MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  faclbnd4lem3 Structured version   Visualization version   GIF version

Theorem faclbnd4lem3 14009
Description: Lemma for faclbnd4 14011. The 𝑁 = 0 case. (Contributed by NM, 23-Dec-2005.)
Assertion
Ref Expression
faclbnd4lem3 (((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) ∧ 𝑁 = 0) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))

Proof of Theorem faclbnd4lem3
StepHypRef Expression
1 elnn0 12235 . . . . 5 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℕ ∨ 𝐾 = 0))
2 0exp 13818 . . . . . . . 8 (𝐾 ∈ ℕ → (0↑𝐾) = 0)
32adantl 482 . . . . . . 7 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ) → (0↑𝐾) = 0)
4 nnnn0 12240 . . . . . . . . 9 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
5 2nn0 12250 . . . . . . . . . . . 12 2 ∈ ℕ0
6 nn0sqcl 13810 . . . . . . . . . . . 12 (𝐾 ∈ ℕ0 → (𝐾↑2) ∈ ℕ0)
7 nn0expcl 13796 . . . . . . . . . . . 12 ((2 ∈ ℕ0 ∧ (𝐾↑2) ∈ ℕ0) → (2↑(𝐾↑2)) ∈ ℕ0)
85, 6, 7sylancr 587 . . . . . . . . . . 11 (𝐾 ∈ ℕ0 → (2↑(𝐾↑2)) ∈ ℕ0)
98adantl 482 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (2↑(𝐾↑2)) ∈ ℕ0)
10 nn0addcl 12268 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑀 + 𝐾) ∈ ℕ0)
11 nn0expcl 13796 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0 ∧ (𝑀 + 𝐾) ∈ ℕ0) → (𝑀↑(𝑀 + 𝐾)) ∈ ℕ0)
1210, 11syldan 591 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑀↑(𝑀 + 𝐾)) ∈ ℕ0)
139, 12nn0mulcld 12298 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℕ0)
144, 13sylan2 593 . . . . . . . 8 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ) → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℕ0)
1514nn0ge0d 12296 . . . . . . 7 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ) → 0 ≤ ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))))
163, 15eqbrtrd 5096 . . . . . 6 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ) → (0↑𝐾) ≤ ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))))
17 1nn 11984 . . . . . . . . . 10 1 ∈ ℕ
18 elnn0 12235 . . . . . . . . . . 11 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
19 nnnn0 12240 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
20 0nn0 12248 . . . . . . . . . . . . . 14 0 ∈ ℕ0
21 nn0addcl 12268 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0 ∧ 0 ∈ ℕ0) → (𝑀 + 0) ∈ ℕ0)
2219, 20, 21sylancl 586 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (𝑀 + 0) ∈ ℕ0)
23 nnexpcl 13795 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ (𝑀 + 0) ∈ ℕ0) → (𝑀↑(𝑀 + 0)) ∈ ℕ)
2422, 23mpdan 684 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → (𝑀↑(𝑀 + 0)) ∈ ℕ)
25 id 22 . . . . . . . . . . . . . . 15 (𝑀 = 0 → 𝑀 = 0)
26 oveq1 7282 . . . . . . . . . . . . . . . 16 (𝑀 = 0 → (𝑀 + 0) = (0 + 0))
27 00id 11150 . . . . . . . . . . . . . . . 16 (0 + 0) = 0
2826, 27eqtrdi 2794 . . . . . . . . . . . . . . 15 (𝑀 = 0 → (𝑀 + 0) = 0)
2925, 28oveq12d 7293 . . . . . . . . . . . . . 14 (𝑀 = 0 → (𝑀↑(𝑀 + 0)) = (0↑0))
30 0exp0e1 13787 . . . . . . . . . . . . . 14 (0↑0) = 1
3129, 30eqtrdi 2794 . . . . . . . . . . . . 13 (𝑀 = 0 → (𝑀↑(𝑀 + 0)) = 1)
3231, 17eqeltrdi 2847 . . . . . . . . . . . 12 (𝑀 = 0 → (𝑀↑(𝑀 + 0)) ∈ ℕ)
3324, 32jaoi 854 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∨ 𝑀 = 0) → (𝑀↑(𝑀 + 0)) ∈ ℕ)
3418, 33sylbi 216 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → (𝑀↑(𝑀 + 0)) ∈ ℕ)
35 nnmulcl 11997 . . . . . . . . . 10 ((1 ∈ ℕ ∧ (𝑀↑(𝑀 + 0)) ∈ ℕ) → (1 · (𝑀↑(𝑀 + 0))) ∈ ℕ)
3617, 34, 35sylancr 587 . . . . . . . . 9 (𝑀 ∈ ℕ0 → (1 · (𝑀↑(𝑀 + 0))) ∈ ℕ)
3736nnge1d 12021 . . . . . . . 8 (𝑀 ∈ ℕ0 → 1 ≤ (1 · (𝑀↑(𝑀 + 0))))
3837adantr 481 . . . . . . 7 ((𝑀 ∈ ℕ0𝐾 = 0) → 1 ≤ (1 · (𝑀↑(𝑀 + 0))))
39 oveq2 7283 . . . . . . . . . 10 (𝐾 = 0 → (0↑𝐾) = (0↑0))
