MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  faclbnd4lem3 Structured version   Visualization version   GIF version

Theorem faclbnd4lem3 14260
Description: Lemma for faclbnd4 14262. The 𝑁 = 0 case. (Contributed by NM, 23-Dec-2005.)
Assertion
Ref Expression
faclbnd4lem3 (((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) ∧ 𝑁 = 0) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))

Proof of Theorem faclbnd4lem3
StepHypRef Expression
1 elnn0 12444 . . . . 5 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℕ ∨ 𝐾 = 0))
2 0exp 14062 . . . . . . . 8 (𝐾 ∈ ℕ → (0↑𝐾) = 0)
32adantl 481 . . . . . . 7 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ) → (0↑𝐾) = 0)
4 nnnn0 12449 . . . . . . . . 9 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
5 2nn0 12459 . . . . . . . . . . . 12 2 ∈ ℕ0
6 nn0sqcl 14054 . . . . . . . . . . . 12 (𝐾 ∈ ℕ0 → (𝐾↑2) ∈ ℕ0)
7 nn0expcl 14040 . . . . . . . . . . . 12 ((2 ∈ ℕ0 ∧ (𝐾↑2) ∈ ℕ0) → (2↑(𝐾↑2)) ∈ ℕ0)
85, 6, 7sylancr 587 . . . . . . . . . . 11 (𝐾 ∈ ℕ0 → (2↑(𝐾↑2)) ∈ ℕ0)
98adantl 481 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (2↑(𝐾↑2)) ∈ ℕ0)
10 nn0addcl 12477 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑀 + 𝐾) ∈ ℕ0)
11 nn0expcl 14040 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0 ∧ (𝑀 + 𝐾) ∈ ℕ0) → (𝑀↑(𝑀 + 𝐾)) ∈ ℕ0)
1210, 11syldan 591 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑀↑(𝑀 + 𝐾)) ∈ ℕ0)
139, 12nn0mulcld 12508 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℕ0)
144, 13sylan2 593 . . . . . . . 8 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ) → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℕ0)
1514nn0ge0d 12506 . . . . . . 7 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ) → 0 ≤ ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))))
163, 15eqbrtrd 5129 . . . . . 6 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ) → (0↑𝐾) ≤ ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))))
17 1nn 12197 . . . . . . . . . 10 1 ∈ ℕ
18 elnn0 12444 . . . . . . . . . . 11 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
19 nnnn0 12449 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
20 0nn0 12457 . . . . . . . . . . . . . 14 0 ∈ ℕ0
21 nn0addcl 12477 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0 ∧ 0 ∈ ℕ0) → (𝑀 + 0) ∈ ℕ0)
2219, 20, 21sylancl 586 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (𝑀 + 0) ∈ ℕ0)
23 nnexpcl 14039 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ (𝑀 + 0) ∈ ℕ0) → (𝑀↑(𝑀 + 0)) ∈ ℕ)
2422, 23mpdan 687 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → (𝑀↑(𝑀 + 0)) ∈ ℕ)
25 id 22 . . . . . . . . . . . . . . 15 (𝑀 = 0 → 𝑀 = 0)
26 oveq1 7394 . . . . . . . . . . . . . . . 16 (𝑀 = 0 → (𝑀 + 0) = (0 + 0))
27 00id 11349 . . . . . . . . . . . . . . . 16 (0 + 0) = 0
2826, 27eqtrdi 2780 . . . . . . . . . . . . . . 15 (𝑀 = 0 → (𝑀 + 0) = 0)
2925, 28oveq12d 7405 . . . . . . . . . . . . . 14 (𝑀 = 0 → (𝑀↑(𝑀 + 0)) = (0↑0))
30 0exp0e1 14031 . . . . . . . . . . . . . 14 (0↑0) = 1
3129, 30eqtrdi 2780 . . . . . . . . . . . . 13 (𝑀 = 0 → (𝑀↑(𝑀 + 0)) = 1)
3231, 17eqeltrdi 2836 . . . . . . . . . . . 12 (𝑀 = 0 → (𝑀↑(𝑀 + 0)) ∈ ℕ)
3324, 32jaoi 857 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∨ 𝑀 = 0) → (𝑀↑(𝑀 + 0)) ∈ ℕ)
3418, 33sylbi 217 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → (𝑀↑(𝑀 + 0)) ∈ ℕ)
35 nnmulcl 12210 . . . . . . . . . 10 ((1 ∈ ℕ ∧ (𝑀↑(𝑀 + 0)) ∈ ℕ) → (1 · (𝑀↑(𝑀 + 0))) ∈ ℕ)
3617, 34, 35sylancr 587 . . . . . . . . 9 (𝑀 ∈ ℕ0 → (1 · (𝑀↑(𝑀 + 0))) ∈ ℕ)
3736nnge1d 12234 . . . . . . . 8 (𝑀 ∈ ℕ0 → 1 ≤ (1 · (𝑀↑(𝑀 + 0))))
3837adantr 480 . . . . . . 7 ((𝑀 ∈ ℕ0𝐾 = 0) → 1 ≤ (1 · (𝑀↑(𝑀 + 0))))
39 oveq2 7395 . . . . . . . . . 10 (𝐾 = 0 → (0↑𝐾) = (0↑0))
