MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coefv0 Structured version   Visualization version   GIF version

Theorem coefv0 24837
Description: The result of evaluating a polynomial at zero is the constant term. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypothesis
Ref Expression
coefv0.1 𝐴 = (coeff‘𝐹)
Assertion
Ref Expression
coefv0 (𝐹 ∈ (Poly‘𝑆) → (𝐹‘0) = (𝐴‘0))

Proof of Theorem coefv0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 0cn 10632 . . 3 0 ∈ ℂ
2 coefv0.1 . . . 4 𝐴 = (coeff‘𝐹)
3 eqid 2821 . . . 4 (deg‘𝐹) = (deg‘𝐹)
42, 3coeid2 24828 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 0 ∈ ℂ) → (𝐹‘0) = Σ𝑘 ∈ (0...(deg‘𝐹))((𝐴𝑘) · (0↑𝑘)))
51, 4mpan2 689 . 2 (𝐹 ∈ (Poly‘𝑆) → (𝐹‘0) = Σ𝑘 ∈ (0...(deg‘𝐹))((𝐴𝑘) · (0↑𝑘)))
6 dgrcl 24822 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
7 nn0uz 12279 . . . . 5 0 = (ℤ‘0)
86, 7eleqtrdi 2923 . . . 4 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ (ℤ‘0))
9 fzss2 12946 . . . 4 ((deg‘𝐹) ∈ (ℤ‘0) → (0...0) ⊆ (0...(deg‘𝐹)))
108, 9syl 17 . . 3 (𝐹 ∈ (Poly‘𝑆) → (0...0) ⊆ (0...(deg‘𝐹)))
11 elfz1eq 12917 . . . . . 6 (𝑘 ∈ (0...0) → 𝑘 = 0)
12 fveq2 6669 . . . . . . 7 (𝑘 = 0 → (𝐴𝑘) = (𝐴‘0))
13 oveq2 7163 . . . . . . . 8 (𝑘 = 0 → (0↑𝑘) = (0↑0))
14 0exp0e1 13433 . . . . . . . 8 (0↑0) = 1
1513, 14syl6eq 2872 . . . . . . 7 (𝑘 = 0 → (0↑𝑘) = 1)
1612, 15oveq12d 7173 . . . . . 6 (𝑘 = 0 → ((𝐴𝑘) · (0↑𝑘)) = ((𝐴‘0) · 1))
1711, 16syl 17 . . . . 5 (𝑘 ∈ (0...0) → ((𝐴𝑘) · (0↑𝑘)) = ((𝐴‘0) · 1))
182coef3 24821 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
19 0nn0 11911 . . . . . . 7 0 ∈ ℕ0
20 ffvelrn 6848 . . . . . . 7 ((𝐴:ℕ0⟶ℂ ∧ 0 ∈ ℕ0) → (𝐴‘0) ∈ ℂ)
2118, 19, 20sylancl 588 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (𝐴‘0) ∈ ℂ)
2221mulid1d 10657 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → ((𝐴‘0) · 1) = (𝐴‘0))
2317, 22sylan9eqr 2878 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ (0...0)) → ((𝐴𝑘) · (0↑𝑘)) = (𝐴‘0))
2421adantr 483 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ (0...0)) → (𝐴‘0) ∈ ℂ)
2523, 24eqeltrd 2913 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ (0...0)) → ((𝐴𝑘) · (0↑𝑘)) ∈ ℂ)
26 eldifn 4103 . . . . . . . 8 (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → ¬ 𝑘 ∈ (0...0))
27 eldifi 4102 . . . . . . . . . . . 12 (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → 𝑘 ∈ (0...(deg‘𝐹)))
28 elfznn0 12999 . . . . . . . . . . . 12 (𝑘 ∈ (0...(deg‘𝐹)) → 𝑘 ∈ ℕ0)
2927, 28syl 17 . . . . . . . . . . 11 (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → 𝑘 ∈ ℕ0)
30 elnn0 11898 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0))
