Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2llnma3r Structured version   Visualization version   GIF version

Theorem 2llnma3r 39897
Description: Two different intersecting lines (expressed in terms of atoms) meet at their common point (atom). (Contributed by NM, 30-Apr-2013.)
Hypotheses
Ref Expression
2llnm.l = (le‘𝐾)
2llnm.j = (join‘𝐾)
2llnm.m = (meet‘𝐾)
2llnm.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
2llnma3r ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → ((𝑃 𝑅) (𝑄 𝑅)) = 𝑅)

Proof of Theorem 2llnma3r
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → 𝐾 ∈ HL)
2 simp21 1207 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → 𝑃𝐴)
3 simp23 1209 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → 𝑅𝐴)
4 2llnm.j . . . . 5 = (join‘𝐾)
5 2llnm.a . . . . 5 𝐴 = (Atoms‘𝐾)
64, 5hlatjcom 39477 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) → (𝑃 𝑅) = (𝑅 𝑃))
71, 2, 3, 6syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → (𝑃 𝑅) = (𝑅 𝑃))
8 simp22 1208 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → 𝑄𝐴)
94, 5hlatjcom 39477 . . . 4 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) = (𝑅 𝑄))
101, 8, 3, 9syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → (𝑄 𝑅) = (𝑅 𝑄))
117, 10oveq12d 7364 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → ((𝑃 𝑅) (𝑄 𝑅)) = ((𝑅 𝑃) (𝑅 𝑄)))
12 simpr 484 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄 = 𝑅) → 𝑄 = 𝑅)
1312oveq2d 7362 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄 = 𝑅) → (𝑅 𝑄) = (𝑅 𝑅))
14 simpl1 1192 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄 = 𝑅) → 𝐾 ∈ HL)
15 simpl23 1254 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄 = 𝑅) → 𝑅𝐴)
164, 5hlatjidm 39478 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅𝐴) → (𝑅 𝑅) = 𝑅)
1714, 15, 16syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄 = 𝑅) → (𝑅 𝑅) = 𝑅)
1813, 17eqtrd 2766 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄 = 𝑅) → (𝑅 𝑄) = 𝑅)
1918oveq2d 7362 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄 = 𝑅) → ((𝑅 𝑃) (𝑅 𝑄)) = ((𝑅 𝑃) 𝑅))
20 2llnm.l . . . . . . . 8 = (le‘𝐾)
2120, 4, 5hlatlej1 39484 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑃𝐴) → 𝑅 (𝑅 𝑃))
221, 3, 2, 21syl3anc 1373 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → 𝑅 (𝑅 𝑃))
23 hllat 39472 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Lat)
24233ad2ant1 1133 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → 𝐾 ∈ Lat)
25 eqid 2731 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
2625, 5atbase 39398 . . . . . . . 8 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
273, 26syl 17 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → 𝑅 ∈ (Base‘𝐾))
2825, 4, 5hlatjcl 39476 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑃𝐴) → (𝑅 𝑃) ∈ (Base‘𝐾))
291, 3, 2, 28syl3anc 1373 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → (𝑅 𝑃) ∈ (Base‘𝐾))
30 2llnm.m . . . . . . . 8 = (meet‘𝐾)
3125, 20, 30latleeqm2 18374 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝑅 𝑃) ∈ (Base‘𝐾)) → (𝑅 (𝑅 𝑃) ↔ ((𝑅 𝑃) 𝑅) = 𝑅))
3224, 27, 29, 31syl3anc 1373 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → (𝑅 (𝑅 𝑃) ↔ ((𝑅 𝑃) 𝑅) = 𝑅))
