Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dp2cl Structured version   Visualization version   GIF version

Theorem dp2cl 31252
Description: Closure for the decimal fraction constructor if both values are reals. (Contributed by David A. Wheeler, 15-May-2015.)
Assertion
Ref Expression
dp2cl ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴𝐵 ∈ ℝ)

Proof of Theorem dp2cl
StepHypRef Expression
1 df-dp2 31244 . 2 𝐴𝐵 = (𝐴 + (𝐵 / 10))
2 10re 12516 . . . 4 10 ∈ ℝ
3 10pos 12514 . . . . 5 0 < 10
42, 3gt0ne0ii 11571 . . . 4 10 ≠ 0
5 redivcl 11754 . . . 4 ((𝐵 ∈ ℝ ∧ 10 ∈ ℝ ∧ 10 ≠ 0) → (𝐵 / 10) ∈ ℝ)
62, 4, 5mp3an23 1452 . . 3 (𝐵 ∈ ℝ → (𝐵 / 10) ∈ ℝ)
7 readdcl 11014 . . 3 ((𝐴 ∈ ℝ ∧ (𝐵 / 10) ∈ ℝ) → (𝐴 + (𝐵 / 10)) ∈ ℝ)
86, 7sylan2 593 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + (𝐵 / 10)) ∈ ℝ)
91, 8eqeltrid 2840 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴𝐵 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2103  wne 2939  (class class class)co 7308  cr 10930  0cc0 10931  1c1 10932   + caddc 10934   / cdiv 11692  cdc 12497  cdp2 31243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1968  ax-7 2008  ax-8 2105  ax-9 2113  ax-10 2134  ax-11 2151  ax-12 2168  ax-ext 2706  ax-sep 5231  ax-nul 5238  ax-pow 5296  ax-pr 5360  ax-un 7621  ax-resscn 10988  ax-1cn 10989  ax-icn 10990  ax-addcl 10991  ax-addrcl 10992  ax-mulcl 10993  ax-mulrcl 10994  ax-mulcom 10995  ax-addass 10996  ax-mulass 10997  ax-distr 10998  ax-i2m1 10999  ax-1ne0 11000  ax-1rid 11001  ax-rnegex 11002  ax-rrecex 11003  ax-cnre 11004  ax-pre-lttri 11005  ax-pre-lttrn 11006  ax-pre-ltadd 11007  ax-pre-mulgt0 11008
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2727  df-clel 2813  df-nfc 2885  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3339  df-reu 3340  df-rab 3357  df-v 3438  df-sbc 3721  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4844  df-iun 4932  df-br 5081  df-opab 5143  df-mpt 5164  df-tr 5198  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7265  df-ov 7311  df-oprab 7312  df-mpo 7313  df-om 7749  df-2nd 7868  df-frecs 8132  df-wrecs 8163  df-recs 8237  df-rdg 8276  df-er 8534  df-en 8770  df-dom 8771  df-sdom 8772  df-pnf 11071  df-mnf 11072  df-xr 11073  df-ltxr 11074  df-le 11075  df-sub 11267  df-neg 11268  df-div 11693  df-nn 12034  df-2 12096  df-3 12097  df-4 12098  df-5 12099  df-6 12100  df-7 12101  df-8 12102  df-9 12103  df-dec 12498  df-dp2 31244
This theorem is referenced by:  dpcl  31263  dpmul100  31269  dp3mul10  31270  dpmul1000  31271  dpadd2  31282  dpadd3  31284  dpmul  31285  dpmul4  31286  hgt750lemd  32724  hgt750lem  32727  hgt750lem2  32728  hgt750leme  32734
  Copyright terms: Public domain W3C validator