| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > slotsdifunifndx | Structured version Visualization version GIF version | ||
| Description: The index of the slot for the uniform set is not the index of other slots. Formerly part of proof for cnfldfunALT 21311. (Contributed by AV, 10-Nov-2024.) |
| Ref | Expression |
|---|---|
| slotsdifunifndx | ⊢ (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 12236 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 2 | 1nn 12173 | . . . . . 6 ⊢ 1 ∈ ℕ | |
| 3 | 3nn0 12436 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
| 4 | 2nn0 12435 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
| 5 | 2lt10 12763 | . . . . . 6 ⊢ 2 < ;10 | |
| 6 | 2, 3, 4, 5 | declti 12663 | . . . . 5 ⊢ 2 < ;13 |
| 7 | 1, 6 | ltneii 11263 | . . . 4 ⊢ 2 ≠ ;13 |
| 8 | plusgndx 17222 | . . . . 5 ⊢ (+g‘ndx) = 2 | |
| 9 | unifndx 17334 | . . . . 5 ⊢ (UnifSet‘ndx) = ;13 | |
| 10 | 8, 9 | neeq12i 2991 | . . . 4 ⊢ ((+g‘ndx) ≠ (UnifSet‘ndx) ↔ 2 ≠ ;13) |
| 11 | 7, 10 | mpbir 231 | . . 3 ⊢ (+g‘ndx) ≠ (UnifSet‘ndx) |
| 12 | 3re 12242 | . . . . 5 ⊢ 3 ∈ ℝ | |
| 13 | 3lt10 12762 | . . . . . 6 ⊢ 3 < ;10 | |
| 14 | 2, 3, 3, 13 | declti 12663 | . . . . 5 ⊢ 3 < ;13 |
| 15 | 12, 14 | ltneii 11263 | . . . 4 ⊢ 3 ≠ ;13 |
| 16 | mulrndx 17233 | . . . . 5 ⊢ (.r‘ndx) = 3 | |
| 17 | 16, 9 | neeq12i 2991 | . . . 4 ⊢ ((.r‘ndx) ≠ (UnifSet‘ndx) ↔ 3 ≠ ;13) |
| 18 | 15, 17 | mpbir 231 | . . 3 ⊢ (.r‘ndx) ≠ (UnifSet‘ndx) |
| 19 | 4re 12246 | . . . . 5 ⊢ 4 ∈ ℝ | |
| 20 | 4nn0 12437 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
| 21 | 4lt10 12761 | . . . . . 6 ⊢ 4 < ;10 | |
| 22 | 2, 3, 20, 21 | declti 12663 | . . . . 5 ⊢ 4 < ;13 |
| 23 | 19, 22 | ltneii 11263 | . . . 4 ⊢ 4 ≠ ;13 |
| 24 | starvndx 17241 | . . . . 5 ⊢ (*𝑟‘ndx) = 4 | |
| 25 | 24, 9 | neeq12i 2991 | . . . 4 ⊢ ((*𝑟‘ndx) ≠ (UnifSet‘ndx) ↔ 4 ≠ ;13) |
| 26 | 23, 25 | mpbir 231 | . . 3 ⊢ (*𝑟‘ndx) ≠ (UnifSet‘ndx) |
| 27 | 11, 18, 26 | 3pm3.2i 1340 | . 2 ⊢ ((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) |
| 28 | 10re 12644 | . . . . 5 ⊢ ;10 ∈ ℝ | |
| 29 | 1nn0 12434 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
| 30 | 0nn0 12433 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 31 | 3nn 12241 | . . . . . 6 ⊢ 3 ∈ ℕ | |
| 32 | 3pos 12267 | . . . . . 6 ⊢ 0 < 3 | |
| 33 | 29, 30, 31, 32 | declt 12653 | . . . . 5 ⊢ ;10 < ;13 |
| 34 | 28, 33 | ltneii 11263 | . . . 4 ⊢ ;10 ≠ ;13 |
| 35 | plendx 17305 | . . . . 5 ⊢ (le‘ndx) = ;10 | |
| 36 | 35, 9 | neeq12i 2991 | . . . 4 ⊢ ((le‘ndx) ≠ (UnifSet‘ndx) ↔ ;10 ≠ ;13) |
| 37 | 34, 36 | mpbir 231 | . . 3 ⊢ (le‘ndx) ≠ (UnifSet‘ndx) |
| 38 | 2nn 12235 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 39 | 29, 38 | decnncl 12645 | . . . . . 6 ⊢ ;12 ∈ ℕ |
| 40 | 39 | nnrei 12171 | . . . . 5 ⊢ ;12 ∈ ℝ |
| 41 | 2lt3 12329 | . . . . . 6 ⊢ 2 < 3 | |
| 42 | 29, 4, 31, 41 | declt 12653 | . . . . 5 ⊢ ;12 < ;13 |
| 43 | 40, 42 | ltneii 11263 | . . . 4 ⊢ ;12 ≠ ;13 |
| 44 | dsndx 17324 | . . . . 5 ⊢ (dist‘ndx) = ;12 | |
| 45 | 44, 9 | neeq12i 2991 | . . . 4 ⊢ ((dist‘ndx) ≠ (UnifSet‘ndx) ↔ ;12 ≠ ;13) |
| 46 | 43, 45 | mpbir 231 | . . 3 ⊢ (dist‘ndx) ≠ (UnifSet‘ndx) |
| 47 | 37, 46 | pm3.2i 470 | . 2 ⊢ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx)) |
| 48 | 27, 47 | pm3.2i 470 | 1 ⊢ (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 ≠ wne 2925 ‘cfv 6499 0cc0 11044 1c1 11045 2c2 12217 3c3 12218 4c4 12219 ;cdc 12625 ndxcnx 17139 +gcplusg 17196 .rcmulr 17197 *𝑟cstv 17198 lecple 17203 distcds 17205 UnifSetcunif 17206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-slot 17128 df-ndx 17140 df-plusg 17209 df-mulr 17210 df-starv 17211 df-ple 17216 df-ds 17218 df-unif 17219 |
| This theorem is referenced by: cnfldfunALT 21311 cnfldfunALTOLD 21324 |
| Copyright terms: Public domain | W3C validator |