| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > decnncl | Structured version Visualization version GIF version | ||
| Description: Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| decnncl.1 | ⊢ 𝐴 ∈ ℕ0 |
| decnncl.2 | ⊢ 𝐵 ∈ ℕ |
| Ref | Expression |
|---|---|
| decnncl | ⊢ ;𝐴𝐵 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdec10 12591 | . 2 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
| 2 | 10nn0 12606 | . . 3 ⊢ ;10 ∈ ℕ0 | |
| 3 | decnncl.1 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
| 4 | decnncl.2 | . . 3 ⊢ 𝐵 ∈ ℕ | |
| 5 | 2, 3, 4 | numnncl 12598 | . 2 ⊢ ((;10 · 𝐴) + 𝐵) ∈ ℕ |
| 6 | 1, 5 | eqeltri 2827 | 1 ⊢ ;𝐴𝐵 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 (class class class)co 7346 0cc0 11006 1c1 11007 + caddc 11009 · cmul 11011 ℕcn 12125 ℕ0cn0 12381 ;cdc 12588 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-dec 12589 |
| This theorem is referenced by: 11prm 17026 13prm 17027 17prm 17028 19prm 17029 23prm 17030 37prm 17032 43prm 17033 83prm 17034 139prm 17035 163prm 17036 317prm 17037 631prm 17038 1259lem1 17042 1259lem2 17043 1259lem3 17044 1259lem4 17045 1259lem5 17046 1259prm 17047 2503lem1 17048 2503lem2 17049 2503lem3 17050 2503prm 17051 4001lem1 17052 4001lem2 17053 4001lem3 17054 4001lem4 17055 4001prm 17056 ocndx 17285 ocid 17286 dsndx 17289 dsid 17290 dsndxnn 17291 unifndx 17299 unifid 17300 unifndxnn 17301 slotsdifunifndx 17305 odrngstr 17307 homndx 17315 homid 17316 ccondx 17317 ccoid 17318 slotsdifocndx 17321 imasvalstr 17355 prdsvalstr 17356 catstr 17867 ipostr 18435 cnfldstr 21294 cnfldstrOLD 21309 mcubic 26785 cubic2 26786 cubic 26787 quart1cl 26792 quart1lem 26793 quart1 26794 quartlem1 26795 quartlem2 26796 log2ub 26887 log2le1 26888 birthday 26892 bposlem8 27230 bposlem9 27231 pntlemd 27533 pntlema 27535 pntlemb 27536 pntlemf 27544 pntlemo 27546 itvndx 28416 lngndx 28417 itvid 28418 lngid 28419 slotsinbpsd 28420 slotslnbpsd 28421 lngndxnitvndx 28422 trkgstr 28423 eengstr 28959 edgfid 28969 edgfndx 28970 edgfndxnn 28971 eufndx 33254 eufid 33255 12gcd5e1 42042 60gcd7e1 42044 420gcd8e4 42045 12lcm5e60 42047 60lcm7e420 42049 420lcm8e840 42050 lcmineqlem 42091 3lexlogpow5ineq1 42093 3lexlogpow5ineq2 42094 3lexlogpow5ineq4 42095 3lexlogpow2ineq1 42097 3lexlogpow2ineq2 42098 3lexlogpow5ineq5 42099 aks4d1p1p5 42114 aks4d1p1 42115 257prm 47598 fmtno4prmfac 47609 fmtno4prmfac193 47610 fmtno4nprmfac193 47611 fmtno5nprm 47620 139prmALT 47633 127prm 47636 3exp4mod41 47653 41prothprmlem2 47655 2exp340mod341 47770 341fppr2 47771 bgoldbtbndlem1 47842 tgblthelfgott 47852 tgoldbachlt 47853 tgoldbach 47854 |
| Copyright terms: Public domain | W3C validator |