| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspssid | GIF version | ||
| Description: The span of a set of ring elements contains those elements. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| Ref | Expression |
|---|---|
| rspcl.k | ⊢ 𝐾 = (RSpan‘𝑅) |
| rspcl.b | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| rspssid | ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ⊆ 𝐵) → 𝐺 ⊆ (𝐾‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlmlmod 14301 | . . 3 ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod) | |
| 2 | rspcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | rlmbasg 14292 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(ringLMod‘𝑅))) | |
| 4 | 2, 3 | eqtrid 2251 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐵 = (Base‘(ringLMod‘𝑅))) |
| 5 | 4 | sseq2d 3227 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝐺 ⊆ 𝐵 ↔ 𝐺 ⊆ (Base‘(ringLMod‘𝑅)))) |
| 6 | 5 | biimpa 296 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ⊆ 𝐵) → 𝐺 ⊆ (Base‘(ringLMod‘𝑅))) |
| 7 | eqid 2206 | . . . 4 ⊢ (Base‘(ringLMod‘𝑅)) = (Base‘(ringLMod‘𝑅)) | |
| 8 | eqid 2206 | . . . 4 ⊢ (LSpan‘(ringLMod‘𝑅)) = (LSpan‘(ringLMod‘𝑅)) | |
| 9 | 7, 8 | lspssid 14237 | . . 3 ⊢ (((ringLMod‘𝑅) ∈ LMod ∧ 𝐺 ⊆ (Base‘(ringLMod‘𝑅))) → 𝐺 ⊆ ((LSpan‘(ringLMod‘𝑅))‘𝐺)) |
| 10 | 1, 6, 9 | syl2an2r 595 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ⊆ 𝐵) → 𝐺 ⊆ ((LSpan‘(ringLMod‘𝑅))‘𝐺)) |
| 11 | rspcl.k | . . . . . 6 ⊢ 𝐾 = (RSpan‘𝑅) | |
| 12 | rspvalg 14309 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (RSpan‘𝑅) = (LSpan‘(ringLMod‘𝑅))) | |
| 13 | 11, 12 | eqtrid 2251 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐾 = (LSpan‘(ringLMod‘𝑅))) |
| 14 | 13 | fveq1d 5591 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝐾‘𝐺) = ((LSpan‘(ringLMod‘𝑅))‘𝐺)) |
| 15 | 14 | sseq2d 3227 | . . 3 ⊢ (𝑅 ∈ Ring → (𝐺 ⊆ (𝐾‘𝐺) ↔ 𝐺 ⊆ ((LSpan‘(ringLMod‘𝑅))‘𝐺))) |
| 16 | 15 | adantr 276 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ⊆ 𝐵) → (𝐺 ⊆ (𝐾‘𝐺) ↔ 𝐺 ⊆ ((LSpan‘(ringLMod‘𝑅))‘𝐺))) |
| 17 | 10, 16 | mpbird 167 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ⊆ 𝐵) → 𝐺 ⊆ (𝐾‘𝐺)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ⊆ wss 3170 ‘cfv 5280 Basecbs 12907 Ringcrg 13833 LModclmod 14124 LSpanclspn 14223 ringLModcrglmod 14271 RSpancrsp 14305 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-pre-ltirr 8057 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-pnf 8129 df-mnf 8130 df-ltxr 8132 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 df-7 9120 df-8 9121 df-ndx 12910 df-slot 12911 df-base 12913 df-sets 12914 df-iress 12915 df-plusg 12997 df-mulr 12998 df-sca 13000 df-vsca 13001 df-ip 13002 df-0g 13165 df-mgm 13263 df-sgrp 13309 df-mnd 13324 df-grp 13410 df-minusg 13411 df-subg 13581 df-mgp 13758 df-ur 13797 df-ring 13835 df-subrg 14056 df-lmod 14126 df-lssm 14190 df-lsp 14224 df-sra 14272 df-rgmod 14273 df-rsp 14307 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |