| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > slotsdifunifndx | Structured version Visualization version GIF version | ||
| Description: The index of the slot for the uniform set is not the index of other slots. Formerly part of proof for cnfldfunALT 21316. (Contributed by AV, 10-Nov-2024.) |
| Ref | Expression |
|---|---|
| slotsdifunifndx | ⊢ (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 12209 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 2 | 1nn 12146 | . . . . . 6 ⊢ 1 ∈ ℕ | |
| 3 | 3nn0 12409 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
| 4 | 2nn0 12408 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
| 5 | 2lt10 12736 | . . . . . 6 ⊢ 2 < ;10 | |
| 6 | 2, 3, 4, 5 | declti 12636 | . . . . 5 ⊢ 2 < ;13 |
| 7 | 1, 6 | ltneii 11236 | . . . 4 ⊢ 2 ≠ ;13 |
| 8 | plusgndx 17197 | . . . . 5 ⊢ (+g‘ndx) = 2 | |
| 9 | unifndx 17309 | . . . . 5 ⊢ (UnifSet‘ndx) = ;13 | |
| 10 | 8, 9 | neeq12i 2996 | . . . 4 ⊢ ((+g‘ndx) ≠ (UnifSet‘ndx) ↔ 2 ≠ ;13) |
| 11 | 7, 10 | mpbir 231 | . . 3 ⊢ (+g‘ndx) ≠ (UnifSet‘ndx) |
| 12 | 3re 12215 | . . . . 5 ⊢ 3 ∈ ℝ | |
| 13 | 3lt10 12735 | . . . . . 6 ⊢ 3 < ;10 | |
| 14 | 2, 3, 3, 13 | declti 12636 | . . . . 5 ⊢ 3 < ;13 |
| 15 | 12, 14 | ltneii 11236 | . . . 4 ⊢ 3 ≠ ;13 |
| 16 | mulrndx 17208 | . . . . 5 ⊢ (.r‘ndx) = 3 | |
| 17 | 16, 9 | neeq12i 2996 | . . . 4 ⊢ ((.r‘ndx) ≠ (UnifSet‘ndx) ↔ 3 ≠ ;13) |
| 18 | 15, 17 | mpbir 231 | . . 3 ⊢ (.r‘ndx) ≠ (UnifSet‘ndx) |
| 19 | 4re 12219 | . . . . 5 ⊢ 4 ∈ ℝ | |
| 20 | 4nn0 12410 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
| 21 | 4lt10 12734 | . . . . . 6 ⊢ 4 < ;10 | |
| 22 | 2, 3, 20, 21 | declti 12636 | . . . . 5 ⊢ 4 < ;13 |
| 23 | 19, 22 | ltneii 11236 | . . . 4 ⊢ 4 ≠ ;13 |
| 24 | starvndx 17216 | . . . . 5 ⊢ (*𝑟‘ndx) = 4 | |
| 25 | 24, 9 | neeq12i 2996 | . . . 4 ⊢ ((*𝑟‘ndx) ≠ (UnifSet‘ndx) ↔ 4 ≠ ;13) |
| 26 | 23, 25 | mpbir 231 | . . 3 ⊢ (*𝑟‘ndx) ≠ (UnifSet‘ndx) |
| 27 | 11, 18, 26 | 3pm3.2i 1340 | . 2 ⊢ ((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) |
| 28 | 10re 12617 | . . . . 5 ⊢ ;10 ∈ ℝ | |
| 29 | 1nn0 12407 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
| 30 | 0nn0 12406 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 31 | 3nn 12214 | . . . . . 6 ⊢ 3 ∈ ℕ | |
| 32 | 3pos 12240 | . . . . . 6 ⊢ 0 < 3 | |
| 33 | 29, 30, 31, 32 | declt 12626 | . . . . 5 ⊢ ;10 < ;13 |
| 34 | 28, 33 | ltneii 11236 | . . . 4 ⊢ ;10 ≠ ;13 |
| 35 | plendx 17280 | . . . . 5 ⊢ (le‘ndx) = ;10 | |
| 36 | 35, 9 | neeq12i 2996 | . . . 4 ⊢ ((le‘ndx) ≠ (UnifSet‘ndx) ↔ ;10 ≠ ;13) |
| 37 | 34, 36 | mpbir 231 | . . 3 ⊢ (le‘ndx) ≠ (UnifSet‘ndx) |
| 38 | 2nn 12208 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 39 | 29, 38 | decnncl 12618 | . . . . . 6 ⊢ ;12 ∈ ℕ |
| 40 | 39 | nnrei 12144 | . . . . 5 ⊢ ;12 ∈ ℝ |
| 41 | 2lt3 12302 | . . . . . 6 ⊢ 2 < 3 | |
| 42 | 29, 4, 31, 41 | declt 12626 | . . . . 5 ⊢ ;12 < ;13 |
| 43 | 40, 42 | ltneii 11236 | . . . 4 ⊢ ;12 ≠ ;13 |
| 44 | dsndx 17299 | . . . . 5 ⊢ (dist‘ndx) = ;12 | |
| 45 | 44, 9 | neeq12i 2996 | . . . 4 ⊢ ((dist‘ndx) ≠ (UnifSet‘ndx) ↔ ;12 ≠ ;13) |
| 46 | 43, 45 | mpbir 231 | . . 3 ⊢ (dist‘ndx) ≠ (UnifSet‘ndx) |
| 47 | 37, 46 | pm3.2i 470 | . 2 ⊢ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx)) |
| 48 | 27, 47 | pm3.2i 470 | 1 ⊢ (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 ≠ wne 2930 ‘cfv 6489 0cc0 11016 1c1 11017 2c2 12190 3c3 12191 4c4 12192 ;cdc 12598 ndxcnx 17114 +gcplusg 17171 .rcmulr 17172 *𝑟cstv 17173 lecple 17178 distcds 17180 UnifSetcunif 17181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-9 12205 df-n0 12392 df-z 12479 df-dec 12599 df-slot 17103 df-ndx 17115 df-plusg 17184 df-mulr 17185 df-starv 17186 df-ple 17191 df-ds 17193 df-unif 17194 |
| This theorem is referenced by: cnfldfunALT 21316 cnfldfunALTOLD 21329 |
| Copyright terms: Public domain | W3C validator |