| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp1 | Structured version Visualization version GIF version | ||
| Description: Value of a complex number raised to the first power. (Contributed by NM, 20-Oct-2004.) (Revised by Mario Carneiro, 2-Jul-2013.) |
| Ref | Expression |
|---|---|
| exp1 | ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 12204 | . . . 4 ⊢ 1 ∈ ℕ | |
| 2 | expnnval 14036 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ) → (𝐴↑1) = (seq1( · , (ℕ × {𝐴}))‘1)) | |
| 3 | 1, 2 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = (seq1( · , (ℕ × {𝐴}))‘1)) |
| 4 | 1z 12570 | . . . 4 ⊢ 1 ∈ ℤ | |
| 5 | seq1 13986 | . . . 4 ⊢ (1 ∈ ℤ → (seq1( · , (ℕ × {𝐴}))‘1) = ((ℕ × {𝐴})‘1)) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ (seq1( · , (ℕ × {𝐴}))‘1) = ((ℕ × {𝐴})‘1) |
| 7 | 3, 6 | eqtrdi 2781 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = ((ℕ × {𝐴})‘1)) |
| 8 | fvconst2g 7179 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ) → ((ℕ × {𝐴})‘1) = 𝐴) | |
| 9 | 1, 8 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℂ → ((ℕ × {𝐴})‘1) = 𝐴) |
| 10 | 7, 9 | eqtrd 2765 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4592 × cxp 5639 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 1c1 11076 · cmul 11080 ℕcn 12193 ℤcz 12536 seqcseq 13973 ↑cexp 14033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-seq 13974 df-exp 14034 |
| This theorem is referenced by: expp1 14040 expn1 14043 expcllem 14044 expeq0 14064 expp1z 14083 expm1 14084 sqval 14086 exp1d 14113 expmordi 14139 expnbnd 14204 digit1 14209 faclbnd4lem1 14265 climcndslem1 15822 climcndslem2 15823 geoisum1 15852 bpoly1 16024 ef4p 16088 efgt1p2 16089 efgt1p 16090 rpnnen2lem3 16191 modxp1i 17048 numexp1 17054 psgnpmtr 19447 lt6abl 19832 cphipval 25150 iblcnlem1 25696 itgcnlem 25698 dvexp 25864 dveflem 25890 plyid 26121 coeidp 26176 dgrid 26177 cxp1 26587 1cubrlem 26758 1cubr 26759 log2ublem3 26865 basellem5 27002 perfectlem2 27148 logdivsum 27451 log2sumbnd 27462 ipval2 30643 0dp2dp 32836 cos9thpiminplylem5 33783 subfacval2 35181 dvasin 37705 areacirclem1 37709 1t10e1p1e11 47315 fmtnoge3 47535 fmtno0 47545 fmtno1 47546 lighneallem2 47611 lighneallem3 47612 41prothprmlem2 47623 perfectALTVlem2 47727 8exp8mod9 47741 tgblthelfgott 47820 exple2lt6 48356 pw2m1lepw2m1 48513 logbpw2m1 48560 nnpw2pmod 48576 |
| Copyright terms: Public domain | W3C validator |