Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > slotsdifdsndx | Structured version Visualization version GIF version |
Description: The index of the slot for the distance is not the index of other slots. Formerly part of proof for cnfldfunALT 20655. (Contributed by AV, 11-Nov-2024.) |
Ref | Expression |
---|---|
slotsdifdsndx | ⊢ ((*𝑟‘ndx) ≠ (dist‘ndx) ∧ (le‘ndx) ≠ (dist‘ndx)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4re 12103 | . . . 4 ⊢ 4 ∈ ℝ | |
2 | 1nn 12030 | . . . . 5 ⊢ 1 ∈ ℕ | |
3 | 2nn0 12296 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
4 | 4nn0 12298 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
5 | 4lt10 12619 | . . . . 5 ⊢ 4 < ;10 | |
6 | 2, 3, 4, 5 | declti 12521 | . . . 4 ⊢ 4 < ;12 |
7 | 1, 6 | ltneii 11134 | . . 3 ⊢ 4 ≠ ;12 |
8 | starvndx 17057 | . . . 4 ⊢ (*𝑟‘ndx) = 4 | |
9 | dsndx 17140 | . . . 4 ⊢ (dist‘ndx) = ;12 | |
10 | 8, 9 | neeq12i 3008 | . . 3 ⊢ ((*𝑟‘ndx) ≠ (dist‘ndx) ↔ 4 ≠ ;12) |
11 | 7, 10 | mpbir 230 | . 2 ⊢ (*𝑟‘ndx) ≠ (dist‘ndx) |
12 | 10re 12502 | . . . 4 ⊢ ;10 ∈ ℝ | |
13 | 1nn0 12295 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
14 | 0nn0 12294 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
15 | 2nn 12092 | . . . . 5 ⊢ 2 ∈ ℕ | |
16 | 2pos 12122 | . . . . 5 ⊢ 0 < 2 | |
17 | 13, 14, 15, 16 | declt 12511 | . . . 4 ⊢ ;10 < ;12 |
18 | 12, 17 | ltneii 11134 | . . 3 ⊢ ;10 ≠ ;12 |
19 | plendx 17121 | . . . 4 ⊢ (le‘ndx) = ;10 | |
20 | 19, 9 | neeq12i 3008 | . . 3 ⊢ ((le‘ndx) ≠ (dist‘ndx) ↔ ;10 ≠ ;12) |
21 | 18, 20 | mpbir 230 | . 2 ⊢ (le‘ndx) ≠ (dist‘ndx) |
22 | 11, 21 | pm3.2i 472 | 1 ⊢ ((*𝑟‘ndx) ≠ (dist‘ndx) ∧ (le‘ndx) ≠ (dist‘ndx)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 ≠ wne 2941 ‘cfv 6458 0cc0 10917 1c1 10918 2c2 12074 4c4 12076 ;cdc 12483 ndxcnx 16939 *𝑟cstv 17009 lecple 17014 distcds 17016 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-n0 12280 df-z 12366 df-dec 12484 df-slot 16928 df-ndx 16940 df-starv 17022 df-ple 17027 df-ds 17029 |
This theorem is referenced by: cnfldfunALT 20655 |
Copyright terms: Public domain | W3C validator |