4039, 30eqtrdi 2780 . . . . . . . . 9 (𝐾 = 0 → (0↑𝐾) = 1)
41 sq0i 14158 . . . . . . . . . . . 12 (𝐾 = 0 → (𝐾↑2) = 0)
4241oveq2d 7403 . . . . . . . . . . 11 (𝐾 = 0 → (2↑(𝐾↑2)) = (2↑0))
43 2cn 12261 . . . . . . . . . . . 12 2 ∈ ℂ
44 exp0 14030 . . . . . . . . . . . 12 (2 ∈ ℂ → (2↑0) = 1)
4543, 44ax-mp 5 . . . . . . . . . . 11 (2↑0) = 1
4642, 45eqtrdi 2780 . . . . . . . . . 10 (𝐾 = 0 → (2↑(𝐾↑2)) = 1)
47 oveq2 7395 . . . . . . . . . . 11 (𝐾 = 0 → (𝑀 + 𝐾) = (𝑀 + 0))
4847oveq2d 7403 . . . . . . . . . 10 (𝐾 = 0 → (𝑀↑(𝑀 + 𝐾)) = (𝑀↑(𝑀 + 0)))
4946, 48oveq12d 7405 . . . . . . . . 9 (𝐾 = 0 → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) = (1 · (𝑀↑(𝑀 + 0))))
5040, 49breq12d 5120 . . . . . . . 8 (𝐾 = 0 → ((0↑𝐾) ≤ ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ↔ 1 ≤ (1 · (𝑀↑(𝑀 + 0)))))
5150adantl 481 . . . . . . 7 ((𝑀 ∈ ℕ0𝐾 = 0) → ((0↑𝐾) ≤ ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ↔ 1 ≤ (1 · (𝑀↑(𝑀 + 0)))))
5238, 51mpbird 257 . . . . . 6 ((𝑀 ∈ ℕ0𝐾 = 0) → (0↑𝐾) ≤ ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))))
5316, 52jaodan 959 . . . . 5 ((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ ∨ 𝐾 = 0)) → (0↑𝐾) ≤ ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))))
541, 53sylan2b 594 . . . 4 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (0↑𝐾) ≤ ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))))
55 nn0cn 12452 . . . . . . 7 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
5655exp0d 14105 . . . . . 6 (𝑀 ∈ ℕ0 → (𝑀↑0) = 1)
5756oveq2d 7403 . . . . 5 (𝑀 ∈ ℕ0 → ((0↑𝐾) · (𝑀↑0)) = ((0↑𝐾) · 1))
58 nn0expcl 14040 . . . . . . . 8 ((0 ∈ ℕ0𝐾 ∈ ℕ0) → (0↑𝐾) ∈ ℕ0)
5920, 58mpan 690 . . . . . . 7 (𝐾 ∈ ℕ0 → (0↑𝐾) ∈ ℕ0)
6059nn0cnd 12505 . . . . . 6 (𝐾 ∈ ℕ0 → (0↑𝐾) ∈ ℂ)
6160mulridd 11191 . . . . 5 (𝐾 ∈ ℕ0 → ((0↑𝐾) · 1) = (0↑𝐾))
6257, 61sylan9eq 2784 . . . 4 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → ((0↑𝐾) · (𝑀↑0)) = (0↑𝐾))
6313nn0cnd 12505 . . . . 5 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℂ)
6463mulridd 11191 . . . 4 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · 1) = ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))))
6554, 62, 643brtr4d 5139 . . 3 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → ((0↑𝐾) · (𝑀↑0)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · 1))
6665adantr 480 . 2 (((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) ∧ 𝑁 = 0) → ((0↑𝐾) · (𝑀↑0)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · 1))
67 oveq1 7394 . . . . 5 (𝑁 = 0 → (𝑁𝐾) = (0↑𝐾))
68 oveq2 7395 . . . . 5 (𝑁 = 0 → (𝑀𝑁) = (𝑀↑0))
6967, 68oveq12d 7405 . . . 4 (𝑁 = 0 → ((𝑁𝐾) · (𝑀𝑁)) = ((0↑𝐾) · (𝑀↑0)))
70 fveq2 6858 . . . . . 6 (𝑁 = 0 → (!‘𝑁) = (!‘0))
71 fac0 14241 . . . . . 6 (!‘0) = 1
7270, 71eqtrdi 2780 . . . . 5 (𝑁 = 0 → (!‘𝑁) = 1)
7372oveq2d 7403 . . . 4 (𝑁 = 0 → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) = (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · 1))
7469, 73breq12d 5120 . . 3 (𝑁 = 0 → (((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ↔ ((0↑𝐾) · (𝑀↑0)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · 1)))
7574adantl 481 . 2 (((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) ∧ 𝑁 = 0) → (((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ↔ ((0↑𝐾) · (𝑀↑0)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · 1)))
7666, 75mpbird 257 1 (((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) ∧ 𝑁 = 0) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  cle 11209  cn 12186  2c2 12241  0cn0 12442  cexp 14026  !cfa 14238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-seq 13967  df-exp 14027  df-fac 14239
This theorem is referenced by:  faclbnd4lem4  14261  faclbnd4  14262
  Copyright terms: Public domain W3C validator