| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp1 | Structured version Visualization version GIF version | ||
| Description: Value of a complex number raised to the first power. (Contributed by NM, 20-Oct-2004.) (Revised by Mario Carneiro, 2-Jul-2013.) |
| Ref | Expression |
|---|---|
| exp1 | ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 12133 | . . . 4 ⊢ 1 ∈ ℕ | |
| 2 | expnnval 13968 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ) → (𝐴↑1) = (seq1( · , (ℕ × {𝐴}))‘1)) | |
| 3 | 1, 2 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = (seq1( · , (ℕ × {𝐴}))‘1)) |
| 4 | 1z 12499 | . . . 4 ⊢ 1 ∈ ℤ | |
| 5 | seq1 13918 | . . . 4 ⊢ (1 ∈ ℤ → (seq1( · , (ℕ × {𝐴}))‘1) = ((ℕ × {𝐴})‘1)) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ (seq1( · , (ℕ × {𝐴}))‘1) = ((ℕ × {𝐴})‘1) |
| 7 | 3, 6 | eqtrdi 2782 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = ((ℕ × {𝐴})‘1)) |
| 8 | fvconst2g 7136 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ) → ((ℕ × {𝐴})‘1) = 𝐴) | |
| 9 | 1, 8 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℂ → ((ℕ × {𝐴})‘1) = 𝐴) |
| 10 | 7, 9 | eqtrd 2766 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {csn 4576 × cxp 5614 ‘cfv 6481 (class class class)co 7346 ℂcc 11001 1c1 11004 · cmul 11008 ℕcn 12122 ℤcz 12465 seqcseq 13905 ↑cexp 13965 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-n0 12379 df-z 12466 df-uz 12730 df-seq 13906 df-exp 13966 |
| This theorem is referenced by: expp1 13972 expn1 13975 expcllem 13976 expeq0 13996 expp1z 14015 expm1 14016 sqval 14018 exp1d 14045 expmordi 14071 expnbnd 14136 digit1 14141 faclbnd4lem1 14197 climcndslem1 15753 climcndslem2 15754 geoisum1 15783 bpoly1 15955 ef4p 16019 efgt1p2 16020 efgt1p 16021 rpnnen2lem3 16122 modxp1i 16979 numexp1 16985 psgnpmtr 19420 lt6abl 19805 cphipval 25168 iblcnlem1 25714 itgcnlem 25716 dvexp 25882 dveflem 25908 plyid 26139 coeidp 26194 dgrid 26195 cxp1 26605 1cubrlem 26776 1cubr 26777 log2ublem3 26883 basellem5 27020 perfectlem2 27166 logdivsum 27469 log2sumbnd 27480 ipval2 30682 0dp2dp 32884 cos9thpiminplylem5 33794 subfacval2 35219 dvasin 37743 areacirclem1 37747 1t10e1p1e11 47340 fmtnoge3 47560 fmtno0 47570 fmtno1 47571 lighneallem2 47636 lighneallem3 47637 41prothprmlem2 47648 perfectALTVlem2 47752 8exp8mod9 47766 tgblthelfgott 47845 exple2lt6 48394 pw2m1lepw2m1 48551 logbpw2m1 48598 nnpw2pmod 48614 |
| Copyright terms: Public domain | W3C validator |