| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > decnncl | Structured version Visualization version GIF version | ||
| Description: Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| decnncl.1 | ⊢ 𝐴 ∈ ℕ0 |
| decnncl.2 | ⊢ 𝐵 ∈ ℕ |
| Ref | Expression |
|---|---|
| decnncl | ⊢ ;𝐴𝐵 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdec10 12612 | . 2 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
| 2 | 10nn0 12627 | . . 3 ⊢ ;10 ∈ ℕ0 | |
| 3 | decnncl.1 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
| 4 | decnncl.2 | . . 3 ⊢ 𝐵 ∈ ℕ | |
| 5 | 2, 3, 4 | numnncl 12619 | . 2 ⊢ ((;10 · 𝐴) + 𝐵) ∈ ℕ |
| 6 | 1, 5 | eqeltri 2824 | 1 ⊢ ;𝐴𝐵 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7353 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 ℕcn 12146 ℕ0cn0 12402 ;cdc 12609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-dec 12610 |
| This theorem is referenced by: 11prm 17044 13prm 17045 17prm 17046 19prm 17047 23prm 17048 37prm 17050 43prm 17051 83prm 17052 139prm 17053 163prm 17054 317prm 17055 631prm 17056 1259lem1 17060 1259lem2 17061 1259lem3 17062 1259lem4 17063 1259lem5 17064 1259prm 17065 2503lem1 17066 2503lem2 17067 2503lem3 17068 2503prm 17069 4001lem1 17070 4001lem2 17071 4001lem3 17072 4001lem4 17073 4001prm 17074 ocndx 17303 ocid 17304 dsndx 17307 dsid 17308 dsndxnn 17309 unifndx 17317 unifid 17318 unifndxnn 17319 slotsdifunifndx 17323 odrngstr 17325 homndx 17333 homid 17334 ccondx 17335 ccoid 17336 slotsdifocndx 17339 imasvalstr 17373 prdsvalstr 17374 catstr 17885 ipostr 18453 cnfldstr 21281 cnfldstrOLD 21296 mcubic 26773 cubic2 26774 cubic 26775 quart1cl 26780 quart1lem 26781 quart1 26782 quartlem1 26783 quartlem2 26784 log2ub 26875 log2le1 26876 birthday 26880 bposlem8 27218 bposlem9 27219 pntlemd 27521 pntlema 27523 pntlemb 27524 pntlemf 27532 pntlemo 27534 itvndx 28400 lngndx 28401 itvid 28402 lngid 28403 slotsinbpsd 28404 slotslnbpsd 28405 lngndxnitvndx 28406 trkgstr 28407 eengstr 28943 edgfid 28953 edgfndx 28954 edgfndxnn 28955 eufndx 33242 eufid 33243 12gcd5e1 41979 60gcd7e1 41981 420gcd8e4 41982 12lcm5e60 41984 60lcm7e420 41986 420lcm8e840 41987 lcmineqlem 42028 3lexlogpow5ineq1 42030 3lexlogpow5ineq2 42031 3lexlogpow5ineq4 42032 3lexlogpow2ineq1 42034 3lexlogpow2ineq2 42035 3lexlogpow5ineq5 42036 aks4d1p1p5 42051 aks4d1p1 42052 257prm 47549 fmtno4prmfac 47560 fmtno4prmfac193 47561 fmtno4nprmfac193 47562 fmtno5nprm 47571 139prmALT 47584 127prm 47587 3exp4mod41 47604 41prothprmlem2 47606 2exp340mod341 47721 341fppr2 47722 bgoldbtbndlem1 47793 tgblthelfgott 47803 tgoldbachlt 47804 tgoldbach 47805 |
| Copyright terms: Public domain | W3C validator |