Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 10nn0 | Structured version Visualization version GIF version |
Description: 10 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
10nn0 | ⊢ ;10 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn0 12355 | . 2 ⊢ 1 ∈ ℕ0 | |
2 | 0nn0 12354 | . 2 ⊢ 0 ∈ ℕ0 | |
3 | 1, 2 | deccl 12558 | 1 ⊢ ;10 ∈ ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 0cc0 10977 1c1 10978 ℕ0cn0 12339 ;cdc 12543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-ov 7345 df-om 7786 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-er 8574 df-en 8810 df-dom 8811 df-sdom 8812 df-pnf 11117 df-mnf 11118 df-ltxr 11120 df-nn 12080 df-2 12142 df-3 12143 df-4 12144 df-5 12145 df-6 12146 df-7 12147 df-8 12148 df-9 12149 df-n0 12340 df-dec 12544 |
This theorem is referenced by: decnncl 12563 dec0u 12564 dec0h 12565 decsuc 12574 decle 12577 decma 12594 decmac 12595 decma2c 12596 decadd 12597 decaddc 12598 decsubi 12606 decmul1c 12608 decmul2c 12609 decmul10add 12612 9t11e99 12673 sq10 14084 dec2dvds 16862 decsplit0b 16879 decsplit1 16881 decsplit 16882 karatsuba 16883 139prm 16923 317prm 16925 1259lem1 16930 1259lem3 16932 2503lem1 16936 4001lem1 16940 4001lem3 16942 9p10ne21 29122 dfdec100 31429 dp20u 31437 dp20h 31438 dp2clq 31440 dpmul100 31456 dpmul1000 31458 dpexpp1 31467 0dp2dp 31468 dpmul 31472 dpmul4 31473 hgt750lemd 32926 hgt750lem2 32930 hgt750leme 32936 tgoldbachgnn 32937 aks4d1p1p7 40385 sqdeccom12 40626 rmydioph 41148 tgoldbach 45685 |
Copyright terms: Public domain | W3C validator |