| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 10nn0 | Structured version Visualization version GIF version | ||
| Description: 10 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| 10nn0 | ⊢ ;10 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 12542 | . 2 ⊢ 1 ∈ ℕ0 | |
| 2 | 0nn0 12541 | . 2 ⊢ 0 ∈ ℕ0 | |
| 3 | 1, 2 | deccl 12748 | 1 ⊢ ;10 ∈ ℕ0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 0cc0 11155 1c1 11156 ℕ0cn0 12526 ;cdc 12733 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-ltxr 11300 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-dec 12734 |
| This theorem is referenced by: decnncl 12753 dec0u 12754 dec0h 12755 decsuc 12764 decle 12767 decma 12784 decmac 12785 decma2c 12786 decadd 12787 decaddc 12788 decsubi 12796 decmul1c 12798 decmul2c 12799 decmul10add 12802 9t11e99 12863 sq10 14303 dec2dvds 17101 decsplit0b 17117 decsplit1 17119 decsplit 17120 karatsuba 17121 139prm 17161 317prm 17163 1259lem1 17168 1259lem3 17170 2503lem1 17174 4001lem1 17178 4001lem3 17180 9p10ne21 30489 dfdec100 32832 dp20u 32860 dp20h 32861 dp2clq 32863 dpmul100 32879 dpmul1000 32881 dpexpp1 32890 0dp2dp 32891 dpmul 32895 dpmul4 32896 hgt750lemd 34663 hgt750lem2 34667 hgt750leme 34673 tgoldbachgnn 34674 aks4d1p1p7 42075 sqdeccom12 42324 rmydioph 43026 tgoldbach 47804 gpg5grlic 48047 |
| Copyright terms: Public domain | W3C validator |