Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0nonelalab Structured version   Visualization version   GIF version

Theorem 0nonelalab 39683
Description: Technical lemma for open interval. (Contributed by metakunt, 12-Aug-2024.)
Hypotheses
Ref Expression
0nonelaleb.1 (𝜑𝐴 ∈ ℝ)
0nonelaleb.2 (𝜑𝐵 ∈ ℝ)
0nonelaleb.3 (𝜑 → 0 < 𝐴)
0nonelaleb.4 (𝜑𝐴𝐵)
0nonelalab.5 (𝜑𝐶 ∈ (𝐴(,)𝐵))
Assertion
Ref Expression
0nonelalab (𝜑 → 0 ≠ 𝐶)

Proof of Theorem 0nonelalab
StepHypRef Expression
1 0red 10715 . 2 (𝜑 → 0 ∈ ℝ)
2 0nonelaleb.1 . . 3 (𝜑𝐴 ∈ ℝ)
3 0nonelalab.5 . . . 4 (𝜑𝐶 ∈ (𝐴(,)𝐵))
4 elioore 12844 . . . 4 (𝐶 ∈ (𝐴(,)𝐵) → 𝐶 ∈ ℝ)
53, 4syl 17 . . 3 (𝜑𝐶 ∈ ℝ)
6 0nonelaleb.3 . . 3 (𝜑 → 0 < 𝐴)
72rexrd 10762 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
8 0nonelaleb.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
98rexrd 10762 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
10 elioo2 12855 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶 < 𝐵)))
117, 9, 10syl2anc 587 . . . . 5 (𝜑 → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶 < 𝐵)))
123, 11mpbid 235 . . . 4 (𝜑 → (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶 < 𝐵))
1312simp2d 1144 . . 3 (𝜑𝐴 < 𝐶)
141, 2, 5, 6, 13lttrd 10872 . 2 (𝜑 → 0 < 𝐶)
151, 14ltned 10847 1 (𝜑 → 0 ≠ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1088  wcel 2113  wne 2934   class class class wbr 5027  (class class class)co 7164  cr 10607  0cc0 10608  *cxr 10745   < clt 10746  cle 10747  (,)cioo 12814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-addrcl 10669  ax-rnegex 10679  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-ov 7167  df-oprab 7168  df-mpo 7169  df-1st 7707  df-2nd 7708  df-er 8313  df-en 8549  df-dom 8550  df-sdom 8551  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-ioo 12818
This theorem is referenced by:  dvrelogpow2b  39684
  Copyright terms: Public domain W3C validator