| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > decnncl | Structured version Visualization version GIF version | ||
| Description: Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| decnncl.1 | ⊢ 𝐴 ∈ ℕ0 |
| decnncl.2 | ⊢ 𝐵 ∈ ℕ |
| Ref | Expression |
|---|---|
| decnncl | ⊢ ;𝐴𝐵 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdec10 12599 | . 2 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
| 2 | 10nn0 12614 | . . 3 ⊢ ;10 ∈ ℕ0 | |
| 3 | decnncl.1 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
| 4 | decnncl.2 | . . 3 ⊢ 𝐵 ∈ ℕ | |
| 5 | 2, 3, 4 | numnncl 12606 | . 2 ⊢ ((;10 · 𝐴) + 𝐵) ∈ ℕ |
| 6 | 1, 5 | eqeltri 2829 | 1 ⊢ ;𝐴𝐵 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 (class class class)co 7354 0cc0 11015 1c1 11016 + caddc 11018 · cmul 11020 ℕcn 12134 ℕ0cn0 12390 ;cdc 12596 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-om 7805 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-ltxr 11160 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-dec 12597 |
| This theorem is referenced by: 11prm 17030 13prm 17031 17prm 17032 19prm 17033 23prm 17034 37prm 17036 43prm 17037 83prm 17038 139prm 17039 163prm 17040 317prm 17041 631prm 17042 1259lem1 17046 1259lem2 17047 1259lem3 17048 1259lem4 17049 1259lem5 17050 1259prm 17051 2503lem1 17052 2503lem2 17053 2503lem3 17054 2503prm 17055 4001lem1 17056 4001lem2 17057 4001lem3 17058 4001lem4 17059 4001prm 17060 ocndx 17289 ocid 17290 dsndx 17293 dsid 17294 dsndxnn 17295 unifndx 17303 unifid 17304 unifndxnn 17305 slotsdifunifndx 17309 odrngstr 17311 homndx 17319 homid 17320 ccondx 17321 ccoid 17322 slotsdifocndx 17325 imasvalstr 17359 prdsvalstr 17360 catstr 17871 ipostr 18439 cnfldstr 21297 cnfldstrOLD 21312 mcubic 26787 cubic2 26788 cubic 26789 quart1cl 26794 quart1lem 26795 quart1 26796 quartlem1 26797 quartlem2 26798 log2ub 26889 log2le1 26890 birthday 26894 bposlem8 27232 bposlem9 27233 pntlemd 27535 pntlema 27537 pntlemb 27538 pntlemf 27546 pntlemo 27548 itvndx 28418 lngndx 28419 itvid 28420 lngid 28421 slotsinbpsd 28422 slotslnbpsd 28423 lngndxnitvndx 28424 trkgstr 28425 eengstr 28962 edgfid 28972 edgfndx 28973 edgfndxnn 28974 eufndx 33265 eufid 33266 12gcd5e1 42119 60gcd7e1 42121 420gcd8e4 42122 12lcm5e60 42124 60lcm7e420 42126 420lcm8e840 42127 lcmineqlem 42168 3lexlogpow5ineq1 42170 3lexlogpow5ineq2 42171 3lexlogpow5ineq4 42172 3lexlogpow2ineq1 42174 3lexlogpow2ineq2 42175 3lexlogpow5ineq5 42176 aks4d1p1p5 42191 aks4d1p1 42192 257prm 47688 fmtno4prmfac 47699 fmtno4prmfac193 47700 fmtno4nprmfac193 47701 fmtno5nprm 47710 139prmALT 47723 127prm 47726 3exp4mod41 47743 41prothprmlem2 47745 2exp340mod341 47860 341fppr2 47861 bgoldbtbndlem1 47932 tgblthelfgott 47942 tgoldbachlt 47943 tgoldbach 47944 |
| Copyright terms: Public domain | W3C validator |