MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4lt10 Structured version   Visualization version   GIF version

Theorem 4lt10 11891
Description: 4 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
Assertion
Ref Expression
4lt10 4 < 10

Proof of Theorem 4lt10
StepHypRef Expression
1 4lt5 11472 . 2 4 < 5
2 5lt10 11890 . 2 5 < 10
3 4re 11377 . . 3 4 ∈ ℝ
4 5re 11379 . . 3 5 ∈ ℝ
5 10re 11774 . . 3 10 ∈ ℝ
63, 4, 5lttri 10445 . 2 ((4 < 5 ∧ 5 < 10) → 4 < 10)
71, 2, 6mp2an 675 1 4 < 10
Colors of variables: wff setvar class
Syntax hints:   class class class wbr 4840  0cc0 10218  1c1 10219   < clt 10356  4c4 11354  5c5 11355  cdc 11755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1880  ax-4 1897  ax-5 2004  ax-6 2070  ax-7 2106  ax-8 2160  ax-9 2167  ax-10 2187  ax-11 2203  ax-12 2216  ax-13 2422  ax-ext 2784  ax-sep 4971  ax-nul 4980  ax-pow 5032  ax-pr 5093  ax-un 7176  ax-resscn 10275  ax-1cn 10276  ax-icn 10277  ax-addcl 10278  ax-addrcl 10279  ax-mulcl 10280  ax-mulrcl 10281  ax-mulcom 10282  ax-addass 10283  ax-mulass 10284  ax-distr 10285  ax-i2m1 10286  ax-1ne0 10287  ax-1rid 10288  ax-rnegex 10289  ax-rrecex 10290  ax-cnre 10291  ax-pre-lttri 10292  ax-pre-lttrn 10293  ax-pre-ltadd 10294  ax-pre-mulgt0 10295
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1865  df-sb 2063  df-eu 2636  df-mo 2637  df-clab 2792  df-cleq 2798  df-clel 2801  df-nfc 2936  df-ne 2978  df-nel 3081  df-ral 3100  df-rex 3101  df-reu 3102  df-rab 3104  df-v 3392  df-sbc 3631  df-csb 3726  df-dif 3769  df-un 3771  df-in 3773  df-ss 3780  df-pss 3782  df-nul 4114  df-if 4277  df-pw 4350  df-sn 4368  df-pr 4370  df-tp 4372  df-op 4374  df-uni 4627  df-iun 4710  df-br 4841  df-opab 4903  df-mpt 4920  df-tr 4943  df-id 5216  df-eprel 5221  df-po 5229  df-so 5230  df-fr 5267  df-we 5269  df-xp 5314  df-rel 5315  df-cnv 5316  df-co 5317  df-dm 5318  df-rn 5319  df-res 5320  df-ima 5321  df-pred 5890  df-ord 5936  df-on 5937  df-lim 5938  df-suc 5939  df-iota 6061  df-fun 6100  df-fn 6101  df-f 6102  df-f1 6103  df-fo 6104  df-f1o 6105  df-fv 6106  df-riota 6832  df-ov 6874  df-oprab 6875  df-mpt2 6876  df-om 7293  df-wrecs 7639  df-recs 7701  df-rdg 7739  df-er 7976  df-en 8190  df-dom 8191  df-sdom 8192  df-pnf 10358  df-mnf 10359  df-xr 10360  df-ltxr 10361  df-le 10362  df-sub 10550  df-neg 10551  df-nn 11303  df-2 11360  df-3 11361  df-4 11362  df-5 11363  df-6 11364  df-7 11365  df-8 11366  df-9 11367  df-dec 11756
This theorem is referenced by:  3lt10  11892  37prm  16035  43prm  16036  83prm  16037  631prm  16041  cnfldfun  19962  bclbnd  25215  bpos1  25218  bposlem9  25227  hgt750lemd  31048  hgt750lem  31051  hgt750lem2  31052  257prm  42045
  Copyright terms: Public domain W3C validator