![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > slotsdifunifndx | Structured version Visualization version GIF version |
Description: The index of the slot for the uniform set is not the index of other slots. Formerly part of proof for cnfldfunALT 21311. (Contributed by AV, 10-Nov-2024.) |
Ref | Expression |
---|---|
slotsdifunifndx | ⊢ (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 12319 | . . . . 5 ⊢ 2 ∈ ℝ | |
2 | 1nn 12256 | . . . . . 6 ⊢ 1 ∈ ℕ | |
3 | 3nn0 12523 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
4 | 2nn0 12522 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
5 | 2lt10 12848 | . . . . . 6 ⊢ 2 < ;10 | |
6 | 2, 3, 4, 5 | declti 12748 | . . . . 5 ⊢ 2 < ;13 |
7 | 1, 6 | ltneii 11359 | . . . 4 ⊢ 2 ≠ ;13 |
8 | plusgndx 17262 | . . . . 5 ⊢ (+g‘ndx) = 2 | |
9 | unifndx 17379 | . . . . 5 ⊢ (UnifSet‘ndx) = ;13 | |
10 | 8, 9 | neeq12i 2996 | . . . 4 ⊢ ((+g‘ndx) ≠ (UnifSet‘ndx) ↔ 2 ≠ ;13) |
11 | 7, 10 | mpbir 230 | . . 3 ⊢ (+g‘ndx) ≠ (UnifSet‘ndx) |
12 | 3re 12325 | . . . . 5 ⊢ 3 ∈ ℝ | |
13 | 3lt10 12847 | . . . . . 6 ⊢ 3 < ;10 | |
14 | 2, 3, 3, 13 | declti 12748 | . . . . 5 ⊢ 3 < ;13 |
15 | 12, 14 | ltneii 11359 | . . . 4 ⊢ 3 ≠ ;13 |
16 | mulrndx 17277 | . . . . 5 ⊢ (.r‘ndx) = 3 | |
17 | 16, 9 | neeq12i 2996 | . . . 4 ⊢ ((.r‘ndx) ≠ (UnifSet‘ndx) ↔ 3 ≠ ;13) |
18 | 15, 17 | mpbir 230 | . . 3 ⊢ (.r‘ndx) ≠ (UnifSet‘ndx) |
19 | 4re 12329 | . . . . 5 ⊢ 4 ∈ ℝ | |
20 | 4nn0 12524 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
21 | 4lt10 12846 | . . . . . 6 ⊢ 4 < ;10 | |
22 | 2, 3, 20, 21 | declti 12748 | . . . . 5 ⊢ 4 < ;13 |
23 | 19, 22 | ltneii 11359 | . . . 4 ⊢ 4 ≠ ;13 |
24 | starvndx 17286 | . . . . 5 ⊢ (*𝑟‘ndx) = 4 | |
25 | 24, 9 | neeq12i 2996 | . . . 4 ⊢ ((*𝑟‘ndx) ≠ (UnifSet‘ndx) ↔ 4 ≠ ;13) |
26 | 23, 25 | mpbir 230 | . . 3 ⊢ (*𝑟‘ndx) ≠ (UnifSet‘ndx) |
27 | 11, 18, 26 | 3pm3.2i 1336 | . 2 ⊢ ((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) |
28 | 10re 12729 | . . . . 5 ⊢ ;10 ∈ ℝ | |
29 | 1nn0 12521 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
30 | 0nn0 12520 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
31 | 3nn 12324 | . . . . . 6 ⊢ 3 ∈ ℕ | |
32 | 3pos 12350 | . . . . . 6 ⊢ 0 < 3 | |
33 | 29, 30, 31, 32 | declt 12738 | . . . . 5 ⊢ ;10 < ;13 |
34 | 28, 33 | ltneii 11359 | . . . 4 ⊢ ;10 ≠ ;13 |
35 | plendx 17350 | . . . . 5 ⊢ (le‘ndx) = ;10 | |
36 | 35, 9 | neeq12i 2996 | . . . 4 ⊢ ((le‘ndx) ≠ (UnifSet‘ndx) ↔ ;10 ≠ ;13) |
37 | 34, 36 | mpbir 230 | . . 3 ⊢ (le‘ndx) ≠ (UnifSet‘ndx) |
38 | 2nn 12318 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
39 | 29, 38 | decnncl 12730 | . . . . . 6 ⊢ ;12 ∈ ℕ |
40 | 39 | nnrei 12254 | . . . . 5 ⊢ ;12 ∈ ℝ |
41 | 2lt3 12417 | . . . . . 6 ⊢ 2 < 3 | |
42 | 29, 4, 31, 41 | declt 12738 | . . . . 5 ⊢ ;12 < ;13 |
43 | 40, 42 | ltneii 11359 | . . . 4 ⊢ ;12 ≠ ;13 |
44 | dsndx 17369 | . . . . 5 ⊢ (dist‘ndx) = ;12 | |
45 | 44, 9 | neeq12i 2996 | . . . 4 ⊢ ((dist‘ndx) ≠ (UnifSet‘ndx) ↔ ;12 ≠ ;13) |
46 | 43, 45 | mpbir 230 | . . 3 ⊢ (dist‘ndx) ≠ (UnifSet‘ndx) |
47 | 37, 46 | pm3.2i 469 | . 2 ⊢ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx)) |
48 | 27, 47 | pm3.2i 469 | 1 ⊢ (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 ∧ w3a 1084 ≠ wne 2929 ‘cfv 6549 0cc0 11140 1c1 11141 2c2 12300 3c3 12301 4c4 12302 ;cdc 12710 ndxcnx 17165 +gcplusg 17236 .rcmulr 17237 *𝑟cstv 17238 lecple 17243 distcds 17245 UnifSetcunif 17246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-z 12592 df-dec 12711 df-slot 17154 df-ndx 17166 df-plusg 17249 df-mulr 17250 df-starv 17251 df-ple 17256 df-ds 17258 df-unif 17259 |
This theorem is referenced by: cnfldfunALT 21311 cnfldfunALTOLD 21324 |
Copyright terms: Public domain | W3C validator |