Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem14 Structured version   Visualization version   GIF version

Theorem etransclem14 46219
Description: Value of the term 𝑇, when 𝐽 = 0 and (𝐶‘0) = 𝑃 − 1 (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem14.n (𝜑𝑃 ∈ ℕ)
etransclem14.m (𝜑𝑀 ∈ ℕ0)
etransclem14.c (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
etransclem14.t 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))))
etransclem14.j (𝜑𝐽 = 0)
etransclem14.cpm1 (𝜑 → (𝐶‘0) = (𝑃 − 1))
Assertion
Ref Expression
etransclem14 (𝜑𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · (-𝑗↑(𝑃 − (𝐶𝑗))))))))
Distinct variable groups:   𝑗,𝑀   𝜑,𝑗
Allowed substitution hints:   𝐶(𝑗)   𝑃(𝑗)   𝑇(𝑗)   𝐽(𝑗)   𝑁(𝑗)

Proof of Theorem etransclem14
StepHypRef Expression
1 etransclem14.t . 2 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))))
2 etransclem14.cpm1 . . . . . . . 8 (𝜑 → (𝐶‘0) = (𝑃 − 1))
3 fzssre 45285 . . . . . . . . . 10 (0...𝑁) ⊆ ℝ
4 etransclem14.c . . . . . . . . . . 11 (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
5 etransclem14.m . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ0)
6 nn0uz 12811 . . . . . . . . . . . . 13 0 = (ℤ‘0)
75, 6eleqtrdi 2838 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (ℤ‘0))
8 eluzfz1 13468 . . . . . . . . . . . 12 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
97, 8syl 17 . . . . . . . . . . 11 (𝜑 → 0 ∈ (0...𝑀))
104, 9ffvelcdmd 7039 . . . . . . . . . 10 (𝜑 → (𝐶‘0) ∈ (0...𝑁))
113, 10sselid 3941 . . . . . . . . 9 (𝜑 → (𝐶‘0) ∈ ℝ)
122, 11eqeltrrd 2829 . . . . . . . . 9 (𝜑 → (𝑃 − 1) ∈ ℝ)
1311, 12lttri3d 11290 . . . . . . . 8 (𝜑 → ((𝐶‘0) = (𝑃 − 1) ↔ (¬ (𝐶‘0) < (𝑃 − 1) ∧ ¬ (𝑃 − 1) < (𝐶‘0))))
142, 13mpbid 232 . . . . . . 7 (𝜑 → (¬ (𝐶‘0) < (𝑃 − 1) ∧ ¬ (𝑃 − 1) < (𝐶‘0)))
1514simprd 495 . . . . . 6 (𝜑 → ¬ (𝑃 − 1) < (𝐶‘0))
1615iffalsed 4495 . . . . 5 (𝜑 → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))))
1712recnd 11178 . . . . . . . . . . 11 (𝜑 → (𝑃 − 1) ∈ ℂ)
182eqcomd 2735 . . . . . . . . . . 11 (𝜑 → (𝑃 − 1) = (𝐶‘0))
1917, 18subeq0bd 11580 . . . . . . . . . 10 (𝜑 → ((𝑃 − 1) − (𝐶‘0)) = 0)
2019fveq2d 6844 . . . . . . . . 9 (𝜑 → (!‘((𝑃 − 1) − (𝐶‘0))) = (!‘0))
21 fac0 14217 . . . . . . . . 9 (!‘0) = 1
2220, 21eqtrdi 2780 . . . . . . . 8 (𝜑 → (!‘((𝑃 − 1) − (𝐶‘0))) = 1)
2322oveq2d 7385 . . . . . . 7 (𝜑 → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) = ((!‘(𝑃 − 1)) / 1))
24 etransclem14.n . . . . . . . . . . 11 (𝜑𝑃 ∈ ℕ)
25 nnm1nn0 12459 . . . . . . . . . . 11 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
2624, 25syl 17 . . . . . . . . . 10 (𝜑 → (𝑃 − 1) ∈ ℕ0)
2726faccld 14225 . . . . . . . . 9 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
2827nncnd 12178 . . . . . . . 8 (𝜑 → (!‘(𝑃 − 1)) ∈ ℂ)
2928div1d 11926 . . . . . . 7 (𝜑 → ((!‘(𝑃 − 1)) / 1) = (!‘(𝑃 − 1)))
3023, 29eqtrd 2764 . . . . . 6 (𝜑 → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) = (!‘(𝑃 − 1)))
31 etransclem14.j . . . . . . . 8 (𝜑𝐽 = 0)
3231, 19oveq12d 7387 . . . . . . 7 (𝜑 → (𝐽↑((𝑃 − 1) − (𝐶‘0))) = (0↑0))
33 0exp0e1 14007 . . . . . . 7 (0↑0) = 1
3432, 33eqtrdi 2780 . . . . . 6 (𝜑 → (𝐽↑((𝑃 − 1) − (𝐶‘0))) = 1)
3530, 34oveq12d 7387 . . . . 5 (𝜑 → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))) = ((!‘(𝑃 − 1)) · 1))
3628mulridd 11167 . . . . 5 (𝜑 → ((!‘(𝑃 − 1)) · 1) = (!‘(𝑃 − 1)))
3716, 35, 363eqtrd 2768 . . . 4 (𝜑 → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = (!‘(𝑃 − 1)))
3831oveq1d 7384 . . . . . . . . 9 (𝜑 → (𝐽𝑗) = (0 − 𝑗))
39 df-neg 11384 . . . . . . . . 9 -𝑗 = (0 − 𝑗)
4038, 39eqtr4di 2782 . . . . . . . 8 (𝜑 → (𝐽𝑗) = -𝑗)
4140oveq1d 7384 . . . . . . 7 (𝜑 → ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))) = (-𝑗↑(𝑃 − (𝐶𝑗))))
4241oveq2d 7385 . . . . . 6 (𝜑 → (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))) = (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · (-𝑗↑(𝑃 − (𝐶𝑗)))))
4342ifeq2d 4505 . . . . 5 (𝜑 → if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) = if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · (-𝑗↑(𝑃 − (𝐶𝑗))))))
4443prodeq2ad 45563 . . . 4 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) = ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · (-𝑗↑(𝑃 − (𝐶𝑗))))))
4537, 44oveq12d 7387 . . 3 (𝜑 → (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))) = ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · (-𝑗↑(𝑃 − (𝐶𝑗)))))))
4645oveq2d 7385 . 2 (𝜑 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))))) = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · (-𝑗↑(𝑃 − (𝐶𝑗))))))))
471, 46eqtrid 2776 1 (𝜑𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · (-𝑗↑(𝑃 − (𝐶𝑗))))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  ifcif 4484   class class class wbr 5102  wf 6495  cfv 6499  (class class class)co 7369  cr 11043  0cc0 11044  1c1 11045   · cmul 11049   < clt 11184  cmin 11381  -cneg 11382   / cdiv 11811  cn 12162  0cn0 12418  cuz 12769  ...cfz 13444  cexp 14002  !cfa 14214  cprod 15845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-seq 13943  df-exp 14003  df-fac 14215  df-prod 15846
This theorem is referenced by:  etransclem28  46233
  Copyright terms: Public domain W3C validator