Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem14 Structured version   Visualization version   GIF version

Theorem etransclem14 43418
Description: Value of the term 𝑇, when 𝐽 = 0 and (𝐶‘0) = 𝑃 − 1 (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem14.n (𝜑𝑃 ∈ ℕ)
etransclem14.m (𝜑𝑀 ∈ ℕ0)
etransclem14.c (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
etransclem14.t 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))))
etransclem14.j (𝜑𝐽 = 0)
etransclem14.cpm1 (𝜑 → (𝐶‘0) = (𝑃 − 1))
Assertion
Ref Expression
etransclem14 (𝜑𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · (-𝑗↑(𝑃 − (𝐶𝑗))))))))
Distinct variable groups:   𝑗,𝑀   𝜑,𝑗
Allowed substitution hints:   𝐶(𝑗)   𝑃(𝑗)   𝑇(𝑗)   𝐽(𝑗)   𝑁(𝑗)

Proof of Theorem etransclem14
StepHypRef Expression
1 etransclem14.t . 2 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))))
2 etransclem14.cpm1 . . . . . . . 8 (𝜑 → (𝐶‘0) = (𝑃 − 1))
3 fzssre 42478 . . . . . . . . . 10 (0...𝑁) ⊆ ℝ
4 etransclem14.c . . . . . . . . . . 11 (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
5 etransclem14.m . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ0)
6 nn0uz 12459 . . . . . . . . . . . . 13 0 = (ℤ‘0)
75, 6eleqtrdi 2844 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (ℤ‘0))
8 eluzfz1 13102 . . . . . . . . . . . 12 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
97, 8syl 17 . . . . . . . . . . 11 (𝜑 → 0 ∈ (0...𝑀))
104, 9ffvelrnd 6894 . . . . . . . . . 10 (𝜑 → (𝐶‘0) ∈ (0...𝑁))
113, 10sseldi 3889 . . . . . . . . 9 (𝜑 → (𝐶‘0) ∈ ℝ)
122, 11eqeltrrd 2835 . . . . . . . . 9 (𝜑 → (𝑃 − 1) ∈ ℝ)
1311, 12lttri3d 10955 . . . . . . . 8 (𝜑 → ((𝐶‘0) = (𝑃 − 1) ↔ (¬ (𝐶‘0) < (𝑃 − 1) ∧ ¬ (𝑃 − 1) < (𝐶‘0))))
142, 13mpbid 235 . . . . . . 7 (𝜑 → (¬ (𝐶‘0) < (𝑃 − 1) ∧ ¬ (𝑃 − 1) < (𝐶‘0)))
1514simprd 499 . . . . . 6 (𝜑 → ¬ (𝑃 − 1) < (𝐶‘0))
1615iffalsed 4440 . . . . 5 (𝜑 → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))))
1712recnd 10844 . . . . . . . . . . 11 (𝜑 → (𝑃 − 1) ∈ ℂ)
182eqcomd 2740 . . . . . . . . . . 11 (𝜑 → (𝑃 − 1) = (𝐶‘0))
1917, 18subeq0bd 11241 . . . . . . . . . 10 (𝜑 → ((𝑃 − 1) − (𝐶‘0)) = 0)
2019fveq2d 6710 . . . . . . . . 9 (𝜑 → (!‘((𝑃 − 1) − (𝐶‘0))) = (!‘0))
21 fac0 13825 . . . . . . . . 9 (!‘0) = 1
2220, 21eqtrdi 2790 . . . . . . . 8 (𝜑 → (!‘((𝑃 − 1) − (𝐶‘0))) = 1)
2322oveq2d 7218 . . . . . . 7 (𝜑 → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) = ((!‘(𝑃 − 1)) / 1))
24 etransclem14.n . . . . . . . . . . 11 (𝜑𝑃 ∈ ℕ)
25 nnm1nn0 12114 . . . . . . . . . . 11 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
2624, 25syl 17 . . . . . . . . . 10 (𝜑 → (𝑃 − 1) ∈ ℕ0)
2726faccld 13833 . . . . . . . . 9 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
2827nncnd 11829 . . . . . . . 8 (𝜑 → (!‘(𝑃 − 1)) ∈ ℂ)
2928div1d 11583 . . . . . . 7 (𝜑 → ((!‘(𝑃 − 1)) / 1) = (!‘(𝑃 − 1)))
3023, 29eqtrd 2774 . . . . . 6 (𝜑 → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) = (!‘(𝑃 − 1)))
31 etransclem14.j . . . . . . . 8 (𝜑𝐽 = 0)
3231, 19oveq12d 7220 . . . . . . 7 (𝜑 → (𝐽↑((𝑃 − 1) − (𝐶‘0))) = (0↑0))
33 0exp0e1 13623 . . . . . . 7 (0↑0) = 1
3432, 33eqtrdi 2790 . . . . . 6 (𝜑 → (𝐽↑((𝑃 − 1) − (𝐶‘0))) = 1)
3530, 34oveq12d 7220 . . . . 5 (𝜑 → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))) = ((!‘(𝑃 − 1)) · 1))
3628mulid1d 10833 . . . . 5 (𝜑 → ((!‘(𝑃 − 1)) · 1) = (!‘(𝑃 − 1)))
3716, 35, 363eqtrd 2778 . . . 4 (𝜑 → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = (!‘(𝑃 − 1)))
3831oveq1d 7217 . . . . . . . . 9 (𝜑 → (𝐽𝑗) = (0 − 𝑗))
39 df-neg 11048 . . . . . . . . 9 -𝑗 = (0 − 𝑗)
4038, 39eqtr4di 2792 . . . . . . . 8 (𝜑 → (𝐽𝑗) = -𝑗)
4140oveq1d 7217 . . . . . . 7 (𝜑 → ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))) = (-𝑗↑(𝑃 − (𝐶𝑗))))
4241oveq2d 7218 . . . . . 6 (𝜑 → (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))) = (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · (-𝑗↑(𝑃 − (𝐶𝑗)))))
4342ifeq2d 4449 . . . . 5 (𝜑 → if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) = if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · (-𝑗↑(𝑃 − (𝐶𝑗))))))
4443prodeq2ad 42762 . . . 4 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) = ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · (-𝑗↑(𝑃 − (𝐶𝑗))))))
4537, 44oveq12d 7220 . . 3 (𝜑 → (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))) = ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · (-𝑗↑(𝑃 − (𝐶𝑗)))))))
4645oveq2d 7218 . 2 (𝜑 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))))) = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · (-𝑗↑(𝑃 − (𝐶𝑗))))))))
471, 46syl5eq 2786 1 (𝜑𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · (-𝑗↑(𝑃 − (𝐶𝑗))))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wcel 2110  ifcif 4429   class class class wbr 5043  wf 6365  cfv 6369  (class class class)co 7202  cr 10711  0cc0 10712  1c1 10713   · cmul 10717   < clt 10850  cmin 11045  -cneg 11046   / cdiv 11472  cn 11813  0cn0 12073  cuz 12421  ...cfz 13078  cexp 13618  !cfa 13822  cprod 15448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-n0 12074  df-z 12160  df-uz 12422  df-fz 13079  df-seq 13558  df-exp 13619  df-fac 13823  df-prod 15449
This theorem is referenced by:  etransclem28  43432
  Copyright terms: Public domain W3C validator