| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > decnncl | Structured version Visualization version GIF version | ||
| Description: Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| decnncl.1 | ⊢ 𝐴 ∈ ℕ0 |
| decnncl.2 | ⊢ 𝐵 ∈ ℕ |
| Ref | Expression |
|---|---|
| decnncl | ⊢ ;𝐴𝐵 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdec10 12659 | . 2 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
| 2 | 10nn0 12674 | . . 3 ⊢ ;10 ∈ ℕ0 | |
| 3 | decnncl.1 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
| 4 | decnncl.2 | . . 3 ⊢ 𝐵 ∈ ℕ | |
| 5 | 2, 3, 4 | numnncl 12666 | . 2 ⊢ ((;10 · 𝐴) + 𝐵) ∈ ℕ |
| 6 | 1, 5 | eqeltri 2825 | 1 ⊢ ;𝐴𝐵 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7390 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 ℕcn 12193 ℕ0cn0 12449 ;cdc 12656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-dec 12657 |
| This theorem is referenced by: 11prm 17092 13prm 17093 17prm 17094 19prm 17095 23prm 17096 37prm 17098 43prm 17099 83prm 17100 139prm 17101 163prm 17102 317prm 17103 631prm 17104 1259lem1 17108 1259lem2 17109 1259lem3 17110 1259lem4 17111 1259lem5 17112 1259prm 17113 2503lem1 17114 2503lem2 17115 2503lem3 17116 2503prm 17117 4001lem1 17118 4001lem2 17119 4001lem3 17120 4001lem4 17121 4001prm 17122 ocndx 17351 ocid 17352 dsndx 17355 dsid 17356 dsndxnn 17357 unifndx 17365 unifid 17366 unifndxnn 17367 slotsdifunifndx 17371 odrngstr 17373 homndx 17381 homid 17382 ccondx 17383 ccoid 17384 slotsdifocndx 17387 imasvalstr 17421 prdsvalstr 17422 catstr 17929 ipostr 18495 cnfldstr 21273 cnfldstrOLD 21288 mcubic 26764 cubic2 26765 cubic 26766 quart1cl 26771 quart1lem 26772 quart1 26773 quartlem1 26774 quartlem2 26775 log2ub 26866 log2le1 26867 birthday 26871 bposlem8 27209 bposlem9 27210 pntlemd 27512 pntlema 27514 pntlemb 27515 pntlemf 27523 pntlemo 27525 itvndx 28371 lngndx 28372 itvid 28373 lngid 28374 slotsinbpsd 28375 slotslnbpsd 28376 lngndxnitvndx 28377 trkgstr 28378 eengstr 28914 edgfid 28924 edgfndx 28925 edgfndxnn 28926 eufndx 33247 eufid 33248 12gcd5e1 41998 60gcd7e1 42000 420gcd8e4 42001 12lcm5e60 42003 60lcm7e420 42005 420lcm8e840 42006 lcmineqlem 42047 3lexlogpow5ineq1 42049 3lexlogpow5ineq2 42050 3lexlogpow5ineq4 42051 3lexlogpow2ineq1 42053 3lexlogpow2ineq2 42054 3lexlogpow5ineq5 42055 aks4d1p1p5 42070 aks4d1p1 42071 257prm 47566 fmtno4prmfac 47577 fmtno4prmfac193 47578 fmtno4nprmfac193 47579 fmtno5nprm 47588 139prmALT 47601 127prm 47604 3exp4mod41 47621 41prothprmlem2 47623 2exp340mod341 47738 341fppr2 47739 bgoldbtbndlem1 47810 tgblthelfgott 47820 tgoldbachlt 47821 tgoldbach 47822 |
| Copyright terms: Public domain | W3C validator |