Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem14 Structured version   Visualization version   GIF version

Theorem etransclem14 43789
Description: Value of the term 𝑇, when 𝐽 = 0 and (𝐶‘0) = 𝑃 − 1 (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem14.n (𝜑𝑃 ∈ ℕ)
etransclem14.m (𝜑𝑀 ∈ ℕ0)
etransclem14.c (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
etransclem14.t 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))))
etransclem14.j (𝜑𝐽 = 0)
etransclem14.cpm1 (𝜑 → (𝐶‘0) = (𝑃 − 1))
Assertion
Ref Expression
etransclem14 (𝜑𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · (-𝑗↑(𝑃 − (𝐶𝑗))))))))
Distinct variable groups:   𝑗,𝑀   𝜑,𝑗
Allowed substitution hints:   𝐶(𝑗)   𝑃(𝑗)   𝑇(𝑗)   𝐽(𝑗)   𝑁(𝑗)

Proof of Theorem etransclem14
StepHypRef Expression
1 etransclem14.t . 2 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))))
2 etransclem14.cpm1 . . . . . . . 8 (𝜑 → (𝐶‘0) = (𝑃 − 1))
3 fzssre 42853 . . . . . . . . . 10 (0...𝑁) ⊆ ℝ
4 etransclem14.c . . . . . . . . . . 11 (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
5 etransclem14.m . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ0)
6 nn0uz 12620 . . . . . . . . . . . . 13 0 = (ℤ‘0)
75, 6eleqtrdi 2849 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (ℤ‘0))
8 eluzfz1 13263 . . . . . . . . . . . 12 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
97, 8syl 17 . . . . . . . . . . 11 (𝜑 → 0 ∈ (0...𝑀))
104, 9ffvelrnd 6962 . . . . . . . . . 10 (𝜑 → (𝐶‘0) ∈ (0...𝑁))
113, 10sselid 3919 . . . . . . . . 9 (𝜑 → (𝐶‘0) ∈ ℝ)
122, 11eqeltrrd 2840 . . . . . . . . 9 (𝜑 → (𝑃 − 1) ∈ ℝ)
1311, 12lttri3d 11115 . . . . . . . 8 (𝜑 → ((𝐶‘0) = (𝑃 − 1) ↔ (¬ (𝐶‘0) < (𝑃 − 1) ∧ ¬ (𝑃 − 1) < (𝐶‘0))))
142, 13mpbid 231 . . . . . . 7 (𝜑 → (¬ (𝐶‘0) < (𝑃 − 1) ∧ ¬ (𝑃 − 1) < (𝐶‘0)))
1514simprd 496 . . . . . 6 (𝜑 → ¬ (𝑃 − 1) < (𝐶‘0))
1615iffalsed 4470 . . . . 5 (𝜑 → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))))
1712recnd 11003 . . . . . . . . . . 11 (𝜑 → (𝑃 − 1) ∈ ℂ)
182eqcomd 2744 . . . . . . . . . . 11 (𝜑 → (𝑃 − 1) = (𝐶‘0))
1917, 18subeq0bd 11401 . . . . . . . . . 10 (𝜑 → ((𝑃 − 1) − (𝐶‘0)) = 0)
2019fveq2d 6778 . . . . . . . . 9 (𝜑 → (!‘((𝑃 − 1) − (𝐶‘0))) = (!‘0))
21 fac0 13990 . . . . . . . . 9 (!‘0) = 1
2220, 21eqtrdi 2794 . . . . . . . 8 (𝜑 → (!‘((𝑃 − 1) − (𝐶‘0))) = 1)
2322oveq2d 7291 . . . . . . 7 (𝜑 → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) = ((!‘(𝑃 − 1)) / 1))
24 etransclem14.n . . . . . . . . . . 11 (𝜑𝑃 ∈ ℕ)
25 nnm1nn0 12274 . . . . . . . . . . 11 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
2624, 25syl 17 . . . . . . . . . 10 (𝜑 → (𝑃 − 1) ∈ ℕ0)
2726faccld 13998 . . . . . . . . 9 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
2827nncnd 11989 . . . . . . . 8 (𝜑 → (!‘(𝑃 − 1)) ∈ ℂ)
2928div1d 11743 . . . . . . 7 (𝜑 → ((!‘(𝑃 − 1)) / 1) = (!‘(𝑃 − 1)))
3023, 29eqtrd 2778 . . . . . 6 (𝜑 → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) = (!‘(𝑃 − 1)))
31 etransclem14.j . . . . . . . 8 (𝜑𝐽 = 0)
3231, 19oveq12d 7293 . . . . . . 7 (𝜑 → (𝐽↑((𝑃 − 1) − (𝐶‘0))) = (0↑0))
33 0exp0e1 13787 . . . . . . 7 (0↑0) = 1
3432, 33eqtrdi 2794 . . . . . 6 (𝜑 → (𝐽↑((𝑃 − 1) − (𝐶‘0))) = 1)
3530, 34oveq12d 7293 . . . . 5 (𝜑 → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))) = ((!‘(𝑃 − 1)) · 1))
3628mulid1d 10992 . . . . 5 (𝜑 → ((!‘(𝑃 − 1)) · 1) = (!‘(𝑃 − 1)))
3716, 35, 363eqtrd 2782 . . . 4 (𝜑 → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = (!‘(𝑃 − 1)))
3831oveq1d 7290 . . . . . . . . 9 (𝜑 → (𝐽𝑗) = (0 − 𝑗))
39 df-neg 11208 . . . . . . . . 9 -𝑗 = (0 − 𝑗)
4038, 39eqtr4di 2796 . . . . . . . 8 (𝜑 → (𝐽𝑗) = -𝑗)
4140oveq1d 7290 . . . . . . 7 (𝜑 → ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))) = (-𝑗↑(𝑃 − (𝐶𝑗))))
4241oveq2d 7291 . . . . . 6 (𝜑 → (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))) = (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · (-𝑗↑(𝑃 − (𝐶𝑗)))))
4342ifeq2d 4479 . . . . 5 (𝜑 → if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) = if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · (-𝑗↑(𝑃 − (𝐶𝑗))))))
4443prodeq2ad 43133 . . . 4 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) = ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · (-𝑗↑(𝑃 − (𝐶𝑗))))))
4537, 44oveq12d 7293 . . 3 (𝜑 → (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))) = ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · (-𝑗↑(𝑃 − (𝐶𝑗)))))))
4645oveq2d 7291 . 2 (𝜑 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))))) = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · (-𝑗↑(𝑃 − (𝐶𝑗))))))))
471, 46eqtrid 2790 1 (𝜑𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · (-𝑗↑(𝑃 − (𝐶𝑗))))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  ifcif 4459   class class class wbr 5074  wf 6429  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   · cmul 10876   < clt 11009  cmin 11205  -cneg 11206   / cdiv 11632  cn 11973  0cn0 12233  cuz 12582  ...cfz 13239  cexp 13782  !cfa 13987  cprod 15615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-seq 13722  df-exp 13783  df-fac 13988  df-prod 15616
This theorem is referenced by:  etransclem28  43803
  Copyright terms: Public domain W3C validator