| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > slotsdifunifndx | Structured version Visualization version GIF version | ||
| Description: The index of the slot for the uniform set is not the index of other slots. Formerly part of proof for cnfldfunALT 21286. (Contributed by AV, 10-Nov-2024.) |
| Ref | Expression |
|---|---|
| slotsdifunifndx | ⊢ (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 12267 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 2 | 1nn 12204 | . . . . . 6 ⊢ 1 ∈ ℕ | |
| 3 | 3nn0 12467 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
| 4 | 2nn0 12466 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
| 5 | 2lt10 12794 | . . . . . 6 ⊢ 2 < ;10 | |
| 6 | 2, 3, 4, 5 | declti 12694 | . . . . 5 ⊢ 2 < ;13 |
| 7 | 1, 6 | ltneii 11294 | . . . 4 ⊢ 2 ≠ ;13 |
| 8 | plusgndx 17253 | . . . . 5 ⊢ (+g‘ndx) = 2 | |
| 9 | unifndx 17365 | . . . . 5 ⊢ (UnifSet‘ndx) = ;13 | |
| 10 | 8, 9 | neeq12i 2992 | . . . 4 ⊢ ((+g‘ndx) ≠ (UnifSet‘ndx) ↔ 2 ≠ ;13) |
| 11 | 7, 10 | mpbir 231 | . . 3 ⊢ (+g‘ndx) ≠ (UnifSet‘ndx) |
| 12 | 3re 12273 | . . . . 5 ⊢ 3 ∈ ℝ | |
| 13 | 3lt10 12793 | . . . . . 6 ⊢ 3 < ;10 | |
| 14 | 2, 3, 3, 13 | declti 12694 | . . . . 5 ⊢ 3 < ;13 |
| 15 | 12, 14 | ltneii 11294 | . . . 4 ⊢ 3 ≠ ;13 |
| 16 | mulrndx 17264 | . . . . 5 ⊢ (.r‘ndx) = 3 | |
| 17 | 16, 9 | neeq12i 2992 | . . . 4 ⊢ ((.r‘ndx) ≠ (UnifSet‘ndx) ↔ 3 ≠ ;13) |
| 18 | 15, 17 | mpbir 231 | . . 3 ⊢ (.r‘ndx) ≠ (UnifSet‘ndx) |
| 19 | 4re 12277 | . . . . 5 ⊢ 4 ∈ ℝ | |
| 20 | 4nn0 12468 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
| 21 | 4lt10 12792 | . . . . . 6 ⊢ 4 < ;10 | |
| 22 | 2, 3, 20, 21 | declti 12694 | . . . . 5 ⊢ 4 < ;13 |
| 23 | 19, 22 | ltneii 11294 | . . . 4 ⊢ 4 ≠ ;13 |
| 24 | starvndx 17272 | . . . . 5 ⊢ (*𝑟‘ndx) = 4 | |
| 25 | 24, 9 | neeq12i 2992 | . . . 4 ⊢ ((*𝑟‘ndx) ≠ (UnifSet‘ndx) ↔ 4 ≠ ;13) |
| 26 | 23, 25 | mpbir 231 | . . 3 ⊢ (*𝑟‘ndx) ≠ (UnifSet‘ndx) |
| 27 | 11, 18, 26 | 3pm3.2i 1340 | . 2 ⊢ ((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) |
| 28 | 10re 12675 | . . . . 5 ⊢ ;10 ∈ ℝ | |
| 29 | 1nn0 12465 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
| 30 | 0nn0 12464 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 31 | 3nn 12272 | . . . . . 6 ⊢ 3 ∈ ℕ | |
| 32 | 3pos 12298 | . . . . . 6 ⊢ 0 < 3 | |
| 33 | 29, 30, 31, 32 | declt 12684 | . . . . 5 ⊢ ;10 < ;13 |
| 34 | 28, 33 | ltneii 11294 | . . . 4 ⊢ ;10 ≠ ;13 |
| 35 | plendx 17336 | . . . . 5 ⊢ (le‘ndx) = ;10 | |
| 36 | 35, 9 | neeq12i 2992 | . . . 4 ⊢ ((le‘ndx) ≠ (UnifSet‘ndx) ↔ ;10 ≠ ;13) |
| 37 | 34, 36 | mpbir 231 | . . 3 ⊢ (le‘ndx) ≠ (UnifSet‘ndx) |
| 38 | 2nn 12266 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 39 | 29, 38 | decnncl 12676 | . . . . . 6 ⊢ ;12 ∈ ℕ |
| 40 | 39 | nnrei 12202 | . . . . 5 ⊢ ;12 ∈ ℝ |
| 41 | 2lt3 12360 | . . . . . 6 ⊢ 2 < 3 | |
| 42 | 29, 4, 31, 41 | declt 12684 | . . . . 5 ⊢ ;12 < ;13 |
| 43 | 40, 42 | ltneii 11294 | . . . 4 ⊢ ;12 ≠ ;13 |
| 44 | dsndx 17355 | . . . . 5 ⊢ (dist‘ndx) = ;12 | |
| 45 | 44, 9 | neeq12i 2992 | . . . 4 ⊢ ((dist‘ndx) ≠ (UnifSet‘ndx) ↔ ;12 ≠ ;13) |
| 46 | 43, 45 | mpbir 231 | . . 3 ⊢ (dist‘ndx) ≠ (UnifSet‘ndx) |
| 47 | 37, 46 | pm3.2i 470 | . 2 ⊢ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx)) |
| 48 | 27, 47 | pm3.2i 470 | 1 ⊢ (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 ≠ wne 2926 ‘cfv 6514 0cc0 11075 1c1 11076 2c2 12248 3c3 12249 4c4 12250 ;cdc 12656 ndxcnx 17170 +gcplusg 17227 .rcmulr 17228 *𝑟cstv 17229 lecple 17234 distcds 17236 UnifSetcunif 17237 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-slot 17159 df-ndx 17171 df-plusg 17240 df-mulr 17241 df-starv 17242 df-ple 17247 df-ds 17249 df-unif 17250 |
| This theorem is referenced by: cnfldfunALT 21286 cnfldfunALTOLD 21299 |
| Copyright terms: Public domain | W3C validator |