Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exp1 | Structured version Visualization version GIF version |
Description: Value of a complex number raised to the first power. (Contributed by NM, 20-Oct-2004.) (Revised by Mario Carneiro, 2-Jul-2013.) |
Ref | Expression |
---|---|
exp1 | ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 11685 | . . . 4 ⊢ 1 ∈ ℕ | |
2 | expnnval 13482 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ) → (𝐴↑1) = (seq1( · , (ℕ × {𝐴}))‘1)) | |
3 | 1, 2 | mpan2 690 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = (seq1( · , (ℕ × {𝐴}))‘1)) |
4 | 1z 12051 | . . . 4 ⊢ 1 ∈ ℤ | |
5 | seq1 13431 | . . . 4 ⊢ (1 ∈ ℤ → (seq1( · , (ℕ × {𝐴}))‘1) = ((ℕ × {𝐴})‘1)) | |
6 | 4, 5 | ax-mp 5 | . . 3 ⊢ (seq1( · , (ℕ × {𝐴}))‘1) = ((ℕ × {𝐴})‘1) |
7 | 3, 6 | eqtrdi 2809 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = ((ℕ × {𝐴})‘1)) |
8 | fvconst2g 6955 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ) → ((ℕ × {𝐴})‘1) = 𝐴) | |
9 | 1, 8 | mpan2 690 | . 2 ⊢ (𝐴 ∈ ℂ → ((ℕ × {𝐴})‘1) = 𝐴) |
10 | 7, 9 | eqtrd 2793 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 {csn 4522 × cxp 5522 ‘cfv 6335 (class class class)co 7150 ℂcc 10573 1c1 10576 · cmul 10580 ℕcn 11674 ℤcz 12020 seqcseq 13418 ↑cexp 13479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-n0 11935 df-z 12021 df-uz 12283 df-seq 13419 df-exp 13480 |
This theorem is referenced by: expp1 13486 expn1 13489 expcllem 13490 expeq0 13509 expp1z 13528 expm1 13529 sqval 13531 exp1d 13555 expmordi 13581 expnbnd 13643 digit1 13648 faclbnd4lem1 13703 climcndslem1 15252 climcndslem2 15253 geoisum1 15283 bpoly1 15453 ef4p 15514 efgt1p2 15515 efgt1p 15516 rpnnen2lem3 15617 modxp1i 16461 numexp1 16468 psgnpmtr 18705 lt6abl 19083 cphipval 23943 iblcnlem1 24487 itgcnlem 24489 dvexp 24652 dveflem 24678 plyid 24905 coeidp 24959 dgrid 24960 cxp1 25361 1cubrlem 25526 1cubr 25527 log2ublem3 25633 basellem5 25769 perfectlem2 25913 logdivsum 26216 log2sumbnd 26227 ipval2 28589 0dp2dp 30707 subfacval2 32665 dvasin 35421 areacirclem1 35425 1t10e1p1e11 44235 fmtnoge3 44415 fmtno0 44425 fmtno1 44426 lighneallem2 44491 lighneallem3 44492 41prothprmlem2 44503 perfectALTVlem2 44607 8exp8mod9 44621 tgblthelfgott 44700 exple2lt6 45133 pw2m1lepw2m1 45294 logbpw2m1 45346 nnpw2pmod 45362 |
Copyright terms: Public domain | W3C validator |