MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exp1 Structured version   Visualization version   GIF version

Theorem exp1 13243
Description: Value of a complex number raised to the first power. (Contributed by NM, 20-Oct-2004.) (Revised by Mario Carneiro, 2-Jul-2013.)
Assertion
Ref Expression
exp1 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)

Proof of Theorem exp1
StepHypRef Expression
1 1nn 11444 . . . 4 1 ∈ ℕ
2 expnnval 13240 . . . 4 ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ) → (𝐴↑1) = (seq1( · , (ℕ × {𝐴}))‘1))
31, 2mpan2 678 . . 3 (𝐴 ∈ ℂ → (𝐴↑1) = (seq1( · , (ℕ × {𝐴}))‘1))
4 1z 11818 . . . 4 1 ∈ ℤ
5 seq1 13190 . . . 4 (1 ∈ ℤ → (seq1( · , (ℕ × {𝐴}))‘1) = ((ℕ × {𝐴})‘1))
64, 5ax-mp 5 . . 3 (seq1( · , (ℕ × {𝐴}))‘1) = ((ℕ × {𝐴})‘1)
73, 6syl6eq 2824 . 2 (𝐴 ∈ ℂ → (𝐴↑1) = ((ℕ × {𝐴})‘1))
8 fvconst2g 6785 . . 3 ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ) → ((ℕ × {𝐴})‘1) = 𝐴)
91, 8mpan2 678 . 2 (𝐴 ∈ ℂ → ((ℕ × {𝐴})‘1) = 𝐴)
107, 9eqtrd 2808 1 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1507  wcel 2048  {csn 4435   × cxp 5398  cfv 6182  (class class class)co 6970  cc 10325  1c1 10328   · cmul 10332  cn 11431  cz 11786  seqcseq 13177  cexp 13237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-2nd 7495  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-er 8081  df-en 8299  df-dom 8300  df-sdom 8301  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-nn 11432  df-n0 11701  df-z 11787  df-uz 12052  df-seq 13178  df-exp 13238
This theorem is referenced by:  expp1  13244  expn1  13247  expcllem  13248  expeq0  13267  expp1z  13286  expm1  13287  sqval  13289  exp1d  13313  expmordi  13339  expnbnd  13401  digit1  13406  faclbnd4lem1  13461  climcndslem1  15054  climcndslem2  15055  geoisum1  15085  bpoly1  15255  ef4p  15316  efgt1p2  15317  efgt1p  15318  rpnnen2lem3  15419  modxp1i  16252  numexp1  16259  psgnpmtr  18390  lt6abl  18759  cphipval  23539  iblcnlem1  24081  itgcnlem  24083  dvexp  24243  dveflem  24269  plyid  24492  coeidp  24546  dgrid  24547  cxp1  24945  1cubrlem  25110  1cubr  25111  log2ublem3  25218  basellem5  25354  perfectlem2  25498  logdivsum  25801  log2sumbnd  25812  ipval2  28251  0dp2dp  30320  subfacval2  31979  dvasin  34367  areacirclem1  34371  1t10e1p1e11  42862  fmtnoge3  43000  fmtno0  43010  fmtno1  43011  lighneallem2  43079  lighneallem3  43080  41prothprmlem2  43091  perfectALTVlem2  43195  8exp8mod9  43209  tgblthelfgott  43288  exple2lt6  43718  pw2m1lepw2m1  43883  logbpw2m1  43935  nnpw2pmod  43951
  Copyright terms: Public domain W3C validator