Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2llnma1 Structured version   Visualization version   GIF version

Theorem 2llnma1 37041
 Description: Two different intersecting lines (expressed in terms of atoms) meet at their common point (atom). (Contributed by NM, 11-Oct-2012.)
Hypotheses
Ref Expression
2llnm.l = (le‘𝐾)
2llnm.j = (join‘𝐾)
2llnm.m = (meet‘𝐾)
2llnm.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
2llnma1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑅 (𝑃 𝑄)) → ((𝑄 𝑃) (𝑄 𝑅)) = 𝑄)

Proof of Theorem 2llnma1
StepHypRef Expression
1 simp1 1133 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝐾 ∈ HL)
2 simp21 1203 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑃𝐴)
3 eqid 2822 . . . 4 (Base‘𝐾) = (Base‘𝐾)
4 2llnm.a . . . 4 𝐴 = (Atoms‘𝐾)
53, 4atbase 36543 . . 3 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
62, 5syl 17 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑃 ∈ (Base‘𝐾))
7 simp22 1204 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑄𝐴)
8 simp23 1205 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑅𝐴)
9 simp3 1135 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑅 (𝑃 𝑄)) → ¬ 𝑅 (𝑃 𝑄))
10 2llnm.j . . . . . 6 = (join‘𝐾)
1110, 4hlatjcom 36622 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) = (𝑄 𝑃))
121, 2, 7, 11syl3anc 1368 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝑃 𝑄) = (𝑄 𝑃))
1312breq2d 5054 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝑅 (𝑃 𝑄) ↔ 𝑅 (𝑄 𝑃)))
149, 13mtbid 327 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑅 (𝑃 𝑄)) → ¬ 𝑅 (𝑄 𝑃))
15 2llnm.l . . 3 = (le‘𝐾)
16 2llnm.m . . 3 = (meet‘𝐾)
173, 15, 10, 16, 42llnma1b 37040 . 2 ((𝐾 ∈ HL ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄𝐴𝑅𝐴) ∧ ¬ 𝑅 (𝑄 𝑃)) → ((𝑄 𝑃) (𝑄 𝑅)) = 𝑄)
181, 6, 7, 8, 14, 17syl131anc 1380 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑅 (𝑃 𝑄)) → ((𝑄 𝑃) (𝑄 𝑅)) = 𝑄)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ w3a 1084   = wceq 1538   ∈ wcel 2114   class class class wbr 5042  ‘cfv 6334  (class class class)co 7140  Basecbs 16474  lecple 16563  joincjn 17545  meetcmee 17546  Atomscatm 36517  HLchlt 36604 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-proset 17529  df-poset 17547  df-plt 17559  df-lub 17575  df-glb 17576  df-join 17577  df-meet 17578  df-p0 17640  df-lat 17647  df-clat 17709  df-oposet 36430  df-ol 36432  df-oml 36433  df-covers 36520  df-ats 36521  df-atl 36552  df-cvlat 36576  df-hlat 36605 This theorem is referenced by:  2llnma3r  37042  2llnma2  37043  cdleme17c  37542
 Copyright terms: Public domain W3C validator