MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  faclbnd4lem3 Structured version   Visualization version   GIF version

Theorem faclbnd4lem3 13649
Description: Lemma for faclbnd4 13651. The 𝑁 = 0 case. (Contributed by NM, 23-Dec-2005.)
Assertion
Ref Expression
faclbnd4lem3 (((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) ∧ 𝑁 = 0) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))

Proof of Theorem faclbnd4lem3
StepHypRef Expression
1 elnn0 11893 . . . . 5 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℕ ∨ 𝐾 = 0))
2 0exp 13458 . . . . . . . 8 (𝐾 ∈ ℕ → (0↑𝐾) = 0)
32adantl 484 . . . . . . 7 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ) → (0↑𝐾) = 0)
4 nnnn0 11898 . . . . . . . . 9 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
5 2nn0 11908 . . . . . . . . . . . 12 2 ∈ ℕ0
6 nn0sqcl 13450 . . . . . . . . . . . 12 (𝐾 ∈ ℕ0 → (𝐾↑2) ∈ ℕ0)
7 nn0expcl 13437 . . . . . . . . . . . 12 ((2 ∈ ℕ0 ∧ (𝐾↑2) ∈ ℕ0) → (2↑(𝐾↑2)) ∈ ℕ0)
85, 6, 7sylancr 589 . . . . . . . . . . 11 (𝐾 ∈ ℕ0 → (2↑(𝐾↑2)) ∈ ℕ0)
98adantl 484 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (2↑(𝐾↑2)) ∈ ℕ0)
10 nn0addcl 11926 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑀 + 𝐾) ∈ ℕ0)
11 nn0expcl 13437 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0 ∧ (𝑀 + 𝐾) ∈ ℕ0) → (𝑀↑(𝑀 + 𝐾)) ∈ ℕ0)
1210, 11syldan 593 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑀↑(𝑀 + 𝐾)) ∈ ℕ0)
139, 12nn0mulcld 11954 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℕ0)
144, 13sylan2 594 . . . . . . . 8 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ) → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℕ0)
1514nn0ge0d 11952 . . . . . . 7 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ) → 0 ≤ ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))))
163, 15eqbrtrd 5080 . . . . . 6 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ) → (0↑𝐾) ≤ ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))))
17 1nn 11643 . . . . . . . . . 10 1 ∈ ℕ
18 elnn0 11893 . . . . . . . . . . 11 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
19 nnnn0 11898 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
20 0nn0 11906 . . . . . . . . . . . . . 14 0 ∈ ℕ0
21 nn0addcl 11926 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0 ∧ 0 ∈ ℕ0) → (𝑀 + 0) ∈ ℕ0)
2219, 20, 21sylancl 588 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (𝑀 + 0) ∈ ℕ0)
23 nnexpcl 13436 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ (𝑀 + 0) ∈ ℕ0) → (𝑀↑(𝑀 + 0)) ∈ ℕ)
2422, 23mpdan 685 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → (𝑀↑(𝑀 + 0)) ∈ ℕ)
25 id 22 . . . . . . . . . . . . . . 15 (𝑀 = 0 → 𝑀 = 0)
26 oveq1 7157 . . . . . . . . . . . . . . . 16 (𝑀 = 0 → (𝑀 + 0) = (0 + 0))
27 00id 10809 . . . . . . . . . . . . . . . 16 (0 + 0) = 0
2826, 27syl6eq 2872 . . . . . . . . . . . . . . 15 (𝑀 = 0 → (𝑀 + 0) = 0)
2925, 28oveq12d 7168 . . . . . . . . . . . . . 14 (𝑀 = 0 → (𝑀↑(𝑀 + 0)) = (0↑0))
30 0exp0e1 13428 . . . . . . . . . . . . . 14 (0↑0) = 1
3129, 30syl6eq 2872 . . . . . . . . . . . . 13 (𝑀 = 0 → (𝑀↑(𝑀 + 0)) = 1)
3231, 17eqeltrdi 2921 . . . . . . . . . . . 12 (𝑀 = 0 → (𝑀↑(𝑀 + 0)) ∈ ℕ)
3324, 32jaoi 853 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∨ 𝑀 = 0) → (𝑀↑(𝑀 + 0)) ∈ ℕ)
3418, 33sylbi 219 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → (𝑀↑(𝑀 + 0)) ∈ ℕ)
35 nnmulcl 11655 . . . . . . . . . 10 ((1 ∈ ℕ ∧ (𝑀↑(𝑀 + 0)) ∈ ℕ) → (1 · (𝑀↑(𝑀 + 0))) ∈ ℕ)
3617, 34, 35sylancr 589 . . . . . . . . 9 (𝑀 ∈ ℕ0 → (1 · (𝑀↑(𝑀 + 0))) ∈ ℕ)
3736nnge1d 11679 . . . . . . . 8 (𝑀 ∈ ℕ0 → 1 ≤ (1 · (𝑀↑(𝑀 + 0))))
3837adantr 483 . . . . . . 7 ((𝑀 ∈ ℕ0𝐾 = 0) → 1 ≤ (1 · (𝑀↑(𝑀 + 0))))
39 oveq2 7158 . . . . . . . . . 10 (𝐾 = 0 → (0↑𝐾) = (0↑0))
4039, 30syl6eq 2872 . . . . . . . . 9 (𝐾 = 0 → (0↑𝐾) = 1)
