| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > exple2lt6 | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer to the power of itself is less than 6 if it is less than or equal to 2. (Contributed by AV, 16-Mar-2019.) |
| Ref | Expression |
|---|---|
| exple2lt6 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 2) → (𝑁↑𝑁) < 6) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0le2is012 12598 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)) | |
| 2 | id 22 | . . . . 5 ⊢ (𝑁 = 0 → 𝑁 = 0) | |
| 3 | 2, 2 | oveq12d 7405 | . . . 4 ⊢ (𝑁 = 0 → (𝑁↑𝑁) = (0↑0)) |
| 4 | 0exp0e1 14031 | . . . . 5 ⊢ (0↑0) = 1 | |
| 5 | 1lt6 12366 | . . . . 5 ⊢ 1 < 6 | |
| 6 | 4, 5 | eqbrtri 5128 | . . . 4 ⊢ (0↑0) < 6 |
| 7 | 3, 6 | eqbrtrdi 5146 | . . 3 ⊢ (𝑁 = 0 → (𝑁↑𝑁) < 6) |
| 8 | id 22 | . . . . 5 ⊢ (𝑁 = 1 → 𝑁 = 1) | |
| 9 | 8, 8 | oveq12d 7405 | . . . 4 ⊢ (𝑁 = 1 → (𝑁↑𝑁) = (1↑1)) |
| 10 | ax-1cn 11126 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 11 | exp1 14032 | . . . . . 6 ⊢ (1 ∈ ℂ → (1↑1) = 1) | |
| 12 | 10, 11 | ax-mp 5 | . . . . 5 ⊢ (1↑1) = 1 |
| 13 | 12, 5 | eqbrtri 5128 | . . . 4 ⊢ (1↑1) < 6 |
| 14 | 9, 13 | eqbrtrdi 5146 | . . 3 ⊢ (𝑁 = 1 → (𝑁↑𝑁) < 6) |
| 15 | id 22 | . . . . 5 ⊢ (𝑁 = 2 → 𝑁 = 2) | |
| 16 | 15, 15 | oveq12d 7405 | . . . 4 ⊢ (𝑁 = 2 → (𝑁↑𝑁) = (2↑2)) |
| 17 | sq2 14162 | . . . . 5 ⊢ (2↑2) = 4 | |
| 18 | 4lt6 12363 | . . . . 5 ⊢ 4 < 6 | |
| 19 | 17, 18 | eqbrtri 5128 | . . . 4 ⊢ (2↑2) < 6 |
| 20 | 16, 19 | eqbrtrdi 5146 | . . 3 ⊢ (𝑁 = 2 → (𝑁↑𝑁) < 6) |
| 21 | 7, 14, 20 | 3jaoi 1430 | . 2 ⊢ ((𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2) → (𝑁↑𝑁) < 6) |
| 22 | 1, 21 | syl 17 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 2) → (𝑁↑𝑁) < 6) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 ℂcc 11066 0cc0 11068 1c1 11069 < clt 11208 ≤ cle 11209 2c2 12241 4c4 12243 6c6 12245 ℕ0cn0 12442 ↑cexp 14026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-n0 12443 df-z 12530 df-uz 12794 df-seq 13967 df-exp 14027 |
| This theorem is referenced by: pgrple2abl 48350 |
| Copyright terms: Public domain | W3C validator |