MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exp1 Structured version   Visualization version   GIF version

Theorem exp1 13089
Description: Value of a complex number raised to the first power. (Contributed by NM, 20-Oct-2004.) (Revised by Mario Carneiro, 2-Jul-2013.)
Assertion
Ref Expression
exp1 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)

Proof of Theorem exp1
StepHypRef Expression
1 1nn 11316 . . . 4 1 ∈ ℕ
2 expnnval 13086 . . . 4 ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ) → (𝐴↑1) = (seq1( · , (ℕ × {𝐴}))‘1))
31, 2mpan2 674 . . 3 (𝐴 ∈ ℂ → (𝐴↑1) = (seq1( · , (ℕ × {𝐴}))‘1))
4 1z 11673 . . . 4 1 ∈ ℤ
5 seq1 13037 . . . 4 (1 ∈ ℤ → (seq1( · , (ℕ × {𝐴}))‘1) = ((ℕ × {𝐴})‘1))
64, 5ax-mp 5 . . 3 (seq1( · , (ℕ × {𝐴}))‘1) = ((ℕ × {𝐴})‘1)
73, 6syl6eq 2856 . 2 (𝐴 ∈ ℂ → (𝐴↑1) = ((ℕ × {𝐴})‘1))
8 fvconst2g 6692 . . 3 ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ) → ((ℕ × {𝐴})‘1) = 𝐴)
91, 8mpan2 674 . 2 (𝐴 ∈ ℂ → ((ℕ × {𝐴})‘1) = 𝐴)
107, 9eqtrd 2840 1 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1637  wcel 2156  {csn 4370   × cxp 5309  cfv 6101  (class class class)co 6874  cc 10219  1c1 10222   · cmul 10226  cn 11305  cz 11643  seqcseq 13024  cexp 13083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7179  ax-cnex 10277  ax-resscn 10278  ax-1cn 10279  ax-icn 10280  ax-addcl 10281  ax-addrcl 10282  ax-mulcl 10283  ax-mulrcl 10284  ax-mulcom 10285  ax-addass 10286  ax-mulass 10287  ax-distr 10288  ax-i2m1 10289  ax-1ne0 10290  ax-1rid 10291  ax-rnegex 10292  ax-rrecex 10293  ax-cnre 10294  ax-pre-lttri 10295  ax-pre-lttrn 10296  ax-pre-ltadd 10297  ax-pre-mulgt0 10298
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6835  df-ov 6877  df-oprab 6878  df-mpt2 6879  df-om 7296  df-2nd 7399  df-wrecs 7642  df-recs 7704  df-rdg 7742  df-er 7979  df-en 8193  df-dom 8194  df-sdom 8195  df-pnf 10361  df-mnf 10362  df-xr 10363  df-ltxr 10364  df-le 10365  df-sub 10553  df-neg 10554  df-nn 11306  df-n0 11560  df-z 11644  df-uz 11905  df-seq 13025  df-exp 13084
This theorem is referenced by:  expp1  13090  expn1  13093  expcllem  13094  expeq0  13113  expp1z  13132  expm1  13133  sqval  13145  expnbnd  13216  digit1  13221  exp1d  13226  faclbnd4lem1  13300  climcndslem1  14803  climcndslem2  14804  geoisum1  14832  bpoly1  15002  ef4p  15063  efgt1p2  15064  efgt1p  15065  rpnnen2lem3  15165  modxp1i  15991  numexp1  15998  psgnpmtr  18131  lt6abl  18497  cphipval  23254  iblcnlem1  23768  itgcnlem  23770  dvexp  23930  dveflem  23956  plyid  24179  coeidp  24233  dgrid  24234  cxp1  24631  1cubrlem  24782  1cubr  24783  log2ublem3  24889  basellem5  25025  perfectlem2  25169  logdivsum  25436  log2sumbnd  25447  ipval2  27890  0dp2dp  29942  subfacval2  31492  dvasin  33808  areacirclem1  33812  expmordi  38013  1t10e1p1e11  41895  fmtnoge3  42017  fmtno0  42027  fmtno1  42028  lighneallem2  42098  lighneallem3  42099  41prothprmlem2  42110  perfectALTVlem2  42206  tgblthelfgott  42278  exple2lt6  42713  pw2m1lepw2m1  42878  logbpw2m1  42929  nnpw2pmod  42945
  Copyright terms: Public domain W3C validator