MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coefv0 Structured version   Visualization version   GIF version

Theorem coefv0 26205
Description: The result of evaluating a polynomial at zero is the constant term. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypothesis
Ref Expression
coefv0.1 𝐴 = (coeff‘𝐹)
Assertion
Ref Expression
coefv0 (𝐹 ∈ (Poly‘𝑆) → (𝐹‘0) = (𝐴‘0))

Proof of Theorem coefv0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 0cn 11227 . . 3 0 ∈ ℂ
2 coefv0.1 . . . 4 𝐴 = (coeff‘𝐹)
3 eqid 2735 . . . 4 (deg‘𝐹) = (deg‘𝐹)
42, 3coeid2 26196 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 0 ∈ ℂ) → (𝐹‘0) = Σ𝑘 ∈ (0...(deg‘𝐹))((𝐴𝑘) · (0↑𝑘)))
51, 4mpan2 691 . 2 (𝐹 ∈ (Poly‘𝑆) → (𝐹‘0) = Σ𝑘 ∈ (0...(deg‘𝐹))((𝐴𝑘) · (0↑𝑘)))
6 dgrcl 26190 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
7 nn0uz 12894 . . . . 5 0 = (ℤ‘0)
86, 7eleqtrdi 2844 . . . 4 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ (ℤ‘0))
9 fzss2 13581 . . . 4 ((deg‘𝐹) ∈ (ℤ‘0) → (0...0) ⊆ (0...(deg‘𝐹)))
108, 9syl 17 . . 3 (𝐹 ∈ (Poly‘𝑆) → (0...0) ⊆ (0...(deg‘𝐹)))
11 elfz1eq 13552 . . . . . 6 (𝑘 ∈ (0...0) → 𝑘 = 0)
12 fveq2 6876 . . . . . . 7 (𝑘 = 0 → (𝐴𝑘) = (𝐴‘0))
13 oveq2 7413 . . . . . . . 8 (𝑘 = 0 → (0↑𝑘) = (0↑0))
14 0exp0e1 14084 . . . . . . . 8 (0↑0) = 1
1513, 14eqtrdi 2786 . . . . . . 7 (𝑘 = 0 → (0↑𝑘) = 1)
1612, 15oveq12d 7423 . . . . . 6 (𝑘 = 0 → ((𝐴𝑘) · (0↑𝑘)) = ((𝐴‘0) · 1))
1711, 16syl 17 . . . . 5 (𝑘 ∈ (0...0) → ((𝐴𝑘) · (0↑𝑘)) = ((𝐴‘0) · 1))
182coef3 26189 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
19 0nn0 12516 . . . . . . 7 0 ∈ ℕ0
20 ffvelcdm 7071 . . . . . . 7 ((𝐴:ℕ0⟶ℂ ∧ 0 ∈ ℕ0) → (𝐴‘0) ∈ ℂ)
2118, 19, 20sylancl 586 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (𝐴‘0) ∈ ℂ)
2221mulridd 11252 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → ((𝐴‘0) · 1) = (𝐴‘0))
2317, 22sylan9eqr 2792 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ (0...0)) → ((𝐴𝑘) · (0↑𝑘)) = (𝐴‘0))
2421adantr 480 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ (0...0)) → (𝐴‘0) ∈ ℂ)
2523, 24eqeltrd 2834 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ (0...0)) → ((𝐴𝑘) · (0↑𝑘)) ∈ ℂ)
26 eldifn 4107 . . . . . . . 8 (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → ¬ 𝑘 ∈ (0...0))
27 eldifi 4106 . . . . . . . . . . . 12 (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → 𝑘 ∈ (0...(deg‘𝐹)))
28 elfznn0 13637 . . . . . . . . . . . 12 (𝑘 ∈ (0...(deg‘𝐹)) → 𝑘 ∈ ℕ0)
2927, 28syl 17 . . . . . . . . . . 11 (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → 𝑘 ∈ ℕ0)
