Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem14 Structured version   Visualization version   GIF version

Theorem etransclem14 42888
Description: Value of the term 𝑇, when 𝐽 = 0 and (𝐶‘0) = 𝑃 − 1 (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem14.n (𝜑𝑃 ∈ ℕ)
etransclem14.m (𝜑𝑀 ∈ ℕ0)
etransclem14.c (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
etransclem14.t 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))))
etransclem14.j (𝜑𝐽 = 0)
etransclem14.cpm1 (𝜑 → (𝐶‘0) = (𝑃 − 1))
Assertion
Ref Expression
etransclem14 (𝜑𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · (-𝑗↑(𝑃 − (𝐶𝑗))))))))
Distinct variable groups:   𝑗,𝑀   𝜑,𝑗
Allowed substitution hints:   𝐶(𝑗)   𝑃(𝑗)   𝑇(𝑗)   𝐽(𝑗)   𝑁(𝑗)

Proof of Theorem etransclem14
StepHypRef Expression
1 etransclem14.t . 2 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))))
2 etransclem14.cpm1 . . . . . . . 8 (𝜑 → (𝐶‘0) = (𝑃 − 1))
3 fzssre 41944 . . . . . . . . . 10 (0...𝑁) ⊆ ℝ
4 etransclem14.c . . . . . . . . . . 11 (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
5 etransclem14.m . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ0)
6 nn0uz 12268 . . . . . . . . . . . . 13 0 = (ℤ‘0)
75, 6eleqtrdi 2900 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (ℤ‘0))
8 eluzfz1 12909 . . . . . . . . . . . 12 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
97, 8syl 17 . . . . . . . . . . 11 (𝜑 → 0 ∈ (0...𝑀))
104, 9ffvelrnd 6829 . . . . . . . . . 10 (𝜑 → (𝐶‘0) ∈ (0...𝑁))
113, 10sseldi 3913 . . . . . . . . 9 (𝜑 → (𝐶‘0) ∈ ℝ)
122, 11eqeltrrd 2891 . . . . . . . . 9 (𝜑 → (𝑃 − 1) ∈ ℝ)
1311, 12lttri3d 10769 . . . . . . . 8 (𝜑 → ((𝐶‘0) = (𝑃 − 1) ↔ (¬ (𝐶‘0) < (𝑃 − 1) ∧ ¬ (𝑃 − 1) < (𝐶‘0))))
142, 13mpbid 235 . . . . . . 7 (𝜑 → (¬ (𝐶‘0) < (𝑃 − 1) ∧ ¬ (𝑃 − 1) < (𝐶‘0)))
1514simprd 499 . . . . . 6 (𝜑 → ¬ (𝑃 − 1) < (𝐶‘0))
1615iffalsed 4436 . . . . 5 (𝜑 → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))))
1712recnd 10658 . . . . . . . . . . 11 (𝜑 → (𝑃 − 1) ∈ ℂ)
182eqcomd 2804 . . . . . . . . . . 11 (𝜑 → (𝑃 − 1) = (𝐶‘0))
1917, 18subeq0bd 11055 . . . . . . . . . 10 (𝜑 → ((𝑃 − 1) − (𝐶‘0)) = 0)
2019fveq2d 6649 . . . . . . . . 9 (𝜑 → (!‘((𝑃 − 1) − (𝐶‘0))) = (!‘0))
21 fac0 13632 . . . . . . . . 9 (!‘0) = 1
2220, 21eqtrdi 2849 . . . . . . . 8 (𝜑 → (!‘((𝑃 − 1) − (𝐶‘0))) = 1)
2322oveq2d 7151 . . . . . . 7 (𝜑 → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) = ((!‘(𝑃 − 1)) / 1))
24 etransclem14.n . . . . . . . . . . 11 (𝜑𝑃 ∈ ℕ)
25 nnm1nn0 11926 . . . . . . . . . . 11 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
2624, 25syl 17 . . . . . . . . . 10 (𝜑 → (𝑃 − 1) ∈ ℕ0)
2726faccld 13640 . . . . . . . . 9 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
2827nncnd 11641 . . . . . . . 8 (𝜑 → (!‘(𝑃 − 1)) ∈ ℂ)
2928div1d 11397 . . . . . . 7 (𝜑 → ((!‘(𝑃 − 1)) / 1) = (!‘(𝑃 − 1)))
3023, 29eqtrd 2833 . . . . . 6 (𝜑 → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) = (!‘(𝑃 − 1)))
31 etransclem14.j . . . . . . . 8 (𝜑𝐽 = 0)
3231, 19oveq12d 7153 . . . . . . 7 (𝜑 → (𝐽↑((𝑃 − 1) − (𝐶‘0))) = (0↑0))
33 0exp0e1 13430 . . . . . . 7 (0↑0) = 1
3432, 33eqtrdi 2849 . . . . . 6 (𝜑 → (𝐽↑((𝑃 − 1) − (𝐶‘0))) = 1)
3530, 34oveq12d 7153 . . . . 5 (𝜑 → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))) = ((!‘(𝑃 − 1)) · 1))
3628mulid1d 10647 . . . . 5 (𝜑 → ((!‘(𝑃 − 1)) · 1) = (!‘(𝑃 − 1)))
3716, 35, 363eqtrd 2837 . . . 4 (𝜑 → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = (!‘(𝑃 − 1)))
3831oveq1d 7150 . . . . . . . . 9 (𝜑 → (𝐽𝑗) = (0 − 𝑗))
39 df-neg 10862 . . . . . . . . 9 -𝑗 = (0 − 𝑗)
4038, 39eqtr4di 2851 . . . . . . . 8 (𝜑 → (𝐽𝑗) = -𝑗)
4140oveq1d 7150 . . . . . . 7 (𝜑 → ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))) = (-𝑗↑(𝑃 − (𝐶𝑗))))
4241oveq2d 7151 . . . . . 6 (𝜑 → (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))) = (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · (-𝑗↑(𝑃 − (𝐶𝑗)))))
4342ifeq2d 4444 . . . . 5 (𝜑 → if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) = if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · (-𝑗↑(𝑃 − (𝐶𝑗))))))
4443prodeq2ad 42232 . . . 4 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) = ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · (-𝑗↑(𝑃 − (𝐶𝑗))))))
4537, 44oveq12d 7153 . . 3 (𝜑 → (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))) = ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · (-𝑗↑(𝑃 − (𝐶𝑗)))))))
4645oveq2d 7151 . 2 (𝜑 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))))) = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · (-𝑗↑(𝑃 − (𝐶𝑗))))))))
471, 46syl5eq 2845 1 (𝜑𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · (-𝑗↑(𝑃 − (𝐶𝑗))))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2111  ifcif 4425   class class class wbr 5030  wf 6320  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527   · cmul 10531   < clt 10664  cmin 10859  -cneg 10860   / cdiv 11286  cn 11625  0cn0 11885  cuz 12231  ...cfz 12885  cexp 13425  !cfa 13629  cprod 15251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-seq 13365  df-exp 13426  df-fac 13630  df-prod 15252
This theorem is referenced by:  etransclem28  42902
  Copyright terms: Public domain W3C validator