41 sq0i 13550 . . . . . . . . . . . 12 (𝐾 = 0 → (𝐾↑2) = 0)
4241oveq2d 7166 . . . . . . . . . . 11 (𝐾 = 0 → (2↑(𝐾↑2)) = (2↑0))
43 2cn 11706 . . . . . . . . . . . 12 2 ∈ ℂ
44 exp0 13427 . . . . . . . . . . . 12 (2 ∈ ℂ → (2↑0) = 1)
4543, 44ax-mp 5 . . . . . . . . . . 11 (2↑0) = 1
4642, 45syl6eq 2872 . . . . . . . . . 10 (𝐾 = 0 → (2↑(𝐾↑2)) = 1)
47 oveq2 7158 . . . . . . . . . . 11 (𝐾 = 0 → (𝑀 + 𝐾) = (𝑀 + 0))
4847oveq2d 7166 . . . . . . . . . 10 (𝐾 = 0 → (𝑀↑(𝑀 + 𝐾)) = (𝑀↑(𝑀 + 0)))
4946, 48oveq12d 7168 . . . . . . . . 9 (𝐾 = 0 → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) = (1 · (𝑀↑(𝑀 + 0))))
5040, 49breq12d 5071 . . . . . . . 8 (𝐾 = 0 → ((0↑𝐾) ≤ ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ↔ 1 ≤ (1 · (𝑀↑(𝑀 + 0)))))
5150adantl 484 . . . . . . 7 ((𝑀 ∈ ℕ0𝐾 = 0) → ((0↑𝐾) ≤ ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ↔ 1 ≤ (1 · (𝑀↑(𝑀 + 0)))))
5238, 51mpbird 259 . . . . . 6 ((𝑀 ∈ ℕ0𝐾 = 0) → (0↑𝐾) ≤ ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))))
5316, 52jaodan 954 . . . . 5 ((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ ∨ 𝐾 = 0)) → (0↑𝐾) ≤ ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))))
541, 53sylan2b 595 . . . 4 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (0↑𝐾) ≤ ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))))
55 nn0cn 11901 . . . . . . 7 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
5655exp0d 13498 . . . . . 6 (𝑀 ∈ ℕ0 → (𝑀↑0) = 1)
5756oveq2d 7166 . . . . 5 (𝑀 ∈ ℕ0 → ((0↑𝐾) · (𝑀↑0)) = ((0↑𝐾) · 1))
58 nn0expcl 13437 . . . . . . . 8 ((0 ∈ ℕ0𝐾 ∈ ℕ0) → (0↑𝐾) ∈ ℕ0)
5920, 58mpan 688 . . . . . . 7 (𝐾 ∈ ℕ0 → (0↑𝐾) ∈ ℕ0)
6059nn0cnd 11951 . . . . . 6 (𝐾 ∈ ℕ0 → (0↑𝐾) ∈ ℂ)
6160mulid1d 10652 . . . . 5 (𝐾 ∈ ℕ0 → ((0↑𝐾) · 1) = (0↑𝐾))
6257, 61sylan9eq 2876 . . . 4 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → ((0↑𝐾) · (𝑀↑0)) = (0↑𝐾))
6313nn0cnd 11951 . . . . 5 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℂ)
6463mulid1d 10652 . . . 4 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · 1) = ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))))
6554, 62, 643brtr4d 5090 . . 3 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → ((0↑𝐾) · (𝑀↑0)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · 1))
6665adantr 483 . 2 (((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) ∧ 𝑁 = 0) → ((0↑𝐾) · (𝑀↑0)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · 1))
67 oveq1 7157 . . . . 5 (𝑁 = 0 → (𝑁𝐾) = (0↑𝐾))
68 oveq2 7158 . . . . 5 (𝑁 = 0 → (𝑀𝑁) = (𝑀↑0))
6967, 68oveq12d 7168 . . . 4 (𝑁 = 0 → ((𝑁𝐾) · (𝑀𝑁)) = ((0↑𝐾) · (𝑀↑0)))
70 fveq2 6664 . . . . . 6 (𝑁 = 0 → (!‘𝑁) = (!‘0))
71 fac0 13630 . . . . . 6 (!‘0) = 1
7270, 71syl6eq 2872 . . . . 5 (𝑁 = 0 → (!‘𝑁) = 1)
7372oveq2d 7166 . . . 4 (𝑁 = 0 → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) = (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · 1))
7469, 73breq12d 5071 . . 3 (𝑁 = 0 → (((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ↔ ((0↑𝐾) · (𝑀↑0)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · 1)))
7574adantl 484 . 2 (((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) ∧ 𝑁 = 0) → (((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ↔ ((0↑𝐾) · (𝑀↑0)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · 1)))
7666, 75mpbird 259 1 (((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) ∧ 𝑁 = 0) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110   class class class wbr 5058  cfv 6349  (class class class)co 7150  cc 10529  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536  cle 10670  cn 11632  2c2 11686  0cn0 11891  cexp 13423  !cfa 13627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-seq 13364  df-exp 13424  df-fac 13628
This theorem is referenced by:  faclbnd4lem4  13650  faclbnd4  13651
  Copyright terms: Public domain W3C validator