![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > slotsdifunifndx | Structured version Visualization version GIF version |
Description: The index of the slot for the uniform set is not the index of other slots. Formerly part of proof for cnfldfunALT 21298. (Contributed by AV, 10-Nov-2024.) |
Ref | Expression |
---|---|
slotsdifunifndx | ⊢ (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 12316 | . . . . 5 ⊢ 2 ∈ ℝ | |
2 | 1nn 12253 | . . . . . 6 ⊢ 1 ∈ ℕ | |
3 | 3nn0 12520 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
4 | 2nn0 12519 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
5 | 2lt10 12845 | . . . . . 6 ⊢ 2 < ;10 | |
6 | 2, 3, 4, 5 | declti 12745 | . . . . 5 ⊢ 2 < ;13 |
7 | 1, 6 | ltneii 11357 | . . . 4 ⊢ 2 ≠ ;13 |
8 | plusgndx 17258 | . . . . 5 ⊢ (+g‘ndx) = 2 | |
9 | unifndx 17375 | . . . . 5 ⊢ (UnifSet‘ndx) = ;13 | |
10 | 8, 9 | neeq12i 2997 | . . . 4 ⊢ ((+g‘ndx) ≠ (UnifSet‘ndx) ↔ 2 ≠ ;13) |
11 | 7, 10 | mpbir 230 | . . 3 ⊢ (+g‘ndx) ≠ (UnifSet‘ndx) |
12 | 3re 12322 | . . . . 5 ⊢ 3 ∈ ℝ | |
13 | 3lt10 12844 | . . . . . 6 ⊢ 3 < ;10 | |
14 | 2, 3, 3, 13 | declti 12745 | . . . . 5 ⊢ 3 < ;13 |
15 | 12, 14 | ltneii 11357 | . . . 4 ⊢ 3 ≠ ;13 |
16 | mulrndx 17273 | . . . . 5 ⊢ (.r‘ndx) = 3 | |
17 | 16, 9 | neeq12i 2997 | . . . 4 ⊢ ((.r‘ndx) ≠ (UnifSet‘ndx) ↔ 3 ≠ ;13) |
18 | 15, 17 | mpbir 230 | . . 3 ⊢ (.r‘ndx) ≠ (UnifSet‘ndx) |
19 | 4re 12326 | . . . . 5 ⊢ 4 ∈ ℝ | |
20 | 4nn0 12521 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
21 | 4lt10 12843 | . . . . . 6 ⊢ 4 < ;10 | |
22 | 2, 3, 20, 21 | declti 12745 | . . . . 5 ⊢ 4 < ;13 |
23 | 19, 22 | ltneii 11357 | . . . 4 ⊢ 4 ≠ ;13 |
24 | starvndx 17282 | . . . . 5 ⊢ (*𝑟‘ndx) = 4 | |
25 | 24, 9 | neeq12i 2997 | . . . 4 ⊢ ((*𝑟‘ndx) ≠ (UnifSet‘ndx) ↔ 4 ≠ ;13) |
26 | 23, 25 | mpbir 230 | . . 3 ⊢ (*𝑟‘ndx) ≠ (UnifSet‘ndx) |
27 | 11, 18, 26 | 3pm3.2i 1336 | . 2 ⊢ ((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) |
28 | 10re 12726 | . . . . 5 ⊢ ;10 ∈ ℝ | |
29 | 1nn0 12518 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
30 | 0nn0 12517 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
31 | 3nn 12321 | . . . . . 6 ⊢ 3 ∈ ℕ | |
32 | 3pos 12347 | . . . . . 6 ⊢ 0 < 3 | |
33 | 29, 30, 31, 32 | declt 12735 | . . . . 5 ⊢ ;10 < ;13 |
34 | 28, 33 | ltneii 11357 | . . . 4 ⊢ ;10 ≠ ;13 |
35 | plendx 17346 | . . . . 5 ⊢ (le‘ndx) = ;10 | |
36 | 35, 9 | neeq12i 2997 | . . . 4 ⊢ ((le‘ndx) ≠ (UnifSet‘ndx) ↔ ;10 ≠ ;13) |
37 | 34, 36 | mpbir 230 | . . 3 ⊢ (le‘ndx) ≠ (UnifSet‘ndx) |
38 | 2nn 12315 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
39 | 29, 38 | decnncl 12727 | . . . . . 6 ⊢ ;12 ∈ ℕ |
40 | 39 | nnrei 12251 | . . . . 5 ⊢ ;12 ∈ ℝ |
41 | 2lt3 12414 | . . . . . 6 ⊢ 2 < 3 | |
42 | 29, 4, 31, 41 | declt 12735 | . . . . 5 ⊢ ;12 < ;13 |
43 | 40, 42 | ltneii 11357 | . . . 4 ⊢ ;12 ≠ ;13 |
44 | dsndx 17365 | . . . . 5 ⊢ (dist‘ndx) = ;12 | |
45 | 44, 9 | neeq12i 2997 | . . . 4 ⊢ ((dist‘ndx) ≠ (UnifSet‘ndx) ↔ ;12 ≠ ;13) |
46 | 43, 45 | mpbir 230 | . . 3 ⊢ (dist‘ndx) ≠ (UnifSet‘ndx) |
47 | 37, 46 | pm3.2i 469 | . 2 ⊢ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx)) |
48 | 27, 47 | pm3.2i 469 | 1 ⊢ (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 ∧ w3a 1084 ≠ wne 2930 ‘cfv 6547 0cc0 11138 1c1 11139 2c2 12297 3c3 12298 4c4 12299 ;cdc 12707 ndxcnx 17161 +gcplusg 17232 .rcmulr 17233 *𝑟cstv 17234 lecple 17239 distcds 17241 UnifSetcunif 17242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-slot 17150 df-ndx 17162 df-plusg 17245 df-mulr 17246 df-starv 17247 df-ple 17252 df-ds 17254 df-unif 17255 |
This theorem is referenced by: cnfldfunALT 21298 cnfldfunALTOLD 21311 |
Copyright terms: Public domain | W3C validator |