| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > slotsdifunifndx | Structured version Visualization version GIF version | ||
| Description: The index of the slot for the uniform set is not the index of other slots. Formerly part of proof for cnfldfunALT 21328. (Contributed by AV, 10-Nov-2024.) |
| Ref | Expression |
|---|---|
| slotsdifunifndx | ⊢ (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 12312 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 2 | 1nn 12249 | . . . . . 6 ⊢ 1 ∈ ℕ | |
| 3 | 3nn0 12517 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
| 4 | 2nn0 12516 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
| 5 | 2lt10 12844 | . . . . . 6 ⊢ 2 < ;10 | |
| 6 | 2, 3, 4, 5 | declti 12744 | . . . . 5 ⊢ 2 < ;13 |
| 7 | 1, 6 | ltneii 11346 | . . . 4 ⊢ 2 ≠ ;13 |
| 8 | plusgndx 17295 | . . . . 5 ⊢ (+g‘ndx) = 2 | |
| 9 | unifndx 17407 | . . . . 5 ⊢ (UnifSet‘ndx) = ;13 | |
| 10 | 8, 9 | neeq12i 2998 | . . . 4 ⊢ ((+g‘ndx) ≠ (UnifSet‘ndx) ↔ 2 ≠ ;13) |
| 11 | 7, 10 | mpbir 231 | . . 3 ⊢ (+g‘ndx) ≠ (UnifSet‘ndx) |
| 12 | 3re 12318 | . . . . 5 ⊢ 3 ∈ ℝ | |
| 13 | 3lt10 12843 | . . . . . 6 ⊢ 3 < ;10 | |
| 14 | 2, 3, 3, 13 | declti 12744 | . . . . 5 ⊢ 3 < ;13 |
| 15 | 12, 14 | ltneii 11346 | . . . 4 ⊢ 3 ≠ ;13 |
| 16 | mulrndx 17306 | . . . . 5 ⊢ (.r‘ndx) = 3 | |
| 17 | 16, 9 | neeq12i 2998 | . . . 4 ⊢ ((.r‘ndx) ≠ (UnifSet‘ndx) ↔ 3 ≠ ;13) |
| 18 | 15, 17 | mpbir 231 | . . 3 ⊢ (.r‘ndx) ≠ (UnifSet‘ndx) |
| 19 | 4re 12322 | . . . . 5 ⊢ 4 ∈ ℝ | |
| 20 | 4nn0 12518 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
| 21 | 4lt10 12842 | . . . . . 6 ⊢ 4 < ;10 | |
| 22 | 2, 3, 20, 21 | declti 12744 | . . . . 5 ⊢ 4 < ;13 |
| 23 | 19, 22 | ltneii 11346 | . . . 4 ⊢ 4 ≠ ;13 |
| 24 | starvndx 17314 | . . . . 5 ⊢ (*𝑟‘ndx) = 4 | |
| 25 | 24, 9 | neeq12i 2998 | . . . 4 ⊢ ((*𝑟‘ndx) ≠ (UnifSet‘ndx) ↔ 4 ≠ ;13) |
| 26 | 23, 25 | mpbir 231 | . . 3 ⊢ (*𝑟‘ndx) ≠ (UnifSet‘ndx) |
| 27 | 11, 18, 26 | 3pm3.2i 1340 | . 2 ⊢ ((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) |
| 28 | 10re 12725 | . . . . 5 ⊢ ;10 ∈ ℝ | |
| 29 | 1nn0 12515 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
| 30 | 0nn0 12514 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 31 | 3nn 12317 | . . . . . 6 ⊢ 3 ∈ ℕ | |
| 32 | 3pos 12343 | . . . . . 6 ⊢ 0 < 3 | |
| 33 | 29, 30, 31, 32 | declt 12734 | . . . . 5 ⊢ ;10 < ;13 |
| 34 | 28, 33 | ltneii 11346 | . . . 4 ⊢ ;10 ≠ ;13 |
| 35 | plendx 17378 | . . . . 5 ⊢ (le‘ndx) = ;10 | |
| 36 | 35, 9 | neeq12i 2998 | . . . 4 ⊢ ((le‘ndx) ≠ (UnifSet‘ndx) ↔ ;10 ≠ ;13) |
| 37 | 34, 36 | mpbir 231 | . . 3 ⊢ (le‘ndx) ≠ (UnifSet‘ndx) |
| 38 | 2nn 12311 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 39 | 29, 38 | decnncl 12726 | . . . . . 6 ⊢ ;12 ∈ ℕ |
| 40 | 39 | nnrei 12247 | . . . . 5 ⊢ ;12 ∈ ℝ |
| 41 | 2lt3 12410 | . . . . . 6 ⊢ 2 < 3 | |
| 42 | 29, 4, 31, 41 | declt 12734 | . . . . 5 ⊢ ;12 < ;13 |
| 43 | 40, 42 | ltneii 11346 | . . . 4 ⊢ ;12 ≠ ;13 |
| 44 | dsndx 17397 | . . . . 5 ⊢ (dist‘ndx) = ;12 | |
| 45 | 44, 9 | neeq12i 2998 | . . . 4 ⊢ ((dist‘ndx) ≠ (UnifSet‘ndx) ↔ ;12 ≠ ;13) |
| 46 | 43, 45 | mpbir 231 | . . 3 ⊢ (dist‘ndx) ≠ (UnifSet‘ndx) |
| 47 | 37, 46 | pm3.2i 470 | . 2 ⊢ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx)) |
| 48 | 27, 47 | pm3.2i 470 | 1 ⊢ (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 ≠ wne 2932 ‘cfv 6530 0cc0 11127 1c1 11128 2c2 12293 3c3 12294 4c4 12295 ;cdc 12706 ndxcnx 17210 +gcplusg 17269 .rcmulr 17270 *𝑟cstv 17271 lecple 17276 distcds 17278 UnifSetcunif 17279 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-slot 17199 df-ndx 17211 df-plusg 17282 df-mulr 17283 df-starv 17284 df-ple 17289 df-ds 17291 df-unif 17292 |
| This theorem is referenced by: cnfldfunALT 21328 cnfldfunALTOLD 21341 |
| Copyright terms: Public domain | W3C validator |