MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coefv0 Structured version   Visualization version   GIF version

Theorem coefv0 24845
Description: The result of evaluating a polynomial at zero is the constant term. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypothesis
Ref Expression
coefv0.1 𝐴 = (coeff‘𝐹)
Assertion
Ref Expression
coefv0 (𝐹 ∈ (Poly‘𝑆) → (𝐹‘0) = (𝐴‘0))

Proof of Theorem coefv0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 0cn 10622 . . 3 0 ∈ ℂ
2 coefv0.1 . . . 4 𝐴 = (coeff‘𝐹)
3 eqid 2798 . . . 4 (deg‘𝐹) = (deg‘𝐹)
42, 3coeid2 24836 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 0 ∈ ℂ) → (𝐹‘0) = Σ𝑘 ∈ (0...(deg‘𝐹))((𝐴𝑘) · (0↑𝑘)))
51, 4mpan2 690 . 2 (𝐹 ∈ (Poly‘𝑆) → (𝐹‘0) = Σ𝑘 ∈ (0...(deg‘𝐹))((𝐴𝑘) · (0↑𝑘)))
6 dgrcl 24830 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
7 nn0uz 12268 . . . . 5 0 = (ℤ‘0)
86, 7eleqtrdi 2900 . . . 4 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ (ℤ‘0))
9 fzss2 12942 . . . 4 ((deg‘𝐹) ∈ (ℤ‘0) → (0...0) ⊆ (0...(deg‘𝐹)))
108, 9syl 17 . . 3 (𝐹 ∈ (Poly‘𝑆) → (0...0) ⊆ (0...(deg‘𝐹)))
11 elfz1eq 12913 . . . . . 6 (𝑘 ∈ (0...0) → 𝑘 = 0)
12 fveq2 6645 . . . . . . 7 (𝑘 = 0 → (𝐴𝑘) = (𝐴‘0))
13 oveq2 7143 . . . . . . . 8 (𝑘 = 0 → (0↑𝑘) = (0↑0))
14 0exp0e1 13430 . . . . . . . 8 (0↑0) = 1
1513, 14eqtrdi 2849 . . . . . . 7 (𝑘 = 0 → (0↑𝑘) = 1)
1612, 15oveq12d 7153 . . . . . 6 (𝑘 = 0 → ((𝐴𝑘) · (0↑𝑘)) = ((𝐴‘0) · 1))
1711, 16syl 17 . . . . 5 (𝑘 ∈ (0...0) → ((𝐴𝑘) · (0↑𝑘)) = ((𝐴‘0) · 1))
182coef3 24829 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
19 0nn0 11900 . . . . . . 7 0 ∈ ℕ0
20 ffvelrn 6826 . . . . . . 7 ((𝐴:ℕ0⟶ℂ ∧ 0 ∈ ℕ0) → (𝐴‘0) ∈ ℂ)
2118, 19, 20sylancl 589 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (𝐴‘0) ∈ ℂ)
2221mulid1d 10647 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → ((𝐴‘0) · 1) = (𝐴‘0))
2317, 22sylan9eqr 2855 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ (0...0)) → ((𝐴𝑘) · (0↑𝑘)) = (𝐴‘0))
2421adantr 484 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ (0...0)) → (𝐴‘0) ∈ ℂ)
2523, 24eqeltrd 2890 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ (0...0)) → ((𝐴𝑘) · (0↑𝑘)) ∈ ℂ)
26 eldifn 4055 . . . . . . . 8 (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → ¬ 𝑘 ∈ (0...0))
27 eldifi 4054 . . . . . . . . . . . 12 (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → 𝑘 ∈ (0...(deg‘𝐹)))
28 elfznn0 12995 . . . . . . . . . . . 12 (𝑘 ∈ (0...(deg‘𝐹)) → 𝑘 ∈ ℕ0)
2927, 28syl 17 . . . . . . . . . . 11 (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → 𝑘 ∈ ℕ0)
