MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4lt10 Structured version   Visualization version   GIF version

Theorem 4lt10 12601
Description: 4 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
Assertion
Ref Expression
4lt10 4 < 10

Proof of Theorem 4lt10
StepHypRef Expression
1 4lt5 12178 . 2 4 < 5
2 5lt10 12600 . 2 5 < 10
3 4re 12085 . . 3 4 ∈ ℝ
4 5re 12088 . . 3 5 ∈ ℝ
5 10re 12484 . . 3 10 ∈ ℝ
63, 4, 5lttri 11129 . 2 ((4 < 5 ∧ 5 < 10) → 4 < 10)
71, 2, 6mp2an 688 1 4 < 10
Colors of variables: wff setvar class
Syntax hints:   class class class wbr 5077  0cc0 10899  1c1 10900   < clt 11037  4c4 12058  5c5 12059  cdc 12465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608  ax-resscn 10956  ax-1cn 10957  ax-icn 10958  ax-addcl 10959  ax-addrcl 10960  ax-mulcl 10961  ax-mulrcl 10962  ax-mulcom 10963  ax-addass 10964  ax-mulass 10965  ax-distr 10966  ax-i2m1 10967  ax-1ne0 10968  ax-1rid 10969  ax-rnegex 10970  ax-rrecex 10971  ax-cnre 10972  ax-pre-lttri 10973  ax-pre-lttrn 10974  ax-pre-ltadd 10975  ax-pre-mulgt0 10976
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-iun 4929  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-riota 7252  df-ov 7298  df-oprab 7299  df-mpo 7300  df-om 7733  df-2nd 7852  df-frecs 8117  df-wrecs 8148  df-recs 8222  df-rdg 8261  df-er 8518  df-en 8754  df-dom 8755  df-sdom 8756  df-pnf 11039  df-mnf 11040  df-xr 11041  df-ltxr 11042  df-le 11043  df-sub 11235  df-neg 11236  df-nn 12002  df-2 12064  df-3 12065  df-4 12066  df-5 12067  df-6 12068  df-7 12069  df-8 12070  df-9 12071  df-dec 12466
This theorem is referenced by:  3lt10  12602  37prm  16850  43prm  16851  83prm  16852  631prm  16856  slotsdifplendx  17113  slotsdifdsndx  17132  slotsdifunifndx  17139  cnfldfunALTOLD  20639  bclbnd  26456  bpos1  26459  bposlem9  26468  hgt750lemd  32656  hgt750lem  32659  hgt750lem2  32660  3lexlogpow5ineq2  40089  257prm  45053
  Copyright terms: Public domain W3C validator