MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exp1 Structured version   Visualization version   GIF version

Theorem exp1 14032
Description: Value of a complex number raised to the first power. (Contributed by NM, 20-Oct-2004.) (Revised by Mario Carneiro, 2-Jul-2013.)
Assertion
Ref Expression
exp1 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)

Proof of Theorem exp1
StepHypRef Expression
1 1nn 12197 . . . 4 1 ∈ ℕ
2 expnnval 14029 . . . 4 ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ) → (𝐴↑1) = (seq1( · , (ℕ × {𝐴}))‘1))
31, 2mpan2 691 . . 3 (𝐴 ∈ ℂ → (𝐴↑1) = (seq1( · , (ℕ × {𝐴}))‘1))
4 1z 12563 . . . 4 1 ∈ ℤ
5 seq1 13979 . . . 4 (1 ∈ ℤ → (seq1( · , (ℕ × {𝐴}))‘1) = ((ℕ × {𝐴})‘1))
64, 5ax-mp 5 . . 3 (seq1( · , (ℕ × {𝐴}))‘1) = ((ℕ × {𝐴})‘1)
73, 6eqtrdi 2780 . 2 (𝐴 ∈ ℂ → (𝐴↑1) = ((ℕ × {𝐴})‘1))
8 fvconst2g 7176 . . 3 ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ) → ((ℕ × {𝐴})‘1) = 𝐴)
91, 8mpan2 691 . 2 (𝐴 ∈ ℂ → ((ℕ × {𝐴})‘1) = 𝐴)
107, 9eqtrd 2764 1 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {csn 4589   × cxp 5636  cfv 6511  (class class class)co 7387  cc 11066  1c1 11069   · cmul 11073  cn 12186  cz 12529  seqcseq 13966  cexp 14026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-seq 13967  df-exp 14027
This theorem is referenced by:  expp1  14033  expn1  14036  expcllem  14037  expeq0  14057  expp1z  14076  expm1  14077  sqval  14079  exp1d  14106  expmordi  14132  expnbnd  14197  digit1  14202  faclbnd4lem1  14258  climcndslem1  15815  climcndslem2  15816  geoisum1  15845  bpoly1  16017  ef4p  16081  efgt1p2  16082  efgt1p  16083  rpnnen2lem3  16184  modxp1i  17041  numexp1  17047  psgnpmtr  19440  lt6abl  19825  cphipval  25143  iblcnlem1  25689  itgcnlem  25691  dvexp  25857  dveflem  25883  plyid  26114  coeidp  26169  dgrid  26170  cxp1  26580  1cubrlem  26751  1cubr  26752  log2ublem3  26858  basellem5  26995  perfectlem2  27141  logdivsum  27444  log2sumbnd  27455  ipval2  30636  0dp2dp  32829  cos9thpiminplylem5  33776  subfacval2  35174  dvasin  37698  areacirclem1  37702  1t10e1p1e11  47311  fmtnoge3  47531  fmtno0  47541  fmtno1  47542  lighneallem2  47607  lighneallem3  47608  41prothprmlem2  47619  perfectALTVlem2  47723  8exp8mod9  47737  tgblthelfgott  47816  exple2lt6  48352  pw2m1lepw2m1  48509  logbpw2m1  48556  nnpw2pmod  48572
  Copyright terms: Public domain W3C validator