30 elnn0 11887 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0))
3129, 30sylib 221 . . . . . . . . . 10 (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → (𝑘 ∈ ℕ ∨ 𝑘 = 0))
3231ord 861 . . . . . . . . 9 (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → (¬ 𝑘 ∈ ℕ → 𝑘 = 0))
33 id 22 . . . . . . . . . 10 (𝑘 = 0 → 𝑘 = 0)
34 0z 11980 . . . . . . . . . . 11 0 ∈ ℤ
35 elfz3 12912 . . . . . . . . . . 11 (0 ∈ ℤ → 0 ∈ (0...0))
3634, 35ax-mp 5 . . . . . . . . . 10 0 ∈ (0...0)
3733, 36eqeltrdi 2898 . . . . . . . . 9 (𝑘 = 0 → 𝑘 ∈ (0...0))
3832, 37syl6 35 . . . . . . . 8 (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → (¬ 𝑘 ∈ ℕ → 𝑘 ∈ (0...0)))
3926, 38mt3d 150 . . . . . . 7 (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → 𝑘 ∈ ℕ)
4039adantl 485 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0))) → 𝑘 ∈ ℕ)
41400expd 13499 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0))) → (0↑𝑘) = 0)
4241oveq2d 7151 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0))) → ((𝐴𝑘) · (0↑𝑘)) = ((𝐴𝑘) · 0))
43 ffvelrn 6826 . . . . . 6 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
4418, 29, 43syl2an 598 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0))) → (𝐴𝑘) ∈ ℂ)
4544mul01d 10828 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0))) → ((𝐴𝑘) · 0) = 0)
4642, 45eqtrd 2833 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0))) → ((𝐴𝑘) · (0↑𝑘)) = 0)
47 fzfid 13336 . . 3 (𝐹 ∈ (Poly‘𝑆) → (0...(deg‘𝐹)) ∈ Fin)
4810, 25, 46, 47fsumss 15074 . 2 (𝐹 ∈ (Poly‘𝑆) → Σ𝑘 ∈ (0...0)((𝐴𝑘) · (0↑𝑘)) = Σ𝑘 ∈ (0...(deg‘𝐹))((𝐴𝑘) · (0↑𝑘)))
4922, 21eqeltrd 2890 . . . 4 (𝐹 ∈ (Poly‘𝑆) → ((𝐴‘0) · 1) ∈ ℂ)
5016fsum1 15094 . . . 4 ((0 ∈ ℤ ∧ ((𝐴‘0) · 1) ∈ ℂ) → Σ𝑘 ∈ (0...0)((𝐴𝑘) · (0↑𝑘)) = ((𝐴‘0) · 1))
5134, 49, 50sylancr 590 . . 3 (𝐹 ∈ (Poly‘𝑆) → Σ𝑘 ∈ (0...0)((𝐴𝑘) · (0↑𝑘)) = ((𝐴‘0) · 1))
5251, 22eqtrd 2833 . 2 (𝐹 ∈ (Poly‘𝑆) → Σ𝑘 ∈ (0...0)((𝐴𝑘) · (0↑𝑘)) = (𝐴‘0))
535, 48, 523eqtr2d 2839 1 (𝐹 ∈ (Poly‘𝑆) → (𝐹‘0) = (𝐴‘0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 844   = wceq 1538  wcel 2111  cdif 3878  wss 3881  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526  1c1 10527   · cmul 10531  cn 11625  0cn0 11885  cz 11969  cuz 12231  ...cfz 12885  cexp 13425  Σcsu 15034  Polycply 24781  coeffccoe 24783  degcdgr 24784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-0p 24274  df-ply 24785  df-coe 24787  df-dgr 24788
This theorem is referenced by:  coemulc  24852  dgreq0  24862  vieta1lem2  24907  aareccl  24922  ftalem5  25662  signsply0  31931  elaa2  42876
  Copyright terms: Public domain W3C validator