30 elnn0 12503 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0))
3129, 30sylib 218 . . . . . . . . . 10 (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → (𝑘 ∈ ℕ ∨ 𝑘 = 0))
3231ord 864 . . . . . . . . 9 (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → (¬ 𝑘 ∈ ℕ → 𝑘 = 0))
33 id 22 . . . . . . . . . 10 (𝑘 = 0 → 𝑘 = 0)
34 0z 12599 . . . . . . . . . . 11 0 ∈ ℤ
35 elfz3 13551 . . . . . . . . . . 11 (0 ∈ ℤ → 0 ∈ (0...0))
3634, 35ax-mp 5 . . . . . . . . . 10 0 ∈ (0...0)
3733, 36eqeltrdi 2842 . . . . . . . . 9 (𝑘 = 0 → 𝑘 ∈ (0...0))
3832, 37syl6 35 . . . . . . . 8 (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → (¬ 𝑘 ∈ ℕ → 𝑘 ∈ (0...0)))
3926, 38mt3d 148 . . . . . . 7 (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → 𝑘 ∈ ℕ)
4039adantl 481 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0))) → 𝑘 ∈ ℕ)
41400expd 14157 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0))) → (0↑𝑘) = 0)
4241oveq2d 7421 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0))) → ((𝐴𝑘) · (0↑𝑘)) = ((𝐴𝑘) · 0))
43 ffvelcdm 7071 . . . . . 6 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
4418, 29, 43syl2an 596 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0))) → (𝐴𝑘) ∈ ℂ)
4544mul01d 11434 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0))) → ((𝐴𝑘) · 0) = 0)
4642, 45eqtrd 2770 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0))) → ((𝐴𝑘) · (0↑𝑘)) = 0)
47 fzfid 13991 . . 3 (𝐹 ∈ (Poly‘𝑆) → (0...(deg‘𝐹)) ∈ Fin)
4810, 25, 46, 47fsumss 15741 . 2 (𝐹 ∈ (Poly‘𝑆) → Σ𝑘 ∈ (0...0)((𝐴𝑘) · (0↑𝑘)) = Σ𝑘 ∈ (0...(deg‘𝐹))((𝐴𝑘) · (0↑𝑘)))
4922, 21eqeltrd 2834 . . . 4 (𝐹 ∈ (Poly‘𝑆) → ((𝐴‘0) · 1) ∈ ℂ)
5016fsum1 15763 . . . 4 ((0 ∈ ℤ ∧ ((𝐴‘0) · 1) ∈ ℂ) → Σ𝑘 ∈ (0...0)((𝐴𝑘) · (0↑𝑘)) = ((𝐴‘0) · 1))
5134, 49, 50sylancr 587 . . 3 (𝐹 ∈ (Poly‘𝑆) → Σ𝑘 ∈ (0...0)((𝐴𝑘) · (0↑𝑘)) = ((𝐴‘0) · 1))
5251, 22eqtrd 2770 . 2 (𝐹 ∈ (Poly‘𝑆) → Σ𝑘 ∈ (0...0)((𝐴𝑘) · (0↑𝑘)) = (𝐴‘0))
535, 48, 523eqtr2d 2776 1 (𝐹 ∈ (Poly‘𝑆) → (𝐹‘0) = (𝐴‘0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2108  cdif 3923  wss 3926  wf 6527  cfv 6531  (class class class)co 7405  cc 11127  0cc0 11129  1c1 11130   · cmul 11134  cn 12240  0cn0 12501  cz 12588  cuz 12852  ...cfz 13524  cexp 14079  Σcsu 15702  Polycply 26141  coeffccoe 26143  degcdgr 26144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-rlim 15505  df-sum 15703  df-0p 25623  df-ply 26145  df-coe 26147  df-dgr 26148
This theorem is referenced by:  coemulc  26212  dgreq0  26223  vieta1lem2  26271  aareccl  26286  ftalem5  27039  signsply0  34583  elaa2  46263
  Copyright terms: Public domain W3C validator