Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1lt10 | Structured version Visualization version GIF version |
Description: 1 is less than 10. (Contributed by NM, 7-Nov-2012.) (Revised by Mario Carneiro, 9-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
Ref | Expression |
---|---|
1lt10 | ⊢ 1 < ;10 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2 12249 | . 2 ⊢ 1 < 2 | |
2 | 2lt10 12680 | . 2 ⊢ 2 < ;10 | |
3 | 1re 11080 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2re 12152 | . . 3 ⊢ 2 ∈ ℝ | |
5 | 10re 12561 | . . 3 ⊢ ;10 ∈ ℝ | |
6 | 3, 4, 5 | lttri 11206 | . 2 ⊢ ((1 < 2 ∧ 2 < ;10) → 1 < ;10) |
7 | 1, 2, 6 | mp2an 690 | 1 ⊢ 1 < ;10 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5096 0cc0 10976 1c1 10977 < clt 11114 2c2 12133 ;cdc 12542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7785 df-2nd 7904 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-er 8573 df-en 8809 df-dom 8810 df-sdom 8811 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-nn 12079 df-2 12141 df-3 12142 df-4 12143 df-5 12144 df-6 12145 df-7 12146 df-8 12147 df-9 12148 df-dec 12543 |
This theorem is referenced by: 0.999... 15692 3dvds 16139 11prm 16913 13prm 16914 17prm 16915 19prm 16916 23prm 16917 37prm 16919 43prm 16920 83prm 16921 139prm 16922 163prm 16923 317prm 16924 631prm 16925 2503prm 16938 basendxltplendx 17176 basendxnocndx 17190 basendxltdsndx 17195 basendxltunifndx 17205 slotsbhcdif 17222 slotsbhcdifOLD 17223 oppcbasOLD 17526 rescbasOLD 17639 rescabsOLD 17645 catstr 17771 odubasOLD 18107 isposixOLD 18141 cnfldfunALTOLD 20716 znbas2OLD 20850 thlbasOLD 21007 opsrbasOLD 21358 tuslemOLD 23524 tmslemOLD 23743 log2ub 26204 slotsinbpsd 27090 slotslnbpsd 27091 trkgstr 27093 ttgbasOLD 27529 eengstr 27636 basendxltedgfndx 27651 baseltedgfOLD 27652 hgt750lemd 32926 hgt750lem 32929 hgt750lem2 32930 hgt750leme 32936 tgoldbachgnn 32937 3lexlogpow5ineq1 40367 257prm 45431 fmtno4prmfac193 45443 fmtno5nprm 45453 139prmALT 45466 127prm 45469 tgblthelfgott 45685 tgoldbach 45687 |
Copyright terms: Public domain | W3C validator |