Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem14 Structured version   Visualization version   GIF version

Theorem etransclem14 46246
Description: Value of the term 𝑇, when 𝐽 = 0 and (𝐶‘0) = 𝑃 − 1 (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem14.n (𝜑𝑃 ∈ ℕ)
etransclem14.m (𝜑𝑀 ∈ ℕ0)
etransclem14.c (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
etransclem14.t 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))))
etransclem14.j (𝜑𝐽 = 0)
etransclem14.cpm1 (𝜑 → (𝐶‘0) = (𝑃 − 1))
Assertion
Ref Expression
etransclem14 (𝜑𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · (-𝑗↑(𝑃 − (𝐶𝑗))))))))
Distinct variable groups:   𝑗,𝑀   𝜑,𝑗
Allowed substitution hints:   𝐶(𝑗)   𝑃(𝑗)   𝑇(𝑗)   𝐽(𝑗)   𝑁(𝑗)

Proof of Theorem etransclem14
StepHypRef Expression
1 etransclem14.t . 2 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))))
2 etransclem14.cpm1 . . . . . . . 8 (𝜑 → (𝐶‘0) = (𝑃 − 1))
3 fzssre 45312 . . . . . . . . . 10 (0...𝑁) ⊆ ℝ
4 etransclem14.c . . . . . . . . . . 11 (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
5 etransclem14.m . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ0)
6 nn0uz 12835 . . . . . . . . . . . . 13 0 = (ℤ‘0)
75, 6eleqtrdi 2838 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (ℤ‘0))
8 eluzfz1 13492 . . . . . . . . . . . 12 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
97, 8syl 17 . . . . . . . . . . 11 (𝜑 → 0 ∈ (0...𝑀))
104, 9ffvelcdmd 7057 . . . . . . . . . 10 (𝜑 → (𝐶‘0) ∈ (0...𝑁))
113, 10sselid 3944 . . . . . . . . 9 (𝜑 → (𝐶‘0) ∈ ℝ)
122, 11eqeltrrd 2829 . . . . . . . . 9 (𝜑 → (𝑃 − 1) ∈ ℝ)
1311, 12lttri3d 11314 . . . . . . . 8 (𝜑 → ((𝐶‘0) = (𝑃 − 1) ↔ (¬ (𝐶‘0) < (𝑃 − 1) ∧ ¬ (𝑃 − 1) < (𝐶‘0))))
142, 13mpbid 232 . . . . . . 7 (𝜑 → (¬ (𝐶‘0) < (𝑃 − 1) ∧ ¬ (𝑃 − 1) < (𝐶‘0)))
1514simprd 495 . . . . . 6 (𝜑 → ¬ (𝑃 − 1) < (𝐶‘0))
1615iffalsed 4499 . . . . 5 (𝜑 → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))))
1712recnd 11202 . . . . . . . . . . 11 (𝜑 → (𝑃 − 1) ∈ ℂ)
182eqcomd 2735 . . . . . . . . . . 11 (𝜑 → (𝑃 − 1) = (𝐶‘0))
1917, 18subeq0bd 11604 . . . . . . . . . 10 (𝜑 → ((𝑃 − 1) − (𝐶‘0)) = 0)
2019fveq2d 6862 . . . . . . . . 9 (𝜑 → (!‘((𝑃 − 1) − (𝐶‘0))) = (!‘0))
21 fac0 14241 . . . . . . . . 9 (!‘0) = 1
2220, 21eqtrdi 2780 . . . . . . . 8 (𝜑 → (!‘((𝑃 − 1) − (𝐶‘0))) = 1)
2322oveq2d 7403 . . . . . . 7 (𝜑 → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) = ((!‘(𝑃 − 1)) / 1))
24 etransclem14.n . . . . . . . . . . 11 (𝜑𝑃 ∈ ℕ)
25 nnm1nn0 12483 . . . . . . . . . . 11 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
2624, 25syl 17 . . . . . . . . . 10 (𝜑 → (𝑃 − 1) ∈ ℕ0)
2726faccld 14249 . . . . . . . . 9 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
2827nncnd 12202 . . . . . . . 8 (𝜑 → (!‘(𝑃 − 1)) ∈ ℂ)
2928div1d 11950 . . . . . . 7 (𝜑 → ((!‘(𝑃 − 1)) / 1) = (!‘(𝑃 − 1)))
3023, 29eqtrd 2764 . . . . . 6 (𝜑 → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) = (!‘(𝑃 − 1)))
31 etransclem14.j . . . . . . . 8 (𝜑𝐽 = 0)
3231, 19oveq12d 7405 . . . . . . 7 (𝜑 → (𝐽↑((𝑃 − 1) − (𝐶‘0))) = (0↑0))
33 0exp0e1 14031 . . . . . . 7 (0↑0) = 1
3432, 33eqtrdi 2780 . . . . . 6 (𝜑 → (𝐽↑((𝑃 − 1) − (𝐶‘0))) = 1)
3530, 34oveq12d 7405 . . . . 5 (𝜑 → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))) = ((!‘(𝑃 − 1)) · 1))
3628mulridd 11191 . . . . 5 (𝜑 → ((!‘(𝑃 − 1)) · 1) = (!‘(𝑃 − 1)))
3716, 35, 363eqtrd 2768 . . . 4 (𝜑 → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = (!‘(𝑃 − 1)))
3831oveq1d 7402 . . . . . . . . 9 (𝜑 → (𝐽𝑗) = (0 − 𝑗))
39 df-neg 11408 . . . . . . . . 9 -𝑗 = (0 − 𝑗)
4038, 39eqtr4di 2782 . . . . . . . 8 (𝜑 → (𝐽𝑗) = -𝑗)
4140oveq1d 7402 . . . . . . 7 (𝜑 → ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))) = (-𝑗↑(𝑃 − (𝐶𝑗))))
4241oveq2d 7403 . . . . . 6 (𝜑 → (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))) = (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · (-𝑗↑(𝑃 − (𝐶𝑗)))))
4342ifeq2d 4509 . . . . 5 (𝜑 → if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) = if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · (-𝑗↑(𝑃 − (𝐶𝑗))))))
4443prodeq2ad 45590 . . . 4 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) = ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · (-𝑗↑(𝑃 − (𝐶𝑗))))))
4537, 44oveq12d 7405 . . 3 (𝜑 → (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))) = ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · (-𝑗↑(𝑃 − (𝐶𝑗)))))))
4645oveq2d 7403 . 2 (𝜑 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))))) = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · (-𝑗↑(𝑃 − (𝐶𝑗))))))))
471, 46eqtrid 2776 1 (𝜑𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · (-𝑗↑(𝑃 − (𝐶𝑗))))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  ifcif 4488   class class class wbr 5107  wf 6507  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   · cmul 11073   < clt 11208  cmin 11405  -cneg 11406   / cdiv 11835  cn 12186  0cn0 12442  cuz 12793  ...cfz 13468  cexp 14026  !cfa 14238  cprod 15869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-seq 13967  df-exp 14027  df-fac 14239  df-prod 15870
This theorem is referenced by:  etransclem28  46260
  Copyright terms: Public domain W3C validator