| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 10nn0 | Structured version Visualization version GIF version | ||
| Description: 10 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| 10nn0 | ⊢ ;10 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 12458 | . 2 ⊢ 1 ∈ ℕ0 | |
| 2 | 0nn0 12457 | . 2 ⊢ 0 ∈ ℕ0 | |
| 3 | 1, 2 | deccl 12664 | 1 ⊢ ;10 ∈ ℕ0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 0cc0 11068 1c1 11069 ℕ0cn0 12442 ;cdc 12649 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-dec 12650 |
| This theorem is referenced by: decnncl 12669 dec0u 12670 dec0h 12671 decsuc 12680 decle 12683 decma 12700 decmac 12701 decma2c 12702 decadd 12703 decaddc 12704 decsubi 12712 decmul1c 12714 decmul2c 12715 decmul10add 12718 9t11e99 12779 sq10 14229 dec2dvds 17034 decsplit0b 17050 decsplit1 17052 decsplit 17053 karatsuba 17054 139prm 17094 317prm 17096 1259lem1 17101 1259lem3 17103 2503lem1 17107 4001lem1 17111 4001lem3 17113 9p10ne21 30399 dfdec100 32755 dp20u 32798 dp20h 32799 dp2clq 32801 dpmul100 32817 dpmul1000 32819 dpexpp1 32828 0dp2dp 32829 dpmul 32833 dpmul4 32834 hgt750lemd 34639 hgt750lem2 34643 hgt750leme 34649 tgoldbachgnn 34650 aks4d1p1p7 42062 sqdeccom12 42277 rmydioph 43003 tgoldbach 47818 gpg5grlic 48084 |
| Copyright terms: Public domain | W3C validator |