Step | Hyp | Ref
| Expression |
1 | | 0cn 10968 |
. . 3
⊢ 0 ∈
ℂ |
2 | | coefv0.1 |
. . . 4
⊢ 𝐴 = (coeff‘𝐹) |
3 | | eqid 2740 |
. . . 4
⊢
(deg‘𝐹) =
(deg‘𝐹) |
4 | 2, 3 | coeid2 25398 |
. . 3
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 0 ∈ ℂ) →
(𝐹‘0) = Σ𝑘 ∈ (0...(deg‘𝐹))((𝐴‘𝑘) · (0↑𝑘))) |
5 | 1, 4 | mpan2 688 |
. 2
⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐹‘0) = Σ𝑘 ∈ (0...(deg‘𝐹))((𝐴‘𝑘) · (0↑𝑘))) |
6 | | dgrcl 25392 |
. . . . 5
⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈
ℕ0) |
7 | | nn0uz 12619 |
. . . . 5
⊢
ℕ0 = (ℤ≥‘0) |
8 | 6, 7 | eleqtrdi 2851 |
. . . 4
⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈
(ℤ≥‘0)) |
9 | | fzss2 13295 |
. . . 4
⊢
((deg‘𝐹)
∈ (ℤ≥‘0) → (0...0) ⊆
(0...(deg‘𝐹))) |
10 | 8, 9 | syl 17 |
. . 3
⊢ (𝐹 ∈ (Poly‘𝑆) → (0...0) ⊆
(0...(deg‘𝐹))) |
11 | | elfz1eq 13266 |
. . . . . 6
⊢ (𝑘 ∈ (0...0) → 𝑘 = 0) |
12 | | fveq2 6771 |
. . . . . . 7
⊢ (𝑘 = 0 → (𝐴‘𝑘) = (𝐴‘0)) |
13 | | oveq2 7279 |
. . . . . . . 8
⊢ (𝑘 = 0 → (0↑𝑘) = (0↑0)) |
14 | | 0exp0e1 13785 |
. . . . . . . 8
⊢
(0↑0) = 1 |
15 | 13, 14 | eqtrdi 2796 |
. . . . . . 7
⊢ (𝑘 = 0 → (0↑𝑘) = 1) |
16 | 12, 15 | oveq12d 7289 |
. . . . . 6
⊢ (𝑘 = 0 → ((𝐴‘𝑘) · (0↑𝑘)) = ((𝐴‘0) · 1)) |
17 | 11, 16 | syl 17 |
. . . . 5
⊢ (𝑘 ∈ (0...0) → ((𝐴‘𝑘) · (0↑𝑘)) = ((𝐴‘0) · 1)) |
18 | 2 | coef3 25391 |
. . . . . . 7
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ) |
19 | | 0nn0 12248 |
. . . . . . 7
⊢ 0 ∈
ℕ0 |
20 | | ffvelrn 6956 |
. . . . . . 7
⊢ ((𝐴:ℕ0⟶ℂ ∧ 0
∈ ℕ0) → (𝐴‘0) ∈ ℂ) |
21 | 18, 19, 20 | sylancl 586 |
. . . . . 6
⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐴‘0) ∈ ℂ) |
22 | 21 | mulid1d 10993 |
. . . . 5
⊢ (𝐹 ∈ (Poly‘𝑆) → ((𝐴‘0) · 1) = (𝐴‘0)) |
23 | 17, 22 | sylan9eqr 2802 |
. . . 4
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ (0...0)) → ((𝐴‘𝑘) · (0↑𝑘)) = (𝐴‘0)) |
24 | 21 | adantr 481 |
. . . 4
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ (0...0)) → (𝐴‘0) ∈ ℂ) |
25 | 23, 24 | eqeltrd 2841 |
. . 3
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ (0...0)) → ((𝐴‘𝑘) · (0↑𝑘)) ∈ ℂ) |
26 | | eldifn 4067 |
. . . . . . . 8
⊢ (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → ¬
𝑘 ∈
(0...0)) |
27 | | eldifi 4066 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → 𝑘 ∈ (0...(deg‘𝐹))) |
28 | | elfznn0 13348 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0...(deg‘𝐹)) → 𝑘 ∈ ℕ0) |
