![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > decnncl | Structured version Visualization version GIF version |
Description: Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
decnncl.1 | ⊢ 𝐴 ∈ ℕ0 |
decnncl.2 | ⊢ 𝐵 ∈ ℕ |
Ref | Expression |
---|---|
decnncl | ⊢ ;𝐴𝐵 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdec10 11848 | . 2 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
2 | 10nn0 11863 | . . 3 ⊢ ;10 ∈ ℕ0 | |
3 | decnncl.1 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
4 | decnncl.2 | . . 3 ⊢ 𝐵 ∈ ℕ | |
5 | 2, 3, 4 | numnncl 11855 | . 2 ⊢ ((;10 · 𝐴) + 𝐵) ∈ ℕ |
6 | 1, 5 | eqeltri 2855 | 1 ⊢ ;𝐴𝐵 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 (class class class)co 6922 0cc0 10272 1c1 10273 + caddc 10275 · cmul 10277 ℕcn 11374 ℕ0cn0 11642 ;cdc 11845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-om 7344 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-ltxr 10416 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-7 11443 df-8 11444 df-9 11445 df-n0 11643 df-dec 11846 |
This theorem is referenced by: 11prm 16220 13prm 16221 17prm 16222 19prm 16223 23prm 16224 37prm 16226 43prm 16227 83prm 16228 139prm 16229 163prm 16230 317prm 16231 631prm 16232 1259lem1 16236 1259lem2 16237 1259lem3 16238 1259lem4 16239 1259lem5 16240 1259prm 16241 2503lem1 16242 2503lem2 16243 2503lem3 16244 2503prm 16245 4001lem1 16246 4001lem2 16247 4001lem3 16248 4001lem4 16249 4001prm 16250 ocndx 16446 ocid 16447 dsndx 16448 dsid 16449 unifndx 16450 unifid 16451 odrngstr 16452 ressds 16459 homndx 16460 homid 16461 ccondx 16462 ccoid 16463 resshom 16464 ressco 16465 imasvalstr 16498 prdsvalstr 16499 oppchomfval 16759 oppcbas 16763 rescco 16877 catstr 17002 ipostr 17539 mgpds 18886 srads 19583 cnfldstr 20144 ressunif 22474 tuslem 22479 tmslem 22695 mcubic 25025 cubic2 25026 cubic 25027 quart1cl 25032 quart1lem 25033 quart1 25034 quartlem1 25035 quartlem2 25036 log2ub 25128 log2le1 25129 birthday 25133 bposlem8 25468 bposlem9 25469 pntlemd 25735 pntlema 25737 pntlemb 25738 pntlemf 25746 pntlemo 25748 itvndx 25791 lngndx 25792 itvid 25793 lngid 25794 trkgstr 25795 ttgval 26224 ttglem 26225 ttgds 26230 eengstr 26329 edgfid 26339 edgfndxnn 26340 edgfndxid 26341 baseltedgf 26342 257prm 42494 fmtno4prmfac 42505 fmtno4prmfac193 42506 fmtno4nprmfac193 42507 fmtno5nprm 42516 139prmALT 42532 127prm 42536 3exp4mod41 42554 41prothprmlem2 42556 bgoldbtbndlem1 42718 tgblthelfgott 42728 tgoldbachlt 42729 tgoldbach 42730 |
Copyright terms: Public domain | W3C validator |