MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  facubnd Structured version   Visualization version   GIF version

Theorem facubnd 14339
Description: An upper bound for the factorial function. (Contributed by Mario Carneiro, 15-Apr-2016.)
Assertion
Ref Expression
facubnd (𝑁 ∈ ℕ0 → (!‘𝑁) ≤ (𝑁𝑁))

Proof of Theorem facubnd
Dummy variables 𝑚 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6906 . . . 4 (𝑚 = 0 → (!‘𝑚) = (!‘0))
2 fac0 14315 . . . 4 (!‘0) = 1
31, 2eqtrdi 2793 . . 3 (𝑚 = 0 → (!‘𝑚) = 1)
4 id 22 . . . . 5 (𝑚 = 0 → 𝑚 = 0)
54, 4oveq12d 7449 . . . 4 (𝑚 = 0 → (𝑚𝑚) = (0↑0))
6 0exp0e1 14107 . . . 4 (0↑0) = 1
75, 6eqtrdi 2793 . . 3 (𝑚 = 0 → (𝑚𝑚) = 1)
83, 7breq12d 5156 . 2 (𝑚 = 0 → ((!‘𝑚) ≤ (𝑚𝑚) ↔ 1 ≤ 1))
9 fveq2 6906 . . 3 (𝑚 = 𝑘 → (!‘𝑚) = (!‘𝑘))
10 id 22 . . . 4 (𝑚 = 𝑘𝑚 = 𝑘)
1110, 10oveq12d 7449 . . 3 (𝑚 = 𝑘 → (𝑚𝑚) = (𝑘𝑘))
129, 11breq12d 5156 . 2 (𝑚 = 𝑘 → ((!‘𝑚) ≤ (𝑚𝑚) ↔ (!‘𝑘) ≤ (𝑘𝑘)))
13 fveq2 6906 . . 3 (𝑚 = (𝑘 + 1) → (!‘𝑚) = (!‘(𝑘 + 1)))
14 id 22 . . . 4 (𝑚 = (𝑘 + 1) → 𝑚 = (𝑘 + 1))
1514, 14oveq12d 7449 . . 3 (𝑚 = (𝑘 + 1) → (𝑚𝑚) = ((𝑘 + 1)↑(𝑘 + 1)))
1613, 15breq12d 5156 . 2 (𝑚 = (𝑘 + 1) → ((!‘𝑚) ≤ (𝑚𝑚) ↔ (!‘(𝑘 + 1)) ≤ ((𝑘 + 1)↑(𝑘 + 1))))
17 fveq2 6906 . . 3 (𝑚 = 𝑁 → (!‘𝑚) = (!‘𝑁))
18 id 22 . . . 4 (𝑚 = 𝑁𝑚 = 𝑁)
1918, 18oveq12d 7449 . . 3 (𝑚 = 𝑁 → (𝑚𝑚) = (𝑁𝑁))
2017, 19breq12d 5156 . 2 (𝑚 = 𝑁 → ((!‘𝑚) ≤ (𝑚𝑚) ↔ (!‘𝑁) ≤ (𝑁𝑁)))
21 1le1 11891 . 2 1 ≤ 1
22 faccl 14322 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
2322adantr 480 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (!‘𝑘) ∈ ℕ)
2423nnred 12281 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (!‘𝑘) ∈ ℝ)
25 nn0re 12535 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
2625adantr 480 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → 𝑘 ∈ ℝ)
27 simpl 482 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → 𝑘 ∈ ℕ0)
2826, 27reexpcld 14203 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (𝑘𝑘) ∈ ℝ)
29 nn0p1nn 12565 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
3029adantr 480 . . . . . . . 8 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (𝑘 + 1) ∈ ℕ)
3130nnred 12281 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (𝑘 + 1) ∈ ℝ)
3231, 27reexpcld 14203 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → ((𝑘 + 1)↑𝑘) ∈ ℝ)
33 simpr 484 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (!‘𝑘) ≤ (𝑘𝑘))
34 nn0ge0 12551 . . . . . . . 8 (𝑘 ∈ ℕ0 → 0 ≤ 𝑘)
3534adantr 480 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → 0 ≤ 𝑘)
3626lep1d 12199 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → 𝑘 ≤ (𝑘 + 1))
37 leexp1a 14215 . . . . . . 7 (((𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (0 ≤ 𝑘𝑘 ≤ (𝑘 + 1))) → (𝑘𝑘) ≤ ((𝑘 + 1)↑𝑘))
3826, 31, 27, 35, 36, 37syl32anc 1380 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (𝑘𝑘) ≤ ((𝑘 + 1)↑𝑘))
3924, 28, 32, 33, 38letrd 11418 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (!‘𝑘) ≤ ((𝑘 + 1)↑𝑘))
4030nngt0d 12315 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → 0 < (𝑘 + 1))
41 lemul1 12119 . . . . . 6 (((!‘𝑘) ∈ ℝ ∧ ((𝑘 + 1)↑𝑘) ∈ ℝ ∧ ((𝑘 + 1) ∈ ℝ ∧ 0 < (𝑘 + 1))) → ((!‘𝑘) ≤ ((𝑘 + 1)↑𝑘) ↔ ((!‘𝑘) · (𝑘 + 1)) ≤ (((𝑘 + 1)↑𝑘) · (𝑘 + 1))))
4224, 32, 31, 40, 41syl112anc 1376 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → ((!‘𝑘) ≤ ((𝑘 + 1)↑𝑘) ↔ ((!‘𝑘) · (𝑘 + 1)) ≤ (((𝑘 + 1)↑𝑘) · (𝑘 + 1))))
4339, 42mpbid 232 . . . 4 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → ((!‘𝑘) · (𝑘 + 1)) ≤ (((𝑘 + 1)↑𝑘) · (𝑘 + 1)))
44 facp1 14317 . . . . 5 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
4544adantr 480 . . . 4 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
4630nncnd 12282 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (𝑘 + 1) ∈ ℂ)
4746, 27expp1d 14187 . . . 4 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → ((𝑘 + 1)↑(𝑘 + 1)) = (((𝑘 + 1)↑𝑘) · (𝑘 + 1)))
4843, 45, 473brtr4d 5175 . . 3 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (!‘(𝑘 + 1)) ≤ ((𝑘 + 1)↑(𝑘 + 1)))
4948ex 412 . 2 (𝑘 ∈ ℕ0 → ((!‘𝑘) ≤ (𝑘𝑘) → (!‘(𝑘 + 1)) ≤ ((𝑘 + 1)↑(𝑘 + 1))))
508, 12, 16, 20, 21, 49nn0ind 12713 1 (𝑁 ∈ ℕ0 → (!‘𝑁) ≤ (𝑁𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108   class class class wbr 5143  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cn 12266  0cn0 12526  cexp 14102  !cfa 14312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-seq 14043  df-exp 14103  df-fac 14313
This theorem is referenced by:  logfacubnd  27265  pgrple2abl  48281
  Copyright terms: Public domain W3C validator