MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coefv0 Structured version   Visualization version   GIF version

Theorem coefv0 25407
Description: The result of evaluating a polynomial at zero is the constant term. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypothesis
Ref Expression
coefv0.1 𝐴 = (coeff‘𝐹)
Assertion
Ref Expression
coefv0 (𝐹 ∈ (Poly‘𝑆) → (𝐹‘0) = (𝐴‘0))

Proof of Theorem coefv0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 0cn 10968 . . 3 0 ∈ ℂ
2 coefv0.1 . . . 4 𝐴 = (coeff‘𝐹)
3 eqid 2740 . . . 4 (deg‘𝐹) = (deg‘𝐹)
42, 3coeid2 25398 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 0 ∈ ℂ) → (𝐹‘0) = Σ𝑘 ∈ (0...(deg‘𝐹))((𝐴𝑘) · (0↑𝑘)))
51, 4mpan2 688 . 2 (𝐹 ∈ (Poly‘𝑆) → (𝐹‘0) = Σ𝑘 ∈ (0...(deg‘𝐹))((𝐴𝑘) · (0↑𝑘)))
6 dgrcl 25392 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
7 nn0uz 12619 . . . . 5 0 = (ℤ‘0)
86, 7eleqtrdi 2851 . . . 4 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ (ℤ‘0))
9 fzss2 13295 . . . 4 ((deg‘𝐹) ∈ (ℤ‘0) → (0...0) ⊆ (0...(deg‘𝐹)))
108, 9syl 17 . . 3 (𝐹 ∈ (Poly‘𝑆) → (0...0) ⊆ (0...(deg‘𝐹)))
11 elfz1eq 13266 . . . . . 6 (𝑘 ∈ (0...0) → 𝑘 = 0)
12 fveq2 6771 . . . . . . 7 (𝑘 = 0 → (𝐴𝑘) = (𝐴‘0))
13 oveq2 7279 . . . . . . . 8 (𝑘 = 0 → (0↑𝑘) = (0↑0))
14 0exp0e1 13785 . . . . . . . 8 (0↑0) = 1
1513, 14eqtrdi 2796 . . . . . . 7 (𝑘 = 0 → (0↑𝑘) = 1)
1612, 15oveq12d 7289 . . . . . 6 (𝑘 = 0 → ((𝐴𝑘) · (0↑𝑘)) = ((𝐴‘0) · 1))
1711, 16syl 17 . . . . 5 (𝑘 ∈ (0...0) → ((𝐴𝑘) · (0↑𝑘)) = ((𝐴‘0) · 1))
182coef3 25391 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
19 0nn0 12248 . . . . . . 7 0 ∈ ℕ0
20 ffvelrn 6956 . . . . . . 7 ((𝐴:ℕ0⟶ℂ ∧ 0 ∈ ℕ0) → (𝐴‘0) ∈ ℂ)
2118, 19, 20sylancl 586 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (𝐴‘0) ∈ ℂ)
2221mulid1d 10993 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → ((𝐴‘0) · 1) = (𝐴‘0))
2317, 22sylan9eqr 2802 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ (0...0)) → ((𝐴𝑘) · (0↑𝑘)) = (𝐴‘0))
2421adantr 481 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ (0...0)) → (𝐴‘0) ∈ ℂ)
2523, 24eqeltrd 2841 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ (0...0)) → ((𝐴𝑘) · (0↑𝑘)) ∈ ℂ)
26 eldifn 4067 . . . . . . . 8 (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → ¬ 𝑘 ∈ (0...0))
27 eldifi 4066 . . . . . . . . . . . 12 (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → 𝑘 ∈ (0...(deg‘𝐹)))
28 elfznn0 13348 . . . . . . . . . . . 12 (𝑘 ∈ (0...(deg‘𝐹)) → 𝑘 ∈ ℕ0)
2927, 28syl 17 . . . . . . . . . . 11 (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → 𝑘 ∈ ℕ0)
30 elnn0 12235 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0))
3129, 30sylib 217 . . . . . . . . . 10 (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → (𝑘 ∈ ℕ ∨ 𝑘 = 0))
3231ord 861 . . . . . . . . 9 (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → (¬ 𝑘 ∈ ℕ → 𝑘 = 0))
