![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > slotsdifunifndx | Structured version Visualization version GIF version |
Description: The index of the slot for the uniform set is not the index of other slots. Formerly part of proof for cnfldfunALT 20956. (Contributed by AV, 10-Nov-2024.) |
Ref | Expression |
---|---|
slotsdifunifndx | ⊢ (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 12285 | . . . . 5 ⊢ 2 ∈ ℝ | |
2 | 1nn 12222 | . . . . . 6 ⊢ 1 ∈ ℕ | |
3 | 3nn0 12489 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
4 | 2nn0 12488 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
5 | 2lt10 12814 | . . . . . 6 ⊢ 2 < ;10 | |
6 | 2, 3, 4, 5 | declti 12714 | . . . . 5 ⊢ 2 < ;13 |
7 | 1, 6 | ltneii 11326 | . . . 4 ⊢ 2 ≠ ;13 |
8 | plusgndx 17222 | . . . . 5 ⊢ (+g‘ndx) = 2 | |
9 | unifndx 17339 | . . . . 5 ⊢ (UnifSet‘ndx) = ;13 | |
10 | 8, 9 | neeq12i 3007 | . . . 4 ⊢ ((+g‘ndx) ≠ (UnifSet‘ndx) ↔ 2 ≠ ;13) |
11 | 7, 10 | mpbir 230 | . . 3 ⊢ (+g‘ndx) ≠ (UnifSet‘ndx) |
12 | 3re 12291 | . . . . 5 ⊢ 3 ∈ ℝ | |
13 | 3lt10 12813 | . . . . . 6 ⊢ 3 < ;10 | |
14 | 2, 3, 3, 13 | declti 12714 | . . . . 5 ⊢ 3 < ;13 |
15 | 12, 14 | ltneii 11326 | . . . 4 ⊢ 3 ≠ ;13 |
16 | mulrndx 17237 | . . . . 5 ⊢ (.r‘ndx) = 3 | |
17 | 16, 9 | neeq12i 3007 | . . . 4 ⊢ ((.r‘ndx) ≠ (UnifSet‘ndx) ↔ 3 ≠ ;13) |
18 | 15, 17 | mpbir 230 | . . 3 ⊢ (.r‘ndx) ≠ (UnifSet‘ndx) |
19 | 4re 12295 | . . . . 5 ⊢ 4 ∈ ℝ | |
20 | 4nn0 12490 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
21 | 4lt10 12812 | . . . . . 6 ⊢ 4 < ;10 | |
22 | 2, 3, 20, 21 | declti 12714 | . . . . 5 ⊢ 4 < ;13 |
23 | 19, 22 | ltneii 11326 | . . . 4 ⊢ 4 ≠ ;13 |
24 | starvndx 17246 | . . . . 5 ⊢ (*𝑟‘ndx) = 4 | |
25 | 24, 9 | neeq12i 3007 | . . . 4 ⊢ ((*𝑟‘ndx) ≠ (UnifSet‘ndx) ↔ 4 ≠ ;13) |
26 | 23, 25 | mpbir 230 | . . 3 ⊢ (*𝑟‘ndx) ≠ (UnifSet‘ndx) |
27 | 11, 18, 26 | 3pm3.2i 1339 | . 2 ⊢ ((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) |
28 | 10re 12695 | . . . . 5 ⊢ ;10 ∈ ℝ | |
29 | 1nn0 12487 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
30 | 0nn0 12486 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
31 | 3nn 12290 | . . . . . 6 ⊢ 3 ∈ ℕ | |
32 | 3pos 12316 | . . . . . 6 ⊢ 0 < 3 | |
33 | 29, 30, 31, 32 | declt 12704 | . . . . 5 ⊢ ;10 < ;13 |
34 | 28, 33 | ltneii 11326 | . . . 4 ⊢ ;10 ≠ ;13 |
35 | plendx 17310 | . . . . 5 ⊢ (le‘ndx) = ;10 | |
36 | 35, 9 | neeq12i 3007 | . . . 4 ⊢ ((le‘ndx) ≠ (UnifSet‘ndx) ↔ ;10 ≠ ;13) |
37 | 34, 36 | mpbir 230 | . . 3 ⊢ (le‘ndx) ≠ (UnifSet‘ndx) |
38 | 2nn 12284 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
39 | 29, 38 | decnncl 12696 | . . . . . 6 ⊢ ;12 ∈ ℕ |
40 | 39 | nnrei 12220 | . . . . 5 ⊢ ;12 ∈ ℝ |
41 | 2lt3 12383 | . . . . . 6 ⊢ 2 < 3 | |
42 | 29, 4, 31, 41 | declt 12704 | . . . . 5 ⊢ ;12 < ;13 |
43 | 40, 42 | ltneii 11326 | . . . 4 ⊢ ;12 ≠ ;13 |
44 | dsndx 17329 | . . . . 5 ⊢ (dist‘ndx) = ;12 | |
45 | 44, 9 | neeq12i 3007 | . . . 4 ⊢ ((dist‘ndx) ≠ (UnifSet‘ndx) ↔ ;12 ≠ ;13) |
46 | 43, 45 | mpbir 230 | . . 3 ⊢ (dist‘ndx) ≠ (UnifSet‘ndx) |
47 | 37, 46 | pm3.2i 471 | . 2 ⊢ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx)) |
48 | 27, 47 | pm3.2i 471 | 1 ⊢ (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∧ w3a 1087 ≠ wne 2940 ‘cfv 6543 0cc0 11109 1c1 11110 2c2 12266 3c3 12267 4c4 12268 ;cdc 12676 ndxcnx 17125 +gcplusg 17196 .rcmulr 17197 *𝑟cstv 17198 lecple 17203 distcds 17205 UnifSetcunif 17206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-slot 17114 df-ndx 17126 df-plusg 17209 df-mulr 17210 df-starv 17211 df-ple 17216 df-ds 17218 df-unif 17219 |
This theorem is referenced by: cnfldfunALT 20956 |
Copyright terms: Public domain | W3C validator |