![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1lt10 | Structured version Visualization version GIF version |
Description: 1 is less than 10. (Contributed by NM, 7-Nov-2012.) (Revised by Mario Carneiro, 9-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
Ref | Expression |
---|---|
1lt10 | ⊢ 1 < ;10 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2 12429 | . 2 ⊢ 1 < 2 | |
2 | 2lt10 12861 | . 2 ⊢ 2 < ;10 | |
3 | 1re 11255 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2re 12332 | . . 3 ⊢ 2 ∈ ℝ | |
5 | 10re 12742 | . . 3 ⊢ ;10 ∈ ℝ | |
6 | 3, 4, 5 | lttri 11381 | . 2 ⊢ ((1 < 2 ∧ 2 < ;10) → 1 < ;10) |
7 | 1, 2, 6 | mp2an 690 | 1 ⊢ 1 < ;10 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5145 0cc0 11149 1c1 11150 < clt 11289 2c2 12313 ;cdc 12723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-nn 12259 df-2 12321 df-3 12322 df-4 12323 df-5 12324 df-6 12325 df-7 12326 df-8 12327 df-9 12328 df-dec 12724 |
This theorem is referenced by: 0.999... 15880 3dvds 16328 11prm 17112 13prm 17113 17prm 17114 19prm 17115 23prm 17116 37prm 17118 43prm 17119 83prm 17120 139prm 17121 163prm 17122 317prm 17123 631prm 17124 2503prm 17137 basendxltplendx 17378 basendxnocndx 17392 basendxltdsndx 17397 basendxltunifndx 17407 slotsbhcdif 17424 slotsbhcdifOLD 17425 oppcbasOLD 17728 rescbasOLD 17841 rescabsOLD 17847 catstr 17976 odubasOLD 18312 isposixOLD 18346 cnfldfunALTOLDOLD 21368 znbas2OLD 21531 thlbasOLD 21689 opsrbasOLD 22055 tuslemOLD 24260 tmslemOLD 24479 log2ub 26974 slotsinbpsd 28365 slotslnbpsd 28366 trkgstr 28368 ttgbasOLD 28804 eengstr 28911 basendxltedgfndx 28926 baseltedgfOLD 28927 hgt750lemd 34507 hgt750lem 34510 hgt750lem2 34511 hgt750leme 34517 tgoldbachgnn 34518 3lexlogpow5ineq1 41766 257prm 47169 fmtno4prmfac193 47181 fmtno5nprm 47191 139prmALT 47204 127prm 47207 tgblthelfgott 47423 tgoldbach 47425 |
Copyright terms: Public domain | W3C validator |