| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp1 | Structured version Visualization version GIF version | ||
| Description: Value of a complex number raised to the first power. (Contributed by NM, 20-Oct-2004.) (Revised by Mario Carneiro, 2-Jul-2013.) |
| Ref | Expression |
|---|---|
| exp1 | ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 12249 | . . . 4 ⊢ 1 ∈ ℕ | |
| 2 | expnnval 14080 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ) → (𝐴↑1) = (seq1( · , (ℕ × {𝐴}))‘1)) | |
| 3 | 1, 2 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = (seq1( · , (ℕ × {𝐴}))‘1)) |
| 4 | 1z 12620 | . . . 4 ⊢ 1 ∈ ℤ | |
| 5 | seq1 14030 | . . . 4 ⊢ (1 ∈ ℤ → (seq1( · , (ℕ × {𝐴}))‘1) = ((ℕ × {𝐴})‘1)) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ (seq1( · , (ℕ × {𝐴}))‘1) = ((ℕ × {𝐴})‘1) |
| 7 | 3, 6 | eqtrdi 2786 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = ((ℕ × {𝐴})‘1)) |
| 8 | fvconst2g 7193 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ) → ((ℕ × {𝐴})‘1) = 𝐴) | |
| 9 | 1, 8 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℂ → ((ℕ × {𝐴})‘1) = 𝐴) |
| 10 | 7, 9 | eqtrd 2770 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {csn 4601 × cxp 5652 ‘cfv 6530 (class class class)co 7403 ℂcc 11125 1c1 11128 · cmul 11132 ℕcn 12238 ℤcz 12586 seqcseq 14017 ↑cexp 14077 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-n0 12500 df-z 12587 df-uz 12851 df-seq 14018 df-exp 14078 |
| This theorem is referenced by: expp1 14084 expn1 14087 expcllem 14088 expeq0 14108 expp1z 14127 expm1 14128 sqval 14130 exp1d 14157 expmordi 14183 expnbnd 14248 digit1 14253 faclbnd4lem1 14309 climcndslem1 15863 climcndslem2 15864 geoisum1 15893 bpoly1 16065 ef4p 16129 efgt1p2 16130 efgt1p 16131 rpnnen2lem3 16232 modxp1i 17088 numexp1 17094 psgnpmtr 19489 lt6abl 19874 cphipval 25193 iblcnlem1 25739 itgcnlem 25741 dvexp 25907 dveflem 25933 plyid 26164 coeidp 26219 dgrid 26220 cxp1 26630 1cubrlem 26801 1cubr 26802 log2ublem3 26908 basellem5 27045 perfectlem2 27191 logdivsum 27494 log2sumbnd 27505 ipval2 30634 0dp2dp 32829 cos9thpiminplylem5 33766 subfacval2 35155 dvasin 37674 areacirclem1 37678 1t10e1p1e11 47287 fmtnoge3 47492 fmtno0 47502 fmtno1 47503 lighneallem2 47568 lighneallem3 47569 41prothprmlem2 47580 perfectALTVlem2 47684 8exp8mod9 47698 tgblthelfgott 47777 exple2lt6 48287 pw2m1lepw2m1 48444 logbpw2m1 48495 nnpw2pmod 48511 |
| Copyright terms: Public domain | W3C validator |