| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > slotsdifunifndx | Structured version Visualization version GIF version | ||
| Description: The index of the slot for the uniform set is not the index of other slots. Formerly part of proof for cnfldfunALT 21279. (Contributed by AV, 10-Nov-2024.) |
| Ref | Expression |
|---|---|
| slotsdifunifndx | ⊢ (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 12260 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 2 | 1nn 12197 | . . . . . 6 ⊢ 1 ∈ ℕ | |
| 3 | 3nn0 12460 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
| 4 | 2nn0 12459 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
| 5 | 2lt10 12787 | . . . . . 6 ⊢ 2 < ;10 | |
| 6 | 2, 3, 4, 5 | declti 12687 | . . . . 5 ⊢ 2 < ;13 |
| 7 | 1, 6 | ltneii 11287 | . . . 4 ⊢ 2 ≠ ;13 |
| 8 | plusgndx 17246 | . . . . 5 ⊢ (+g‘ndx) = 2 | |
| 9 | unifndx 17358 | . . . . 5 ⊢ (UnifSet‘ndx) = ;13 | |
| 10 | 8, 9 | neeq12i 2991 | . . . 4 ⊢ ((+g‘ndx) ≠ (UnifSet‘ndx) ↔ 2 ≠ ;13) |
| 11 | 7, 10 | mpbir 231 | . . 3 ⊢ (+g‘ndx) ≠ (UnifSet‘ndx) |
| 12 | 3re 12266 | . . . . 5 ⊢ 3 ∈ ℝ | |
| 13 | 3lt10 12786 | . . . . . 6 ⊢ 3 < ;10 | |
| 14 | 2, 3, 3, 13 | declti 12687 | . . . . 5 ⊢ 3 < ;13 |
| 15 | 12, 14 | ltneii 11287 | . . . 4 ⊢ 3 ≠ ;13 |
| 16 | mulrndx 17257 | . . . . 5 ⊢ (.r‘ndx) = 3 | |
| 17 | 16, 9 | neeq12i 2991 | . . . 4 ⊢ ((.r‘ndx) ≠ (UnifSet‘ndx) ↔ 3 ≠ ;13) |
| 18 | 15, 17 | mpbir 231 | . . 3 ⊢ (.r‘ndx) ≠ (UnifSet‘ndx) |
| 19 | 4re 12270 | . . . . 5 ⊢ 4 ∈ ℝ | |
| 20 | 4nn0 12461 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
| 21 | 4lt10 12785 | . . . . . 6 ⊢ 4 < ;10 | |
| 22 | 2, 3, 20, 21 | declti 12687 | . . . . 5 ⊢ 4 < ;13 |
| 23 | 19, 22 | ltneii 11287 | . . . 4 ⊢ 4 ≠ ;13 |
| 24 | starvndx 17265 | . . . . 5 ⊢ (*𝑟‘ndx) = 4 | |
| 25 | 24, 9 | neeq12i 2991 | . . . 4 ⊢ ((*𝑟‘ndx) ≠ (UnifSet‘ndx) ↔ 4 ≠ ;13) |
| 26 | 23, 25 | mpbir 231 | . . 3 ⊢ (*𝑟‘ndx) ≠ (UnifSet‘ndx) |
| 27 | 11, 18, 26 | 3pm3.2i 1340 | . 2 ⊢ ((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) |
| 28 | 10re 12668 | . . . . 5 ⊢ ;10 ∈ ℝ | |
| 29 | 1nn0 12458 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
| 30 | 0nn0 12457 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 31 | 3nn 12265 | . . . . . 6 ⊢ 3 ∈ ℕ | |
| 32 | 3pos 12291 | . . . . . 6 ⊢ 0 < 3 | |
| 33 | 29, 30, 31, 32 | declt 12677 | . . . . 5 ⊢ ;10 < ;13 |
| 34 | 28, 33 | ltneii 11287 | . . . 4 ⊢ ;10 ≠ ;13 |
| 35 | plendx 17329 | . . . . 5 ⊢ (le‘ndx) = ;10 | |
| 36 | 35, 9 | neeq12i 2991 | . . . 4 ⊢ ((le‘ndx) ≠ (UnifSet‘ndx) ↔ ;10 ≠ ;13) |
| 37 | 34, 36 | mpbir 231 | . . 3 ⊢ (le‘ndx) ≠ (UnifSet‘ndx) |
| 38 | 2nn 12259 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 39 | 29, 38 | decnncl 12669 | . . . . . 6 ⊢ ;12 ∈ ℕ |
| 40 | 39 | nnrei 12195 | . . . . 5 ⊢ ;12 ∈ ℝ |
| 41 | 2lt3 12353 | . . . . . 6 ⊢ 2 < 3 | |
| 42 | 29, 4, 31, 41 | declt 12677 | . . . . 5 ⊢ ;12 < ;13 |
| 43 | 40, 42 | ltneii 11287 | . . . 4 ⊢ ;12 ≠ ;13 |
| 44 | dsndx 17348 | . . . . 5 ⊢ (dist‘ndx) = ;12 | |
| 45 | 44, 9 | neeq12i 2991 | . . . 4 ⊢ ((dist‘ndx) ≠ (UnifSet‘ndx) ↔ ;12 ≠ ;13) |
| 46 | 43, 45 | mpbir 231 | . . 3 ⊢ (dist‘ndx) ≠ (UnifSet‘ndx) |
| 47 | 37, 46 | pm3.2i 470 | . 2 ⊢ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx)) |
| 48 | 27, 47 | pm3.2i 470 | 1 ⊢ (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 ≠ wne 2925 ‘cfv 6511 0cc0 11068 1c1 11069 2c2 12241 3c3 12242 4c4 12243 ;cdc 12649 ndxcnx 17163 +gcplusg 17220 .rcmulr 17221 *𝑟cstv 17222 lecple 17227 distcds 17229 UnifSetcunif 17230 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-slot 17152 df-ndx 17164 df-plusg 17233 df-mulr 17234 df-starv 17235 df-ple 17240 df-ds 17242 df-unif 17243 |
| This theorem is referenced by: cnfldfunALT 21279 cnfldfunALTOLD 21292 |
| Copyright terms: Public domain | W3C validator |