Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > decnncl | Structured version Visualization version GIF version |
Description: Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
decnncl.1 | ⊢ 𝐴 ∈ ℕ0 |
decnncl.2 | ⊢ 𝐵 ∈ ℕ |
Ref | Expression |
---|---|
decnncl | ⊢ ;𝐴𝐵 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdec10 12175 | . 2 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
2 | 10nn0 12190 | . . 3 ⊢ ;10 ∈ ℕ0 | |
3 | decnncl.1 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
4 | decnncl.2 | . . 3 ⊢ 𝐵 ∈ ℕ | |
5 | 2, 3, 4 | numnncl 12182 | . 2 ⊢ ((;10 · 𝐴) + 𝐵) ∈ ℕ |
6 | 1, 5 | eqeltri 2829 | 1 ⊢ ;𝐴𝐵 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2113 (class class class)co 7164 0cc0 10608 1c1 10609 + caddc 10611 · cmul 10613 ℕcn 11709 ℕ0cn0 11969 ;cdc 12172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-mulcom 10672 ax-addass 10673 ax-mulass 10674 ax-distr 10675 ax-i2m1 10676 ax-1ne0 10677 ax-1rid 10678 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 ax-pre-ltadd 10684 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-ov 7167 df-om 7594 df-wrecs 7969 df-recs 8030 df-rdg 8068 df-er 8313 df-en 8549 df-dom 8550 df-sdom 8551 df-pnf 10748 df-mnf 10749 df-ltxr 10751 df-nn 11710 df-2 11772 df-3 11773 df-4 11774 df-5 11775 df-6 11776 df-7 11777 df-8 11778 df-9 11779 df-n0 11970 df-dec 12173 |
This theorem is referenced by: 11prm 16544 13prm 16545 17prm 16546 19prm 16547 23prm 16548 37prm 16550 43prm 16551 83prm 16552 139prm 16553 163prm 16554 317prm 16555 631prm 16556 1259lem1 16560 1259lem2 16561 1259lem3 16562 1259lem4 16563 1259lem5 16564 1259prm 16565 2503lem1 16566 2503lem2 16567 2503lem3 16568 2503prm 16569 4001lem1 16570 4001lem2 16571 4001lem3 16572 4001lem4 16573 4001prm 16574 ocndx 16769 ocid 16770 dsndx 16771 dsid 16772 unifndx 16773 unifid 16774 odrngstr 16775 ressds 16782 homndx 16783 homid 16784 ccondx 16785 ccoid 16786 resshom 16787 ressco 16788 imasvalstr 16821 prdsvalstr 16822 oppchomfval 17081 oppcbas 17085 rescco 17200 catstr 17325 ipostr 17872 mgpds 19361 srads 20070 cnfldstr 20212 ressunif 23007 tuslem 23012 tmslem 23228 mcubic 25577 cubic2 25578 cubic 25579 quart1cl 25584 quart1lem 25585 quart1 25586 quartlem1 25587 quartlem2 25588 log2ub 25679 log2le1 25680 birthday 25684 bposlem8 26019 bposlem9 26020 pntlemd 26322 pntlema 26324 pntlemb 26325 pntlemf 26333 pntlemo 26335 itvndx 26378 lngndx 26379 itvid 26380 lngid 26381 trkgstr 26382 ttgval 26813 ttglem 26814 ttgds 26819 eengstr 26918 edgfid 26928 edgfndxnn 26929 edgfndxid 26930 baseltedgf 26931 12gcd5e1 39620 60gcd7e1 39622 420gcd8e4 39623 12lcm5e60 39625 60lcm7e420 39627 420lcm8e840 39628 lcmineqlem 39669 3lexlogpow5ineq1 39671 3lexlogpow5ineq2 39672 3lexlogpow5ineq4 39673 3lexlogpow2ineq1 39675 3lexlogpow2ineq2 39676 3lexlogpow5ineq5 39677 aks4d1p1p5 39691 aks4d1p1 39692 257prm 44531 fmtno4prmfac 44542 fmtno4prmfac193 44543 fmtno4nprmfac193 44544 fmtno5nprm 44553 139prmALT 44566 127prm 44569 3exp4mod41 44586 41prothprmlem2 44588 2exp340mod341 44703 341fppr2 44704 bgoldbtbndlem1 44775 tgblthelfgott 44785 tgoldbachlt 44786 tgoldbach 44787 |
Copyright terms: Public domain | W3C validator |