| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1lt10 | Structured version Visualization version GIF version | ||
| Description: 1 is less than 10. (Contributed by NM, 7-Nov-2012.) (Revised by Mario Carneiro, 9-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
| Ref | Expression |
|---|---|
| 1lt10 | ⊢ 1 < ;10 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1lt2 12286 | . 2 ⊢ 1 < 2 | |
| 2 | 2lt10 12721 | . 2 ⊢ 2 < ;10 | |
| 3 | 1re 11107 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2re 12194 | . . 3 ⊢ 2 ∈ ℝ | |
| 5 | 10re 12602 | . . 3 ⊢ ;10 ∈ ℝ | |
| 6 | 3, 4, 5 | lttri 11234 | . 2 ⊢ ((1 < 2 ∧ 2 < ;10) → 1 < ;10) |
| 7 | 1, 2, 6 | mp2an 692 | 1 ⊢ 1 < ;10 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5086 0cc0 11001 1c1 11002 < clt 11141 2c2 12175 ;cdc 12583 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-dec 12584 |
| This theorem is referenced by: 0.999... 15783 3dvds 16237 11prm 17021 13prm 17022 17prm 17023 19prm 17024 23prm 17025 37prm 17027 43prm 17028 83prm 17029 139prm 17030 163prm 17031 317prm 17032 631prm 17033 2503prm 17046 basendxltplendx 17268 basendxnocndx 17282 basendxltdsndx 17287 basendxltunifndx 17297 slotsbhcdif 17314 catstr 17862 log2ub 26881 slotsinbpsd 28414 slotslnbpsd 28415 trkgstr 28417 eengstr 28953 basendxltedgfndx 28967 hgt750lemd 34653 hgt750lem 34656 hgt750lem2 34657 hgt750leme 34663 tgoldbachgnn 34664 3lexlogpow5ineq1 42087 257prm 47592 fmtno4prmfac193 47604 fmtno5nprm 47614 139prmALT 47627 127prm 47630 tgblthelfgott 47846 tgoldbach 47848 |
| Copyright terms: Public domain | W3C validator |