Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > decnncl | Structured version Visualization version GIF version |
Description: Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
decnncl.1 | ⊢ 𝐴 ∈ ℕ0 |
decnncl.2 | ⊢ 𝐵 ∈ ℕ |
Ref | Expression |
---|---|
decnncl | ⊢ ;𝐴𝐵 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdec10 12440 | . 2 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
2 | 10nn0 12455 | . . 3 ⊢ ;10 ∈ ℕ0 | |
3 | decnncl.1 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
4 | decnncl.2 | . . 3 ⊢ 𝐵 ∈ ℕ | |
5 | 2, 3, 4 | numnncl 12447 | . 2 ⊢ ((;10 · 𝐴) + 𝐵) ∈ ℕ |
6 | 1, 5 | eqeltri 2835 | 1 ⊢ ;𝐴𝐵 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 (class class class)co 7275 0cc0 10871 1c1 10872 + caddc 10874 · cmul 10876 ℕcn 11973 ℕ0cn0 12233 ;cdc 12437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-dec 12438 |
This theorem is referenced by: 11prm 16816 13prm 16817 17prm 16818 19prm 16819 23prm 16820 37prm 16822 43prm 16823 83prm 16824 139prm 16825 163prm 16826 317prm 16827 631prm 16828 1259lem1 16832 1259lem2 16833 1259lem3 16834 1259lem4 16835 1259lem5 16836 1259prm 16837 2503lem1 16838 2503lem2 16839 2503lem3 16840 2503prm 16841 4001lem1 16842 4001lem2 16843 4001lem3 16844 4001lem4 16845 4001prm 16846 ocndx 17091 ocid 17092 dsndx 17095 dsid 17096 dsndxnn 17097 unifndx 17105 unifid 17106 unifndxnn 17107 slotsdifunifndx 17111 odrngstr 17113 homndx 17121 homid 17122 ccondx 17123 ccoid 17124 slotsdifocndx 17128 imasvalstr 17162 prdsvalstr 17163 oppchomfvalOLD 17424 oppcbasOLD 17429 resccoOLD 17546 catstr 17674 ipostr 18247 mgpdsOLD 19734 sradsOLD 20456 cnfldstr 20599 tuslemOLD 23419 tmslemOLD 23638 mcubic 25997 cubic2 25998 cubic 25999 quart1cl 26004 quart1lem 26005 quart1 26006 quartlem1 26007 quartlem2 26008 log2ub 26099 log2le1 26100 birthday 26104 bposlem8 26439 bposlem9 26440 pntlemd 26742 pntlema 26744 pntlemb 26745 pntlemf 26753 pntlemo 26755 itvndx 26798 lngndx 26799 itvid 26800 lngid 26801 slotsinbpsd 26802 slotslnbpsd 26803 lngndxnitvndx 26804 trkgstr 26805 ttgvalOLD 27237 ttglemOLD 27239 ttgdsOLD 27248 eengstr 27348 edgfid 27358 edgfndx 27359 edgfndxnn 27360 edgfndxidOLD 27362 baseltedgfOLD 27364 12gcd5e1 40011 60gcd7e1 40013 420gcd8e4 40014 12lcm5e60 40016 60lcm7e420 40018 420lcm8e840 40019 lcmineqlem 40060 3lexlogpow5ineq1 40062 3lexlogpow5ineq2 40063 3lexlogpow5ineq4 40064 3lexlogpow2ineq1 40066 3lexlogpow2ineq2 40067 3lexlogpow5ineq5 40068 aks4d1p1p5 40083 aks4d1p1 40084 257prm 45013 fmtno4prmfac 45024 fmtno4prmfac193 45025 fmtno4nprmfac193 45026 fmtno5nprm 45035 139prmALT 45048 127prm 45051 3exp4mod41 45068 41prothprmlem2 45070 2exp340mod341 45185 341fppr2 45186 bgoldbtbndlem1 45257 tgblthelfgott 45267 tgoldbachlt 45268 tgoldbach 45269 |
Copyright terms: Public domain | W3C validator |