![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2llnma1 | Structured version Visualization version GIF version |
Description: Two different intersecting lines (expressed in terms of atoms) meet at their common point (atom). (Contributed by NM, 11-Oct-2012.) |
Ref | Expression |
---|---|
2llnm.l | β’ β€ = (leβπΎ) |
2llnm.j | β’ β¨ = (joinβπΎ) |
2llnm.m | β’ β§ = (meetβπΎ) |
2llnm.a | β’ π΄ = (AtomsβπΎ) |
Ref | Expression |
---|---|
2llnma1 | β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ Β¬ π β€ (π β¨ π)) β ((π β¨ π) β§ (π β¨ π )) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . 2 β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ Β¬ π β€ (π β¨ π)) β πΎ β HL) | |
2 | simp21 1206 | . . 3 β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ Β¬ π β€ (π β¨ π)) β π β π΄) | |
3 | eqid 2732 | . . . 4 β’ (BaseβπΎ) = (BaseβπΎ) | |
4 | 2llnm.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
5 | 3, 4 | atbase 38462 | . . 3 β’ (π β π΄ β π β (BaseβπΎ)) |
6 | 2, 5 | syl 17 | . 2 β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ Β¬ π β€ (π β¨ π)) β π β (BaseβπΎ)) |
7 | simp22 1207 | . 2 β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ Β¬ π β€ (π β¨ π)) β π β π΄) | |
8 | simp23 1208 | . 2 β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ Β¬ π β€ (π β¨ π)) β π β π΄) | |
9 | simp3 1138 | . . 3 β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ Β¬ π β€ (π β¨ π)) β Β¬ π β€ (π β¨ π)) | |
10 | 2llnm.j | . . . . . 6 β’ β¨ = (joinβπΎ) | |
11 | 10, 4 | hlatjcom 38541 | . . . . 5 β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π β¨ π) = (π β¨ π)) |
12 | 1, 2, 7, 11 | syl3anc 1371 | . . . 4 β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ Β¬ π β€ (π β¨ π)) β (π β¨ π) = (π β¨ π)) |
13 | 12 | breq2d 5160 | . . 3 β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ Β¬ π β€ (π β¨ π)) β (π β€ (π β¨ π) β π β€ (π β¨ π))) |
14 | 9, 13 | mtbid 323 | . 2 β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ Β¬ π β€ (π β¨ π)) β Β¬ π β€ (π β¨ π)) |
15 | 2llnm.l | . . 3 β’ β€ = (leβπΎ) | |
16 | 2llnm.m | . . 3 β’ β§ = (meetβπΎ) | |
17 | 3, 15, 10, 16, 4 | 2llnma1b 38960 | . 2 β’ ((πΎ β HL β§ (π β (BaseβπΎ) β§ π β π΄ β§ π β π΄) β§ Β¬ π β€ (π β¨ π)) β ((π β¨ π) β§ (π β¨ π )) = π) |
18 | 1, 6, 7, 8, 14, 17 | syl131anc 1383 | 1 β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ Β¬ π β€ (π β¨ π)) β ((π β¨ π) β§ (π β¨ π )) = π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ w3a 1087 = wceq 1541 β wcel 2106 class class class wbr 5148 βcfv 6543 (class class class)co 7411 Basecbs 17148 lecple 17208 joincjn 18268 meetcmee 18269 Atomscatm 38436 HLchlt 38523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-proset 18252 df-poset 18270 df-plt 18287 df-lub 18303 df-glb 18304 df-join 18305 df-meet 18306 df-p0 18382 df-lat 18389 df-clat 18456 df-oposet 38349 df-ol 38351 df-oml 38352 df-covers 38439 df-ats 38440 df-atl 38471 df-cvlat 38495 df-hlat 38524 |
This theorem is referenced by: 2llnma3r 38962 2llnma2 38963 cdleme17c 39462 |
Copyright terms: Public domain | W3C validator |