Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > slotsdifunifndx | Structured version Visualization version GIF version |
Description: The index of the slot for the uniform set is not the index of other slots. Formerly part of proof for cnfldfun 20599. (Contributed by AV, 10-Nov-2024.) |
Ref | Expression |
---|---|
slotsdifunifndx | ⊢ (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 12039 | . . . . 5 ⊢ 2 ∈ ℝ | |
2 | 1nn 11976 | . . . . . 6 ⊢ 1 ∈ ℕ | |
3 | 3nn0 12243 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
4 | 2nn0 12242 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
5 | 2lt10 12566 | . . . . . 6 ⊢ 2 < ;10 | |
6 | 2, 3, 4, 5 | declti 12466 | . . . . 5 ⊢ 2 < ;13 |
7 | 1, 6 | ltneii 11080 | . . . 4 ⊢ 2 ≠ ;13 |
8 | plusgndx 16978 | . . . . 5 ⊢ (+g‘ndx) = 2 | |
9 | unifndx 17095 | . . . . 5 ⊢ (UnifSet‘ndx) = ;13 | |
10 | 8, 9 | neeq12i 3012 | . . . 4 ⊢ ((+g‘ndx) ≠ (UnifSet‘ndx) ↔ 2 ≠ ;13) |
11 | 7, 10 | mpbir 230 | . . 3 ⊢ (+g‘ndx) ≠ (UnifSet‘ndx) |
12 | 3re 12045 | . . . . 5 ⊢ 3 ∈ ℝ | |
13 | 3lt10 12565 | . . . . . 6 ⊢ 3 < ;10 | |
14 | 2, 3, 3, 13 | declti 12466 | . . . . 5 ⊢ 3 < ;13 |
15 | 12, 14 | ltneii 11080 | . . . 4 ⊢ 3 ≠ ;13 |
16 | mulrndx 16993 | . . . . 5 ⊢ (.r‘ndx) = 3 | |
17 | 16, 9 | neeq12i 3012 | . . . 4 ⊢ ((.r‘ndx) ≠ (UnifSet‘ndx) ↔ 3 ≠ ;13) |
18 | 15, 17 | mpbir 230 | . . 3 ⊢ (.r‘ndx) ≠ (UnifSet‘ndx) |
19 | 4re 12049 | . . . . 5 ⊢ 4 ∈ ℝ | |
20 | 4nn0 12244 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
21 | 4lt10 12564 | . . . . . 6 ⊢ 4 < ;10 | |
22 | 2, 3, 20, 21 | declti 12466 | . . . . 5 ⊢ 4 < ;13 |
23 | 19, 22 | ltneii 11080 | . . . 4 ⊢ 4 ≠ ;13 |
24 | starvndx 17002 | . . . . 5 ⊢ (*𝑟‘ndx) = 4 | |
25 | 24, 9 | neeq12i 3012 | . . . 4 ⊢ ((*𝑟‘ndx) ≠ (UnifSet‘ndx) ↔ 4 ≠ ;13) |
26 | 23, 25 | mpbir 230 | . . 3 ⊢ (*𝑟‘ndx) ≠ (UnifSet‘ndx) |
27 | 11, 18, 26 | 3pm3.2i 1338 | . 2 ⊢ ((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) |
28 | 10re 12447 | . . . . 5 ⊢ ;10 ∈ ℝ | |
29 | 1nn0 12241 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
30 | 0nn0 12240 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
31 | 3nn 12044 | . . . . . 6 ⊢ 3 ∈ ℕ | |
32 | 3pos 12070 | . . . . . 6 ⊢ 0 < 3 | |
33 | 29, 30, 31, 32 | declt 12456 | . . . . 5 ⊢ ;10 < ;13 |
34 | 28, 33 | ltneii 11080 | . . . 4 ⊢ ;10 ≠ ;13 |
35 | plendx 17066 | . . . . 5 ⊢ (le‘ndx) = ;10 | |
36 | 35, 9 | neeq12i 3012 | . . . 4 ⊢ ((le‘ndx) ≠ (UnifSet‘ndx) ↔ ;10 ≠ ;13) |
37 | 34, 36 | mpbir 230 | . . 3 ⊢ (le‘ndx) ≠ (UnifSet‘ndx) |
38 | 2nn 12038 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
39 | 29, 38 | decnncl 12448 | . . . . . 6 ⊢ ;12 ∈ ℕ |
40 | 39 | nnrei 11974 | . . . . 5 ⊢ ;12 ∈ ℝ |
41 | 2lt3 12137 | . . . . . 6 ⊢ 2 < 3 | |
42 | 29, 4, 31, 41 | declt 12456 | . . . . 5 ⊢ ;12 < ;13 |
43 | 40, 42 | ltneii 11080 | . . . 4 ⊢ ;12 ≠ ;13 |
44 | dsndx 17085 | . . . . 5 ⊢ (dist‘ndx) = ;12 | |
45 | 44, 9 | neeq12i 3012 | . . . 4 ⊢ ((dist‘ndx) ≠ (UnifSet‘ndx) ↔ ;12 ≠ ;13) |
46 | 43, 45 | mpbir 230 | . . 3 ⊢ (dist‘ndx) ≠ (UnifSet‘ndx) |
47 | 37, 46 | pm3.2i 471 | . 2 ⊢ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx)) |
48 | 27, 47 | pm3.2i 471 | 1 ⊢ (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∧ w3a 1086 ≠ wne 2945 ‘cfv 6431 0cc0 10864 1c1 10865 2c2 12020 3c3 12021 4c4 12022 ;cdc 12428 ndxcnx 16884 +gcplusg 16952 .rcmulr 16953 *𝑟cstv 16954 lecple 16959 distcds 16961 UnifSetcunif 16962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10920 ax-resscn 10921 ax-1cn 10922 ax-icn 10923 ax-addcl 10924 ax-addrcl 10925 ax-mulcl 10926 ax-mulrcl 10927 ax-mulcom 10928 ax-addass 10929 ax-mulass 10930 ax-distr 10931 ax-i2m1 10932 ax-1ne0 10933 ax-1rid 10934 ax-rnegex 10935 ax-rrecex 10936 ax-cnre 10937 ax-pre-lttri 10938 ax-pre-lttrn 10939 ax-pre-ltadd 10940 ax-pre-mulgt0 10941 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7702 df-2nd 7819 df-frecs 8082 df-wrecs 8113 df-recs 8187 df-rdg 8226 df-er 8473 df-en 8709 df-dom 8710 df-sdom 8711 df-pnf 11004 df-mnf 11005 df-xr 11006 df-ltxr 11007 df-le 11008 df-sub 11199 df-neg 11200 df-nn 11966 df-2 12028 df-3 12029 df-4 12030 df-5 12031 df-6 12032 df-7 12033 df-8 12034 df-9 12035 df-n0 12226 df-z 12312 df-dec 12429 df-slot 16873 df-ndx 16885 df-plusg 16965 df-mulr 16966 df-starv 16967 df-ple 16972 df-ds 16974 df-unif 16975 |
This theorem is referenced by: cnfldfun 20599 |
Copyright terms: Public domain | W3C validator |