29 | 27, 28 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → 𝑘 ∈
ℕ0) |
30 | | elnn0 12235 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
↔ (𝑘 ∈ ℕ
∨ 𝑘 =
0)) |
31 | 29, 30 | sylib 217 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) →
(𝑘 ∈ ℕ ∨
𝑘 = 0)) |
32 | 31 | ord 861 |
. . . . . . . . 9
⊢ (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) →
(¬ 𝑘 ∈ ℕ
→ 𝑘 =
0)) |
33 | | id 22 |
. . . . . . . . . 10
⊢ (𝑘 = 0 → 𝑘 = 0) |
34 | | 0z 12330 |
. . . . . . . . . . 11
⊢ 0 ∈
ℤ |
35 | | elfz3 13265 |
. . . . . . . . . . 11
⊢ (0 ∈
ℤ → 0 ∈ (0...0)) |
36 | 34, 35 | ax-mp 5 |
. . . . . . . . . 10
⊢ 0 ∈
(0...0) |
37 | 33, 36 | eqeltrdi 2849 |
. . . . . . . . 9
⊢ (𝑘 = 0 → 𝑘 ∈ (0...0)) |
38 | 32, 37 | syl6 35 |
. . . . . . . 8
⊢ (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) →
(¬ 𝑘 ∈ ℕ
→ 𝑘 ∈
(0...0))) |
39 | 26, 38 | mt3d 148 |
. . . . . . 7
⊢ (𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0)) → 𝑘 ∈
ℕ) |
40 | 39 | adantl 482 |
. . . . . 6
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0))) → 𝑘 ∈
ℕ) |
41 | 40 | 0expd 13855 |
. . . . 5
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0))) → (0↑𝑘) = 0) |
42 | 41 | oveq2d 7287 |
. . . 4
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0))) → ((𝐴‘𝑘) · (0↑𝑘)) = ((𝐴‘𝑘) · 0)) |
43 | | ffvelrn 6956 |
. . . . . 6
⊢ ((𝐴:ℕ0⟶ℂ ∧
𝑘 ∈
ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
44 | 18, 29, 43 | syl2an 596 |
. . . . 5
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0))) → (𝐴‘𝑘) ∈ ℂ) |
45 | 44 | mul01d 11174 |
. . . 4
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0))) → ((𝐴‘𝑘) · 0) = 0) |
46 | 42, 45 | eqtrd 2780 |
. . 3
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ((0...(deg‘𝐹)) ∖ (0...0))) → ((𝐴‘𝑘) · (0↑𝑘)) = 0) |
47 | | fzfid 13691 |
. . 3
⊢ (𝐹 ∈ (Poly‘𝑆) → (0...(deg‘𝐹)) ∈ Fin) |
48 | 10, 25, 46, 47 | fsumss 15435 |
. 2
⊢ (𝐹 ∈ (Poly‘𝑆) → Σ𝑘 ∈ (0...0)((𝐴‘𝑘) · (0↑𝑘)) = Σ𝑘 ∈ (0...(deg‘𝐹))((𝐴‘𝑘) · (0↑𝑘))) |
49 | 22, 21 | eqeltrd 2841 |
. . . 4
⊢ (𝐹 ∈ (Poly‘𝑆) → ((𝐴‘0) · 1) ∈
ℂ) |
50 | 16 | fsum1 15457 |
. . . 4
⊢ ((0
∈ ℤ ∧ ((𝐴‘0) · 1) ∈ ℂ) →
Σ𝑘 ∈
(0...0)((𝐴‘𝑘) · (0↑𝑘)) = ((𝐴‘0) · 1)) |
51 | 34, 49, 50 | sylancr 587 |
. . 3
⊢ (𝐹 ∈ (Poly‘𝑆) → Σ𝑘 ∈ (0...0)((𝐴‘𝑘) · (0↑𝑘)) = ((𝐴‘0) · 1)) |
52 | 51, 22 | eqtrd 2780 |
. 2
⊢ (𝐹 ∈ (Poly‘𝑆) → Σ𝑘 ∈ (0...0)((𝐴‘𝑘) · (0↑𝑘)) = (𝐴‘0)) |
53 | 5, 48, 52 | 3eqtr2d 2786 |
1
⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐹‘0) = (𝐴‘0)) |