MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  facubnd Structured version   Visualization version   GIF version

Theorem facubnd 14202
Description: An upper bound for the factorial function. (Contributed by Mario Carneiro, 15-Apr-2016.)
Assertion
Ref Expression
facubnd (𝑁 ∈ ℕ0 → (!‘𝑁) ≤ (𝑁𝑁))

Proof of Theorem facubnd
Dummy variables 𝑚 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6817 . . . 4 (𝑚 = 0 → (!‘𝑚) = (!‘0))
2 fac0 14178 . . . 4 (!‘0) = 1
31, 2eqtrdi 2782 . . 3 (𝑚 = 0 → (!‘𝑚) = 1)
4 id 22 . . . . 5 (𝑚 = 0 → 𝑚 = 0)
54, 4oveq12d 7359 . . . 4 (𝑚 = 0 → (𝑚𝑚) = (0↑0))
6 0exp0e1 13968 . . . 4 (0↑0) = 1
75, 6eqtrdi 2782 . . 3 (𝑚 = 0 → (𝑚𝑚) = 1)
83, 7breq12d 5099 . 2 (𝑚 = 0 → ((!‘𝑚) ≤ (𝑚𝑚) ↔ 1 ≤ 1))
9 fveq2 6817 . . 3 (𝑚 = 𝑘 → (!‘𝑚) = (!‘𝑘))
10 id 22 . . . 4 (𝑚 = 𝑘𝑚 = 𝑘)
1110, 10oveq12d 7359 . . 3 (𝑚 = 𝑘 → (𝑚𝑚) = (𝑘𝑘))
129, 11breq12d 5099 . 2 (𝑚 = 𝑘 → ((!‘𝑚) ≤ (𝑚𝑚) ↔ (!‘𝑘) ≤ (𝑘𝑘)))
13 fveq2 6817 . . 3 (𝑚 = (𝑘 + 1) → (!‘𝑚) = (!‘(𝑘 + 1)))
14 id 22 . . . 4 (𝑚 = (𝑘 + 1) → 𝑚 = (𝑘 + 1))
1514, 14oveq12d 7359 . . 3 (𝑚 = (𝑘 + 1) → (𝑚𝑚) = ((𝑘 + 1)↑(𝑘 + 1)))
1613, 15breq12d 5099 . 2 (𝑚 = (𝑘 + 1) → ((!‘𝑚) ≤ (𝑚𝑚) ↔ (!‘(𝑘 + 1)) ≤ ((𝑘 + 1)↑(𝑘 + 1))))
17 fveq2 6817 . . 3 (𝑚 = 𝑁 → (!‘𝑚) = (!‘𝑁))
18 id 22 . . . 4 (𝑚 = 𝑁𝑚 = 𝑁)
1918, 18oveq12d 7359 . . 3 (𝑚 = 𝑁 → (𝑚𝑚) = (𝑁𝑁))
2017, 19breq12d 5099 . 2 (𝑚 = 𝑁 → ((!‘𝑚) ≤ (𝑚𝑚) ↔ (!‘𝑁) ≤ (𝑁𝑁)))
21 1le1 11740 . 2 1 ≤ 1
22 faccl 14185 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
2322adantr 480 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (!‘𝑘) ∈ ℕ)
2423nnred 12135 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (!‘𝑘) ∈ ℝ)
25 nn0re 12385 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
2625adantr 480 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → 𝑘 ∈ ℝ)
27 simpl 482 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → 𝑘 ∈ ℕ0)
2826, 27reexpcld 14065 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (𝑘𝑘) ∈ ℝ)
29 nn0p1nn 12415 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
3029adantr 480 . . . . . . . 8 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (𝑘 + 1) ∈ ℕ)
3130nnred 12135 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (𝑘 + 1) ∈ ℝ)
3231, 27reexpcld 14065 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → ((𝑘 + 1)↑𝑘) ∈ ℝ)
33 simpr 484 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (!‘𝑘) ≤ (𝑘𝑘))
34 nn0ge0 12401 . . . . . . . 8 (𝑘 ∈ ℕ0 → 0 ≤ 𝑘)
3534adantr 480 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → 0 ≤ 𝑘)
3626lep1d 12048 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → 𝑘 ≤ (𝑘 + 1))
37 leexp1a 14077 . . . . . . 7 (((𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (0 ≤ 𝑘𝑘 ≤ (𝑘 + 1))) → (𝑘𝑘) ≤ ((𝑘 + 1)↑𝑘))
3826, 31, 27, 35, 36, 37syl32anc 1380 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (𝑘𝑘) ≤ ((𝑘 + 1)↑𝑘))
3924, 28, 32, 33, 38letrd 11265 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (!‘𝑘) ≤ ((𝑘 + 1)↑𝑘))
4030nngt0d 12169 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → 0 < (𝑘 + 1))
41 lemul1 11968 . . . . . 6 (((!‘𝑘) ∈ ℝ ∧ ((𝑘 + 1)↑𝑘) ∈ ℝ ∧ ((𝑘 + 1) ∈ ℝ ∧ 0 < (𝑘 + 1))) → ((!‘𝑘) ≤ ((𝑘 + 1)↑𝑘) ↔ ((!‘𝑘) · (𝑘 + 1)) ≤ (((𝑘 + 1)↑𝑘) · (𝑘 + 1))))
4224, 32, 31, 40, 41syl112anc 1376 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → ((!‘𝑘) ≤ ((𝑘 + 1)↑𝑘) ↔ ((!‘𝑘) · (𝑘 + 1)) ≤ (((𝑘 + 1)↑𝑘) · (𝑘 + 1))))
4339, 42mpbid 232 . . . 4 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → ((!‘𝑘) · (𝑘 + 1)) ≤ (((𝑘 + 1)↑𝑘) · (𝑘 + 1)))
44 facp1 14180 . . . . 5 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
4544adantr 480 . . . 4 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
4630nncnd 12136 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (𝑘 + 1) ∈ ℂ)
4746, 27expp1d 14049 . . . 4 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → ((𝑘 + 1)↑(𝑘 + 1)) = (((𝑘 + 1)↑𝑘) · (𝑘 + 1)))
4843, 45, 473brtr4d 5118 . . 3 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (!‘(𝑘 + 1)) ≤ ((𝑘 + 1)↑(𝑘 + 1)))
4948ex 412 . 2 (𝑘 ∈ ℕ0 → ((!‘𝑘) ≤ (𝑘𝑘) → (!‘(𝑘 + 1)) ≤ ((𝑘 + 1)↑(𝑘 + 1))))
508, 12, 16, 20, 21, 49nn0ind 12563 1 (𝑁 ∈ ℕ0 → (!‘𝑁) ≤ (𝑁𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111   class class class wbr 5086  cfv 6476  (class class class)co 7341  cr 11000  0cc0 11001  1c1 11002   + caddc 11004   · cmul 11006   < clt 11141  cle 11142  cn 12120  0cn0 12376  cexp 13963  !cfa 14175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-n0 12377  df-z 12464  df-uz 12728  df-seq 13904  df-exp 13964  df-fac 14176
This theorem is referenced by:  logfacubnd  27154  pgrple2abl  48396
  Copyright terms: Public domain W3C validator