| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > decnncl | Structured version Visualization version GIF version | ||
| Description: Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| decnncl.1 | ⊢ 𝐴 ∈ ℕ0 |
| decnncl.2 | ⊢ 𝐵 ∈ ℕ |
| Ref | Expression |
|---|---|
| decnncl | ⊢ ;𝐴𝐵 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdec10 12709 | . 2 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
| 2 | 10nn0 12724 | . . 3 ⊢ ;10 ∈ ℕ0 | |
| 3 | decnncl.1 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
| 4 | decnncl.2 | . . 3 ⊢ 𝐵 ∈ ℕ | |
| 5 | 2, 3, 4 | numnncl 12716 | . 2 ⊢ ((;10 · 𝐴) + 𝐵) ∈ ℕ |
| 6 | 1, 5 | eqeltri 2830 | 1 ⊢ ;𝐴𝐵 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 (class class class)co 7403 0cc0 11127 1c1 11128 + caddc 11130 · cmul 11132 ℕcn 12238 ℕ0cn0 12499 ;cdc 12706 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-ltxr 11272 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-dec 12707 |
| This theorem is referenced by: 11prm 17132 13prm 17133 17prm 17134 19prm 17135 23prm 17136 37prm 17138 43prm 17139 83prm 17140 139prm 17141 163prm 17142 317prm 17143 631prm 17144 1259lem1 17148 1259lem2 17149 1259lem3 17150 1259lem4 17151 1259lem5 17152 1259prm 17153 2503lem1 17154 2503lem2 17155 2503lem3 17156 2503prm 17157 4001lem1 17158 4001lem2 17159 4001lem3 17160 4001lem4 17161 4001prm 17162 ocndx 17393 ocid 17394 dsndx 17397 dsid 17398 dsndxnn 17399 unifndx 17407 unifid 17408 unifndxnn 17409 slotsdifunifndx 17413 odrngstr 17415 homndx 17423 homid 17424 ccondx 17425 ccoid 17426 slotsdifocndx 17429 imasvalstr 17463 prdsvalstr 17464 catstr 17971 ipostr 18537 cnfldstr 21315 cnfldstrOLD 21330 mcubic 26807 cubic2 26808 cubic 26809 quart1cl 26814 quart1lem 26815 quart1 26816 quartlem1 26817 quartlem2 26818 log2ub 26909 log2le1 26910 birthday 26914 bposlem8 27252 bposlem9 27253 pntlemd 27555 pntlema 27557 pntlemb 27558 pntlemf 27566 pntlemo 27568 itvndx 28362 lngndx 28363 itvid 28364 lngid 28365 slotsinbpsd 28366 slotslnbpsd 28367 lngndxnitvndx 28368 trkgstr 28369 eengstr 28905 edgfid 28915 edgfndx 28916 edgfndxnn 28917 eufndx 33230 eufid 33231 12gcd5e1 41962 60gcd7e1 41964 420gcd8e4 41965 12lcm5e60 41967 60lcm7e420 41969 420lcm8e840 41970 lcmineqlem 42011 3lexlogpow5ineq1 42013 3lexlogpow5ineq2 42014 3lexlogpow5ineq4 42015 3lexlogpow2ineq1 42017 3lexlogpow2ineq2 42018 3lexlogpow5ineq5 42019 aks4d1p1p5 42034 aks4d1p1 42035 257prm 47523 fmtno4prmfac 47534 fmtno4prmfac193 47535 fmtno4nprmfac193 47536 fmtno5nprm 47545 139prmALT 47558 127prm 47561 3exp4mod41 47578 41prothprmlem2 47580 2exp340mod341 47695 341fppr2 47696 bgoldbtbndlem1 47767 tgblthelfgott 47777 tgoldbachlt 47778 tgoldbach 47779 |
| Copyright terms: Public domain | W3C validator |