MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  facubnd Structured version   Visualization version   GIF version

Theorem facubnd 14014
Description: An upper bound for the factorial function. (Contributed by Mario Carneiro, 15-Apr-2016.)
Assertion
Ref Expression
facubnd (𝑁 ∈ ℕ0 → (!‘𝑁) ≤ (𝑁𝑁))

Proof of Theorem facubnd
Dummy variables 𝑚 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6774 . . . 4 (𝑚 = 0 → (!‘𝑚) = (!‘0))
2 fac0 13990 . . . 4 (!‘0) = 1
31, 2eqtrdi 2794 . . 3 (𝑚 = 0 → (!‘𝑚) = 1)
4 id 22 . . . . 5 (𝑚 = 0 → 𝑚 = 0)
54, 4oveq12d 7293 . . . 4 (𝑚 = 0 → (𝑚𝑚) = (0↑0))
6 0exp0e1 13787 . . . 4 (0↑0) = 1
75, 6eqtrdi 2794 . . 3 (𝑚 = 0 → (𝑚𝑚) = 1)
83, 7breq12d 5087 . 2 (𝑚 = 0 → ((!‘𝑚) ≤ (𝑚𝑚) ↔ 1 ≤ 1))
9 fveq2 6774 . . 3 (𝑚 = 𝑘 → (!‘𝑚) = (!‘𝑘))
10 id 22 . . . 4 (𝑚 = 𝑘𝑚 = 𝑘)
1110, 10oveq12d 7293 . . 3 (𝑚 = 𝑘 → (𝑚𝑚) = (𝑘𝑘))
129, 11breq12d 5087 . 2 (𝑚 = 𝑘 → ((!‘𝑚) ≤ (𝑚𝑚) ↔ (!‘𝑘) ≤ (𝑘𝑘)))
13 fveq2 6774 . . 3 (𝑚 = (𝑘 + 1) → (!‘𝑚) = (!‘(𝑘 + 1)))
14 id 22 . . . 4 (𝑚 = (𝑘 + 1) → 𝑚 = (𝑘 + 1))
1514, 14oveq12d 7293 . . 3 (𝑚 = (𝑘 + 1) → (𝑚𝑚) = ((𝑘 + 1)↑(𝑘 + 1)))
1613, 15breq12d 5087 . 2 (𝑚 = (𝑘 + 1) → ((!‘𝑚) ≤ (𝑚𝑚) ↔ (!‘(𝑘 + 1)) ≤ ((𝑘 + 1)↑(𝑘 + 1))))
17 fveq2 6774 . . 3 (𝑚 = 𝑁 → (!‘𝑚) = (!‘𝑁))
18 id 22 . . . 4 (𝑚 = 𝑁𝑚 = 𝑁)
1918, 18oveq12d 7293 . . 3 (𝑚 = 𝑁 → (𝑚𝑚) = (𝑁𝑁))
2017, 19breq12d 5087 . 2 (𝑚 = 𝑁 → ((!‘𝑚) ≤ (𝑚𝑚) ↔ (!‘𝑁) ≤ (𝑁𝑁)))
21 1le1 11603 . 2 1 ≤ 1
22 faccl 13997 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
2322adantr 481 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (!‘𝑘) ∈ ℕ)
2423nnred 11988 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (!‘𝑘) ∈ ℝ)
25 nn0re 12242 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
2625adantr 481 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → 𝑘 ∈ ℝ)
27 simpl 483 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → 𝑘 ∈ ℕ0)
2826, 27reexpcld 13881 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (𝑘𝑘) ∈ ℝ)
29 nn0p1nn 12272 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
3029adantr 481 . . . . . . . 8 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (𝑘 + 1) ∈ ℕ)
3130nnred 11988 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (𝑘 + 1) ∈ ℝ)
3231, 27reexpcld 13881 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → ((𝑘 + 1)↑𝑘) ∈ ℝ)
33 simpr 485 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (!‘𝑘) ≤ (𝑘𝑘))
34 nn0ge0 12258 . . . . . . . 8 (𝑘 ∈ ℕ0 → 0 ≤ 𝑘)
3534adantr 481 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → 0 ≤ 𝑘)
3626lep1d 11906 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → 𝑘 ≤ (𝑘 + 1))
37 leexp1a 13893 . . . . . . 7 (((𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (0 ≤ 𝑘𝑘 ≤ (𝑘 + 1))) → (𝑘𝑘) ≤ ((𝑘 + 1)↑𝑘))
3826, 31, 27, 35, 36, 37syl32anc 1377 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (𝑘𝑘) ≤ ((𝑘 + 1)↑𝑘))
3924, 28, 32, 33, 38letrd 11132 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (!‘𝑘) ≤ ((𝑘 + 1)↑𝑘))
4030nngt0d 12022 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → 0 < (𝑘 + 1))
41 lemul1 11827 . . . . . 6 (((!‘𝑘) ∈ ℝ ∧ ((𝑘 + 1)↑𝑘) ∈ ℝ ∧ ((𝑘 + 1) ∈ ℝ ∧ 0 < (𝑘 + 1))) → ((!‘𝑘) ≤ ((𝑘 + 1)↑𝑘) ↔ ((!‘𝑘) · (𝑘 + 1)) ≤ (((𝑘 + 1)↑𝑘) · (𝑘 + 1))))
4224, 32, 31, 40, 41syl112anc 1373 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → ((!‘𝑘) ≤ ((𝑘 + 1)↑𝑘) ↔ ((!‘𝑘) · (𝑘 + 1)) ≤ (((𝑘 + 1)↑𝑘) · (𝑘 + 1))))
4339, 42mpbid 231 . . . 4 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → ((!‘𝑘) · (𝑘 + 1)) ≤ (((𝑘 + 1)↑𝑘) · (𝑘 + 1)))
44 facp1 13992 . . . . 5 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
4544adantr 481 . . . 4 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
4630nncnd 11989 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (𝑘 + 1) ∈ ℂ)
4746, 27expp1d 13865 . . . 4 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → ((𝑘 + 1)↑(𝑘 + 1)) = (((𝑘 + 1)↑𝑘) · (𝑘 + 1)))
4843, 45, 473brtr4d 5106 . . 3 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (!‘(𝑘 + 1)) ≤ ((𝑘 + 1)↑(𝑘 + 1)))
4948ex 413 . 2 (𝑘 ∈ ℕ0 → ((!‘𝑘) ≤ (𝑘𝑘) → (!‘(𝑘 + 1)) ≤ ((𝑘 + 1)↑(𝑘 + 1))))
508, 12, 16, 20, 21, 49nn0ind 12415 1 (𝑁 ∈ ℕ0 → (!‘𝑁) ≤ (𝑁𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cn 11973  0cn0 12233  cexp 13782  !cfa 13987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-seq 13722  df-exp 13783  df-fac 13988
This theorem is referenced by:  logfacubnd  26369  pgrple2abl  45701
  Copyright terms: Public domain W3C validator