ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetcl GIF version

Theorem xmetcl 14795
Description: Closure of the distance function of a metric space. Part of Property M1 of [Kreyszig] p. 3. (Contributed by NM, 30-Aug-2006.)
Assertion
Ref Expression
xmetcl ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)

Proof of Theorem xmetcl
StepHypRef Expression
1 xmetf 14793 . 2 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
2 fovcdm 6088 . 2 ((𝐷:(𝑋 × 𝑋)⟶ℝ*𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
31, 2syl3an1 1282 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980  wcel 2175   × cxp 4672  wf 5266  cfv 5270  (class class class)co 5943  *cxr 8105  ∞Metcxmet 14269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-map 6736  df-pnf 8108  df-mnf 8109  df-xr 8110  df-xmet 14277
This theorem is referenced by:  xmetge0  14808  xmetlecl  14810  xmetsym  14811  xmetrtri  14819  xblpnf  14842  bldisj  14844  blgt0  14845  xblss2  14848  blhalf  14851  xblm  14860  blininf  14867  blss  14871  xmscl  14909  blsscls2  14936  comet  14942  bdxmet  14944  bdmet  14945  bdbl  14946  xmetxp  14950  xmetxpbl  14951  metcnpi3  14960  txmetcnp  14961
  Copyright terms: Public domain W3C validator