| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp1 | Structured version Visualization version GIF version | ||
| Description: Value of a complex number raised to the first power. (Contributed by NM, 20-Oct-2004.) (Revised by Mario Carneiro, 2-Jul-2013.) |
| Ref | Expression |
|---|---|
| exp1 | ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 12157 | . . . 4 ⊢ 1 ∈ ℕ | |
| 2 | expnnval 13989 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ) → (𝐴↑1) = (seq1( · , (ℕ × {𝐴}))‘1)) | |
| 3 | 1, 2 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = (seq1( · , (ℕ × {𝐴}))‘1)) |
| 4 | 1z 12523 | . . . 4 ⊢ 1 ∈ ℤ | |
| 5 | seq1 13939 | . . . 4 ⊢ (1 ∈ ℤ → (seq1( · , (ℕ × {𝐴}))‘1) = ((ℕ × {𝐴})‘1)) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ (seq1( · , (ℕ × {𝐴}))‘1) = ((ℕ × {𝐴})‘1) |
| 7 | 3, 6 | eqtrdi 2780 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = ((ℕ × {𝐴})‘1)) |
| 8 | fvconst2g 7142 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ) → ((ℕ × {𝐴})‘1) = 𝐴) | |
| 9 | 1, 8 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℂ → ((ℕ × {𝐴})‘1) = 𝐴) |
| 10 | 7, 9 | eqtrd 2764 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4579 × cxp 5621 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 1c1 11029 · cmul 11033 ℕcn 12146 ℤcz 12489 seqcseq 13926 ↑cexp 13986 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-seq 13927 df-exp 13987 |
| This theorem is referenced by: expp1 13993 expn1 13996 expcllem 13997 expeq0 14017 expp1z 14036 expm1 14037 sqval 14039 exp1d 14066 expmordi 14092 expnbnd 14157 digit1 14162 faclbnd4lem1 14218 climcndslem1 15774 climcndslem2 15775 geoisum1 15804 bpoly1 15976 ef4p 16040 efgt1p2 16041 efgt1p 16042 rpnnen2lem3 16143 modxp1i 17000 numexp1 17006 psgnpmtr 19407 lt6abl 19792 cphipval 25159 iblcnlem1 25705 itgcnlem 25707 dvexp 25873 dveflem 25899 plyid 26130 coeidp 26185 dgrid 26186 cxp1 26596 1cubrlem 26767 1cubr 26768 log2ublem3 26874 basellem5 27011 perfectlem2 27157 logdivsum 27460 log2sumbnd 27471 ipval2 30669 0dp2dp 32862 cos9thpiminplylem5 33752 subfacval2 35159 dvasin 37683 areacirclem1 37687 1t10e1p1e11 47295 fmtnoge3 47515 fmtno0 47525 fmtno1 47526 lighneallem2 47591 lighneallem3 47592 41prothprmlem2 47603 perfectALTVlem2 47707 8exp8mod9 47721 tgblthelfgott 47800 exple2lt6 48349 pw2m1lepw2m1 48506 logbpw2m1 48553 nnpw2pmod 48569 |
| Copyright terms: Public domain | W3C validator |