MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  10nn0 Structured version   Visualization version   GIF version

Theorem 10nn0 12627
Description: 10 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
10nn0 10 ∈ ℕ0

Proof of Theorem 10nn0
StepHypRef Expression
1 1nn0 12418 . 2 1 ∈ ℕ0
2 0nn0 12417 . 2 0 ∈ ℕ0
31, 2deccl 12624 1 10 ∈ ℕ0
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  0cc0 11028  1c1 11029  0cn0 12402  cdc 12609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-ltxr 11173  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-dec 12610
This theorem is referenced by:  decnncl  12629  dec0u  12630  dec0h  12631  decsuc  12640  decle  12643  decma  12660  decmac  12661  decma2c  12662  decadd  12663  decaddc  12664  decsubi  12672  decmul1c  12674  decmul2c  12675  decmul10add  12678  9t11e99  12739  sq10  14189  dec2dvds  16993  decsplit0b  17009  decsplit1  17011  decsplit  17012  karatsuba  17013  139prm  17053  317prm  17055  1259lem1  17060  1259lem3  17062  2503lem1  17066  4001lem1  17070  4001lem3  17072  9p10ne21  30432  dfdec100  32788  dp20u  32831  dp20h  32832  dp2clq  32834  dpmul100  32850  dpmul1000  32852  dpexpp1  32861  0dp2dp  32862  dpmul  32866  dpmul4  32867  hgt750lemd  34618  hgt750lem2  34622  hgt750leme  34628  tgoldbachgnn  34629  aks4d1p1p7  42050  sqdeccom12  42265  rmydioph  42990  tgoldbach  47805  gpg5grlic  48082
  Copyright terms: Public domain W3C validator