![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > slotsdifunifndx | Structured version Visualization version GIF version |
Description: The index of the slot for the uniform set is not the index of other slots. Formerly part of proof for cnfldfunALT 21281. (Contributed by AV, 10-Nov-2024.) |
Ref | Expression |
---|---|
slotsdifunifndx | ⊢ (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 12308 | . . . . 5 ⊢ 2 ∈ ℝ | |
2 | 1nn 12245 | . . . . . 6 ⊢ 1 ∈ ℕ | |
3 | 3nn0 12512 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
4 | 2nn0 12511 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
5 | 2lt10 12837 | . . . . . 6 ⊢ 2 < ;10 | |
6 | 2, 3, 4, 5 | declti 12737 | . . . . 5 ⊢ 2 < ;13 |
7 | 1, 6 | ltneii 11349 | . . . 4 ⊢ 2 ≠ ;13 |
8 | plusgndx 17250 | . . . . 5 ⊢ (+g‘ndx) = 2 | |
9 | unifndx 17367 | . . . . 5 ⊢ (UnifSet‘ndx) = ;13 | |
10 | 8, 9 | neeq12i 3002 | . . . 4 ⊢ ((+g‘ndx) ≠ (UnifSet‘ndx) ↔ 2 ≠ ;13) |
11 | 7, 10 | mpbir 230 | . . 3 ⊢ (+g‘ndx) ≠ (UnifSet‘ndx) |
12 | 3re 12314 | . . . . 5 ⊢ 3 ∈ ℝ | |
13 | 3lt10 12836 | . . . . . 6 ⊢ 3 < ;10 | |
14 | 2, 3, 3, 13 | declti 12737 | . . . . 5 ⊢ 3 < ;13 |
15 | 12, 14 | ltneii 11349 | . . . 4 ⊢ 3 ≠ ;13 |
16 | mulrndx 17265 | . . . . 5 ⊢ (.r‘ndx) = 3 | |
17 | 16, 9 | neeq12i 3002 | . . . 4 ⊢ ((.r‘ndx) ≠ (UnifSet‘ndx) ↔ 3 ≠ ;13) |
18 | 15, 17 | mpbir 230 | . . 3 ⊢ (.r‘ndx) ≠ (UnifSet‘ndx) |
19 | 4re 12318 | . . . . 5 ⊢ 4 ∈ ℝ | |
20 | 4nn0 12513 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
21 | 4lt10 12835 | . . . . . 6 ⊢ 4 < ;10 | |
22 | 2, 3, 20, 21 | declti 12737 | . . . . 5 ⊢ 4 < ;13 |
23 | 19, 22 | ltneii 11349 | . . . 4 ⊢ 4 ≠ ;13 |
24 | starvndx 17274 | . . . . 5 ⊢ (*𝑟‘ndx) = 4 | |
25 | 24, 9 | neeq12i 3002 | . . . 4 ⊢ ((*𝑟‘ndx) ≠ (UnifSet‘ndx) ↔ 4 ≠ ;13) |
26 | 23, 25 | mpbir 230 | . . 3 ⊢ (*𝑟‘ndx) ≠ (UnifSet‘ndx) |
27 | 11, 18, 26 | 3pm3.2i 1337 | . 2 ⊢ ((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) |
28 | 10re 12718 | . . . . 5 ⊢ ;10 ∈ ℝ | |
29 | 1nn0 12510 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
30 | 0nn0 12509 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
31 | 3nn 12313 | . . . . . 6 ⊢ 3 ∈ ℕ | |
32 | 3pos 12339 | . . . . . 6 ⊢ 0 < 3 | |
33 | 29, 30, 31, 32 | declt 12727 | . . . . 5 ⊢ ;10 < ;13 |
34 | 28, 33 | ltneii 11349 | . . . 4 ⊢ ;10 ≠ ;13 |
35 | plendx 17338 | . . . . 5 ⊢ (le‘ndx) = ;10 | |
36 | 35, 9 | neeq12i 3002 | . . . 4 ⊢ ((le‘ndx) ≠ (UnifSet‘ndx) ↔ ;10 ≠ ;13) |
37 | 34, 36 | mpbir 230 | . . 3 ⊢ (le‘ndx) ≠ (UnifSet‘ndx) |
38 | 2nn 12307 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
39 | 29, 38 | decnncl 12719 | . . . . . 6 ⊢ ;12 ∈ ℕ |
40 | 39 | nnrei 12243 | . . . . 5 ⊢ ;12 ∈ ℝ |
41 | 2lt3 12406 | . . . . . 6 ⊢ 2 < 3 | |
42 | 29, 4, 31, 41 | declt 12727 | . . . . 5 ⊢ ;12 < ;13 |
43 | 40, 42 | ltneii 11349 | . . . 4 ⊢ ;12 ≠ ;13 |
44 | dsndx 17357 | . . . . 5 ⊢ (dist‘ndx) = ;12 | |
45 | 44, 9 | neeq12i 3002 | . . . 4 ⊢ ((dist‘ndx) ≠ (UnifSet‘ndx) ↔ ;12 ≠ ;13) |
46 | 43, 45 | mpbir 230 | . . 3 ⊢ (dist‘ndx) ≠ (UnifSet‘ndx) |
47 | 37, 46 | pm3.2i 470 | . 2 ⊢ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx)) |
48 | 27, 47 | pm3.2i 470 | 1 ⊢ (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1085 ≠ wne 2935 ‘cfv 6542 0cc0 11130 1c1 11131 2c2 12289 3c3 12290 4c4 12291 ;cdc 12699 ndxcnx 17153 +gcplusg 17224 .rcmulr 17225 *𝑟cstv 17226 lecple 17231 distcds 17233 UnifSetcunif 17234 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-5 12300 df-6 12301 df-7 12302 df-8 12303 df-9 12304 df-n0 12495 df-z 12581 df-dec 12700 df-slot 17142 df-ndx 17154 df-plusg 17237 df-mulr 17238 df-starv 17239 df-ple 17244 df-ds 17246 df-unif 17247 |
This theorem is referenced by: cnfldfunALT 21281 cnfldfunALTOLD 21294 |
Copyright terms: Public domain | W3C validator |