4039, 30eqtrdi 2794 . . . . . . . . 9 (𝐾 = 0 → (0↑𝐾) = 1)
41 sq0i 13910 . . . . . . . . . . . 12 (𝐾 = 0 → (𝐾↑2) = 0)
4241oveq2d 7291 . . . . . . . . . . 11 (𝐾 = 0 → (2↑(𝐾↑2)) = (2↑0))
43 2cn 12048 . . . . . . . . . . . 12 2 ∈ ℂ
44 exp0 13786 . . . . . . . . . . . 12 (2 ∈ ℂ → (2↑0) = 1)
4543, 44ax-mp 5 . . . . . . . . . . 11 (2↑0) = 1
4642, 45eqtrdi 2794 . . . . . . . . . 10 (𝐾 = 0 → (2↑(𝐾↑2)) = 1)
47 oveq2 7283 . . . . . . . . . . 11 (𝐾 = 0 → (𝑀 + 𝐾) = (𝑀 + 0))
4847oveq2d 7291 . . . . . . . . . 10 (𝐾 = 0 → (𝑀↑(𝑀 + 𝐾)) = (𝑀↑(𝑀 + 0)))
4946, 48oveq12d 7293 . . . . . . . . 9 (𝐾 = 0 → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) = (1 · (𝑀↑(𝑀 + 0))))
5040, 49breq12d 5087 . . . . . . . 8 (𝐾 = 0 → ((0↑𝐾) ≤ ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ↔ 1 ≤ (1 · (𝑀↑(𝑀 + 0)))))
5150adantl 482 . . . . . . 7 ((𝑀 ∈ ℕ0𝐾 = 0) → ((0↑𝐾) ≤ ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ↔ 1 ≤ (1 · (𝑀↑(𝑀 + 0)))))
5238, 51mpbird 256 . . . . . 6 ((𝑀 ∈ ℕ0𝐾 = 0) → (0↑𝐾) ≤ ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))))
5316, 52jaodan 955 . . . . 5 ((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ ∨ 𝐾 = 0)) → (0↑𝐾) ≤ ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))))
541, 53sylan2b 594 . . . 4 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (0↑𝐾) ≤ ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))))
55 nn0cn 12243 . . . . . . 7 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
5655exp0d 13858 . . . . . 6 (𝑀 ∈ ℕ0 → (𝑀↑0) = 1)
5756oveq2d 7291 . . . . 5 (𝑀 ∈ ℕ0 → ((0↑𝐾) · (𝑀↑0)) = ((0↑𝐾) · 1))
58 nn0expcl 13796 . . . . . . . 8 ((0 ∈ ℕ0𝐾 ∈ ℕ0) → (0↑𝐾) ∈ ℕ0)
5920, 58mpan 687 . . . . . . 7 (𝐾 ∈ ℕ0 → (0↑𝐾) ∈ ℕ0)
6059nn0cnd 12295 . . . . . 6 (𝐾 ∈ ℕ0 → (0↑𝐾) ∈ ℂ)
6160mulid1d 10992 . . . . 5 (𝐾 ∈ ℕ0 → ((0↑𝐾) · 1) = (0↑𝐾))
6257, 61sylan9eq 2798 . . . 4 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → ((0↑𝐾) · (𝑀↑0)) = (0↑𝐾))
6313nn0cnd 12295 . . . . 5 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℂ)
6463mulid1d 10992 . . . 4 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · 1) = ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))))
6554, 62, 643brtr4d 5106 . . 3 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → ((0↑𝐾) · (𝑀↑0)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · 1))
6665adantr 481 . 2 (((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) ∧ 𝑁 = 0) → ((0↑𝐾) · (𝑀↑0)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · 1))
67 oveq1 7282 . . . . 5 (𝑁 = 0 → (𝑁𝐾) = (0↑𝐾))
68 oveq2 7283 . . . . 5 (𝑁 = 0 → (𝑀𝑁) = (𝑀↑0))
6967, 68oveq12d 7293 . . . 4 (𝑁 = 0 → ((𝑁𝐾) · (𝑀𝑁)) = ((0↑𝐾) · (𝑀↑0)))
70 fveq2 6774 . . . . . 6 (𝑁 = 0 → (!‘𝑁) = (!‘0))
71 fac0 13990 . . . . . 6 (!‘0) = 1
7270, 71eqtrdi 2794 . . . . 5 (𝑁 = 0 → (!‘𝑁) = 1)
7372oveq2d 7291 . . . 4 (𝑁 = 0 → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) = (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · 1))
7469, 73breq12d 5087 . . 3 (𝑁 = 0 → (((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ↔ ((0↑𝐾) · (𝑀↑0)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · 1)))
7574adantl 482 . 2 (((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) ∧ 𝑁 = 0) → (((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ↔ ((0↑𝐾) · (𝑀↑0)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · 1)))
7666, 75mpbird 256 1 (((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) ∧ 𝑁 = 0) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cle 11010  cn 11973  2c2 12028  0cn0 12233  cexp 13782  !cfa 13987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-seq 13722  df-exp 13783  df-fac 13988
This theorem is referenced by:  faclbnd4lem4  14010  faclbnd4  14011
  Copyright terms: Public domain W3C validator