33 id 22 . . . . . . . . . 10 (𝑘 = 0 → 𝑘 = 0)
34 0z 12330 . . . . . . . . . . 11 0 ∈ ℤ
35 elfz3 13265 . . . . . . . . . . 11 (0 ∈ ℤ → 0 ∈ (0...0))
3634, 35ax-mp 5 . . . . . . . . . 10 0 ∈ (0...0)
3733, 36eqeltrdi 2849 . . . . . . . . 9 (𝑘 = 0 → 𝑘 ∈ (0...0))
3832, 37syl6 35 . . . . . . . 8 (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → (¬ 𝑘 ∈ ℕ → 𝑘 ∈ (0...0)))
3926, 38mt3d 148 . . . . . . 7 (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → 𝑘 ∈ ℕ)
4039adantl 482 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0))) → 𝑘 ∈ ℕ)
41400expd 13855 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0))) → (0↑𝑘) = 0)
4241oveq2d 7287 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0))) → ((𝐴𝑘) · (0↑𝑘)) = ((𝐴𝑘) · 0))
43 ffvelrn 6956 . . . . . 6 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
4418, 29, 43syl2an 596 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0))) → (𝐴𝑘) ∈ ℂ)
4544mul01d 11174 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0))) → ((𝐴𝑘) · 0) = 0)
4642, 45eqtrd 2780 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0))) → ((𝐴𝑘) · (0↑𝑘)) = 0)
47 fzfid 13691 . . 3 (𝐹 ∈ (Poly‘𝑆) → (0...(deg‘𝐹)) ∈ Fin)
4810, 25, 46, 47fsumss 15435 . 2 (𝐹 ∈ (Poly‘𝑆) → Σ𝑘 ∈ (0...0)((𝐴𝑘) · (0↑𝑘)) = Σ𝑘 ∈ (0...(deg‘𝐹))((𝐴𝑘) · (0↑𝑘)))
4922, 21eqeltrd 2841 . . . 4 (𝐹 ∈ (Poly‘𝑆) → ((𝐴‘0) · 1) ∈ ℂ)
5016fsum1 15457 . . . 4 ((0 ∈ ℤ ∧ ((𝐴‘0) · 1) ∈ ℂ) → Σ𝑘 ∈ (0...0)((𝐴𝑘) · (0↑𝑘)) = ((𝐴‘0) · 1))
5134, 49, 50sylancr 587 . . 3 (𝐹 ∈ (Poly‘𝑆) → Σ𝑘 ∈ (0...0)((𝐴𝑘) · (0↑𝑘)) = ((𝐴‘0) · 1))
5251, 22eqtrd 2780 . 2 (𝐹 ∈ (Poly‘𝑆) → Σ𝑘 ∈ (0...0)((𝐴𝑘) · (0↑𝑘)) = (𝐴‘0))
535, 48, 523eqtr2d 2786 1 (𝐹 ∈ (Poly‘𝑆) → (𝐹‘0) = (𝐴‘0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844   = wceq 1542  wcel 2110  cdif 3889  wss 3892  wf 6428  cfv 6432  (class class class)co 7271  cc 10870  0cc0 10872  1c1 10873   · cmul 10877  cn 11973  0cn0 12233  cz 12319  cuz 12581  ...cfz 13238  cexp 13780  Σcsu 15395  Polycply 25343  coeffccoe 25345  degcdgr 25346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-of 7527  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-map 8600  df-pm 8601  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-sup 9179  df-inf 9180  df-oi 9247  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12582  df-rp 12730  df-fz 13239  df-fzo 13382  df-fl 13510  df-seq 13720  df-exp 13781  df-hash 14043  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-clim 15195  df-rlim 15196  df-sum 15396  df-0p 24832  df-ply 25347  df-coe 25349  df-dgr 25350
This theorem is referenced by:  coemulc  25414  dgreq0  25424  vieta1lem2  25469  aareccl  25484  ftalem5  26224  signsply0  32526  elaa2  43746
  Copyright terms: Public domain W3C validator