MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lt10 Structured version   Visualization version   GIF version

Theorem 2lt10 12814
Description: 2 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
Assertion
Ref Expression
2lt10 2 < 10

Proof of Theorem 2lt10
StepHypRef Expression
1 2lt3 12383 . 2 2 < 3
2 3lt10 12813 . 2 3 < 10
3 2re 12285 . . 3 2 ∈ ℝ
4 3re 12291 . . 3 3 ∈ ℝ
5 10re 12695 . . 3 10 ∈ ℝ
63, 4, 5lttri 11339 . 2 ((2 < 3 ∧ 3 < 10) → 2 < 10)
71, 2, 6mp2an 689 1 2 < 10
Colors of variables: wff setvar class
Syntax hints:   class class class wbr 5139  0cc0 11107  1c1 11108   < clt 11247  2c2 12266  3c3 12267  cdc 12676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-dec 12677
This theorem is referenced by:  1lt10  12815  163prm  17063  631prm  17065  4001prm  17083  plendxnplusgndx  17321  dsndxnplusgndx  17340  slotsdifunifndx  17351  mgpdsOLD  20049  cnfldfunALTOLDOLD  21263  znaddOLD  21423  opsrplusgOLD  21940  slotsinbpsd  28185  slotslnbpsd  28186  ttgplusgOLD  28626  oppgleOLD  32623  hgt750lem  34181  lcmineqlem  41423  3lexlogpow5ineq1  41425  3lexlogpow5ineq5  41431  aks4d1p1  41447  257prm  46774  127prm  46812
  Copyright terms: Public domain W3C validator