Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exp1 | Structured version Visualization version GIF version |
Description: Value of a complex number raised to the first power. (Contributed by NM, 20-Oct-2004.) (Revised by Mario Carneiro, 2-Jul-2013.) |
Ref | Expression |
---|---|
exp1 | ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 11914 | . . . 4 ⊢ 1 ∈ ℕ | |
2 | expnnval 13713 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ) → (𝐴↑1) = (seq1( · , (ℕ × {𝐴}))‘1)) | |
3 | 1, 2 | mpan2 687 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = (seq1( · , (ℕ × {𝐴}))‘1)) |
4 | 1z 12280 | . . . 4 ⊢ 1 ∈ ℤ | |
5 | seq1 13662 | . . . 4 ⊢ (1 ∈ ℤ → (seq1( · , (ℕ × {𝐴}))‘1) = ((ℕ × {𝐴})‘1)) | |
6 | 4, 5 | ax-mp 5 | . . 3 ⊢ (seq1( · , (ℕ × {𝐴}))‘1) = ((ℕ × {𝐴})‘1) |
7 | 3, 6 | eqtrdi 2795 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = ((ℕ × {𝐴})‘1)) |
8 | fvconst2g 7059 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ) → ((ℕ × {𝐴})‘1) = 𝐴) | |
9 | 1, 8 | mpan2 687 | . 2 ⊢ (𝐴 ∈ ℂ → ((ℕ × {𝐴})‘1) = 𝐴) |
10 | 7, 9 | eqtrd 2778 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {csn 4558 × cxp 5578 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 1c1 10803 · cmul 10807 ℕcn 11903 ℤcz 12249 seqcseq 13649 ↑cexp 13710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-seq 13650 df-exp 13711 |
This theorem is referenced by: expp1 13717 expn1 13720 expcllem 13721 expeq0 13741 expp1z 13760 expm1 13761 sqval 13763 exp1d 13787 expmordi 13813 expnbnd 13875 digit1 13880 faclbnd4lem1 13935 climcndslem1 15489 climcndslem2 15490 geoisum1 15519 bpoly1 15689 ef4p 15750 efgt1p2 15751 efgt1p 15752 rpnnen2lem3 15853 modxp1i 16699 numexp1 16706 psgnpmtr 19033 lt6abl 19411 cphipval 24312 iblcnlem1 24857 itgcnlem 24859 dvexp 25022 dveflem 25048 plyid 25275 coeidp 25329 dgrid 25330 cxp1 25731 1cubrlem 25896 1cubr 25897 log2ublem3 26003 basellem5 26139 perfectlem2 26283 logdivsum 26586 log2sumbnd 26597 ipval2 28970 0dp2dp 31085 subfacval2 33049 dvasin 35788 areacirclem1 35792 1t10e1p1e11 44690 fmtnoge3 44870 fmtno0 44880 fmtno1 44881 lighneallem2 44946 lighneallem3 44947 41prothprmlem2 44958 perfectALTVlem2 45062 8exp8mod9 45076 tgblthelfgott 45155 exple2lt6 45588 pw2m1lepw2m1 45749 logbpw2m1 45801 nnpw2pmod 45817 |
Copyright terms: Public domain | W3C validator |