3129, 30sylib 220 . . . . . . . . . 10 (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → (𝑘 ∈ ℕ ∨ 𝑘 = 0))
3231ord 860 . . . . . . . . 9 (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → (¬ 𝑘 ∈ ℕ → 𝑘 = 0))
33 id 22 . . . . . . . . . 10 (𝑘 = 0 → 𝑘 = 0)
34 0z 11991 . . . . . . . . . . 11 0 ∈ ℤ
35 elfz3 12916 . . . . . . . . . . 11 (0 ∈ ℤ → 0 ∈ (0...0))
3634, 35ax-mp 5 . . . . . . . . . 10 0 ∈ (0...0)
3733, 36eqeltrdi 2921 . . . . . . . . 9 (𝑘 = 0 → 𝑘 ∈ (0...0))
3832, 37syl6 35 . . . . . . . 8 (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → (¬ 𝑘 ∈ ℕ → 𝑘 ∈ (0...0)))
3926, 38mt3d 150 . . . . . . 7 (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → 𝑘 ∈ ℕ)
4039adantl 484 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0))) → 𝑘 ∈ ℕ)
41400expd 13502 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0))) → (0↑𝑘) = 0)
4241oveq2d 7171 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0))) → ((𝐴𝑘) · (0↑𝑘)) = ((𝐴𝑘) · 0))
43 ffvelrn 6848 . . . . . 6 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
4418, 29, 43syl2an 597 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0))) → (𝐴𝑘) ∈ ℂ)
4544mul01d 10838 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0))) → ((𝐴𝑘) · 0) = 0)
4642, 45eqtrd 2856 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0))) → ((𝐴𝑘) · (0↑𝑘)) = 0)
47 fzfid 13340 . . 3 (𝐹 ∈ (Poly‘𝑆) → (0...(deg‘𝐹)) ∈ Fin)
4810, 25, 46, 47fsumss 15081 . 2 (𝐹 ∈ (Poly‘𝑆) → Σ𝑘 ∈ (0...0)((𝐴𝑘) · (0↑𝑘)) = Σ𝑘 ∈ (0...(deg‘𝐹))((𝐴𝑘) · (0↑𝑘)))
4922, 21eqeltrd 2913 . . . 4 (𝐹 ∈ (Poly‘𝑆) → ((𝐴‘0) · 1) ∈ ℂ)
5016fsum1 15101 . . . 4 ((0 ∈ ℤ ∧ ((𝐴‘0) · 1) ∈ ℂ) → Σ𝑘 ∈ (0...0)((𝐴𝑘) · (0↑𝑘)) = ((𝐴‘0) · 1))
5134, 49, 50sylancr 589 . . 3 (𝐹 ∈ (Poly‘𝑆) → Σ𝑘 ∈ (0...0)((𝐴𝑘) · (0↑𝑘)) = ((𝐴‘0) · 1))
5251, 22eqtrd 2856 . 2 (𝐹 ∈ (Poly‘𝑆) → Σ𝑘 ∈ (0...0)((𝐴𝑘) · (0↑𝑘)) = (𝐴‘0))
535, 48, 523eqtr2d 2862 1 (𝐹 ∈ (Poly‘𝑆) → (𝐹‘0) = (𝐴‘0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843   = wceq 1533  wcel 2110  cdif 3932  wss 3935  wf 6350  cfv 6354  (class class class)co 7155  cc 10534  0cc0 10536  1c1 10537   · cmul 10541  cn 11637  0cn0 11896  cz 11980  cuz 12242  ...cfz 12891  cexp 13428  Σcsu 15041  Polycply 24773  coeffccoe 24775  degcdgr 24776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-fz 12892  df-fzo 13033  df-fl 13161  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-rlim 14845  df-sum 15042  df-0p 24270  df-ply 24777  df-coe 24779  df-dgr 24780
This theorem is referenced by:  coemulc  24844  dgreq0  24854  vieta1lem2  24899  aareccl  24914  ftalem5  25653  signsply0  31821  elaa2  42518
  Copyright terms: Public domain W3C validator