‘(ringLMod‘𝑅))‘𝐺) ∈ (LSubSp‘(ringLMod‘𝑅))) |
| 11 | 1, 6, 10 | syl2an2r 595 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ⊆ 𝐵) → ((LSpan‘(ringLMod‘𝑅))‘𝐺) ∈ (LSubSp‘(ringLMod‘𝑅))) |
| 12 | rspcl.k | . . . . . 6 ⊢ 𝐾 = (RSpan‘𝑅) | |
| 13 | rspvalg 14028 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (RSpan‘𝑅) = (LSpan‘(ringLMod‘𝑅))) | |
| 14 | 12, 13 | eqtrid 2241 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐾 = (LSpan‘(ringLMod‘𝑅))) |
| 15 | 14 | fveq1d 5560 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝐾‘𝐺) = ((LSpan‘(ringLMod‘𝑅))‘𝐺)) |
| 16 | rspcl.u | . . . . 5 ⊢ 𝑈 = (LIdeal‘𝑅) | |
| 17 | lidlvalg 14027 | . . . . 5 ⊢ (𝑅 ∈ Ring → (LIdeal‘𝑅) = (LSubSp‘(ringLMod‘𝑅))) | |
| 18 | 16, 17 | eqtrid 2241 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑈 = (LSubSp‘(ringLMod‘𝑅))) |
| 19 | 15, 18 | eleq12d 2267 | . . 3 ⊢ (𝑅 ∈ Ring → ((𝐾‘𝐺) ∈ 𝑈 ↔ ((LSpan‘(ringLMod‘𝑅))‘𝐺) ∈ (LSubSp‘(ringLMod‘𝑅)))) |
| 20 | 19 | adantr 276 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ⊆ 𝐵) → ((𝐾‘𝐺) ∈ 𝑈 ↔ ((LSpan‘(ringLMod‘𝑅))‘𝐺) ∈ (LSubSp‘(ringLMod‘𝑅)))) |
| 21 | 11, 20 | mpbird 167 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ⊆ 𝐵) → (𝐾‘𝐺) ∈ 𝑈) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ⊆ wss 3157 ‘cfv 5258 Basecbs 12678 Ringcrg 13552 LModclmod 13843 LSubSpclss 13908 LSpanclspn 13942 ringLModcrglmod 13990 LIdealclidl 14023 RSpancrsp 14024 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-iress 12686 df-plusg 12768 df-mulr 12769 df-sca 12771 df-vsca 12772 df-ip 12773 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-minusg 13136 df-sbg 13137 df-subg 13300 df-mgp 13477 df-ur 13516 df-ring 13554 df-subrg 13775 df-lmod 13845 df-lssm 13909 df-lsp 13943 df-sra 13991 df-rgmod 13992 df-lidl 14025 df-rsp 14026 |
| This theorem is referenced by: znlidl 14190 zndvds 14205 |
| Copyright terms: Public domain | W3C validator |