Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exple2lt6 Structured version   Visualization version   GIF version

Theorem exple2lt6 48280
Description: A nonnegative integer to the power of itself is less than 6 if it is less than or equal to 2. (Contributed by AV, 16-Mar-2019.)
Assertion
Ref Expression
exple2lt6 ((𝑁 ∈ ℕ0𝑁 ≤ 2) → (𝑁𝑁) < 6)

Proof of Theorem exple2lt6
StepHypRef Expression
1 nn0le2is012 12682 . 2 ((𝑁 ∈ ℕ0𝑁 ≤ 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))
2 id 22 . . . . 5 (𝑁 = 0 → 𝑁 = 0)
32, 2oveq12d 7449 . . . 4 (𝑁 = 0 → (𝑁𝑁) = (0↑0))
4 0exp0e1 14107 . . . . 5 (0↑0) = 1
5 1lt6 12451 . . . . 5 1 < 6
64, 5eqbrtri 5164 . . . 4 (0↑0) < 6
73, 6eqbrtrdi 5182 . . 3 (𝑁 = 0 → (𝑁𝑁) < 6)
8 id 22 . . . . 5 (𝑁 = 1 → 𝑁 = 1)
98, 8oveq12d 7449 . . . 4 (𝑁 = 1 → (𝑁𝑁) = (1↑1))
10 ax-1cn 11213 . . . . . 6 1 ∈ ℂ
11 exp1 14108 . . . . . 6 (1 ∈ ℂ → (1↑1) = 1)
1210, 11ax-mp 5 . . . . 5 (1↑1) = 1
1312, 5eqbrtri 5164 . . . 4 (1↑1) < 6
149, 13eqbrtrdi 5182 . . 3 (𝑁 = 1 → (𝑁𝑁) < 6)
15 id 22 . . . . 5 (𝑁 = 2 → 𝑁 = 2)
1615, 15oveq12d 7449 . . . 4 (𝑁 = 2 → (𝑁𝑁) = (2↑2))
17 sq2 14236 . . . . 5 (2↑2) = 4
18 4lt6 12448 . . . . 5 4 < 6
1917, 18eqbrtri 5164 . . . 4 (2↑2) < 6
2016, 19eqbrtrdi 5182 . . 3 (𝑁 = 2 → (𝑁𝑁) < 6)
217, 14, 203jaoi 1430 . 2 ((𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2) → (𝑁𝑁) < 6)
221, 21syl 17 1 ((𝑁 ∈ ℕ0𝑁 ≤ 2) → (𝑁𝑁) < 6)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1086   = wceq 1540  wcel 2108   class class class wbr 5143  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156   < clt 11295  cle 11296  2c2 12321  4c4 12323  6c6 12325  0cn0 12526  cexp 14102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-n0 12527  df-z 12614  df-uz 12879  df-seq 14043  df-exp 14103
This theorem is referenced by:  pgrple2abl  48281
  Copyright terms: Public domain W3C validator