3322, 32mpbid 232 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → ((𝑅 𝑃) 𝑅) = 𝑅)
3433adantr 480 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄 = 𝑅) → ((𝑅 𝑃) 𝑅) = 𝑅)
3519, 34eqtrd 2766 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄 = 𝑅) → ((𝑅 𝑃) (𝑅 𝑄)) = 𝑅)
36 simpl1 1192 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → 𝐾 ∈ HL)
37 simpl21 1252 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → 𝑃𝐴)
38 simpl23 1254 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → 𝑅𝐴)
39 simpl22 1253 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → 𝑄𝐴)
40 simpl3 1194 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → (𝑃 𝑅) ≠ (𝑄 𝑅))
4120, 4, 5hlatlej2 39485 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) → 𝑅 (𝑃 𝑅))
421, 2, 3, 41syl3anc 1373 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → 𝑅 (𝑃 𝑅))
4325, 5atbase 39398 . . . . . . . . . . . 12 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
448, 43syl 17 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → 𝑄 ∈ (Base‘𝐾))
4525, 4, 5hlatjcl 39476 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) → (𝑃 𝑅) ∈ (Base‘𝐾))
461, 2, 3, 45syl3anc 1373 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → (𝑃 𝑅) ∈ (Base‘𝐾))
4725, 20, 4latjle12 18356 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝑃 𝑅) ∈ (Base‘𝐾))) → ((𝑄 (𝑃 𝑅) ∧ 𝑅 (𝑃 𝑅)) ↔ (𝑄 𝑅) (𝑃 𝑅)))
4824, 44, 27, 46, 47syl13anc 1374 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → ((𝑄 (𝑃 𝑅) ∧ 𝑅 (𝑃 𝑅)) ↔ (𝑄 𝑅) (𝑃 𝑅)))
4948biimpd 229 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → ((𝑄 (𝑃 𝑅) ∧ 𝑅 (𝑃 𝑅)) → (𝑄 𝑅) (𝑃 𝑅)))
5042, 49mpan2d 694 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → (𝑄 (𝑃 𝑅) → (𝑄 𝑅) (𝑃 𝑅)))
5150adantr 480 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → (𝑄 (𝑃 𝑅) → (𝑄 𝑅) (𝑃 𝑅)))
52 simpr 484 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → 𝑄𝑅)
5320, 4, 5ps-1 39586 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑃𝐴𝑅𝐴)) → ((𝑄 𝑅) (𝑃 𝑅) ↔ (𝑄 𝑅) = (𝑃 𝑅)))
5436, 39, 38, 52, 37, 38, 53syl132anc 1390 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → ((𝑄 𝑅) (𝑃 𝑅) ↔ (𝑄 𝑅) = (𝑃 𝑅)))
5554biimpd 229 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → ((𝑄 𝑅) (𝑃 𝑅) → (𝑄 𝑅) = (𝑃 𝑅)))
56 eqcom 2738 . . . . . . . 8 ((𝑄 𝑅) = (𝑃 𝑅) ↔ (𝑃 𝑅) = (𝑄 𝑅))
5755, 56imbitrdi 251 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → ((𝑄 𝑅) (𝑃 𝑅) → (𝑃 𝑅) = (𝑄 𝑅)))
5851, 57syld 47 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → (𝑄 (𝑃 𝑅) → (𝑃 𝑅) = (𝑄 𝑅)))
5958necon3ad 2941 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → ((𝑃 𝑅) ≠ (𝑄 𝑅) → ¬ 𝑄 (𝑃 𝑅)))
6040, 59mpd 15 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → ¬ 𝑄 (𝑃 𝑅))
6120, 4, 30, 52llnma1 39896 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑅𝐴𝑄𝐴) ∧ ¬ 𝑄 (𝑃 𝑅)) → ((𝑅 𝑃) (𝑅 𝑄)) = 𝑅)
6236, 37, 38, 39, 60, 61syl131anc 1385 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → ((𝑅 𝑃) (𝑅 𝑄)) = 𝑅)
6335, 62pm2.61dane 3015 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → ((𝑅 𝑃) (𝑅 𝑄)) = 𝑅)
6411, 63eqtrd 2766 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → ((𝑃 𝑅) (𝑄 𝑅)) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5089  cfv 6481  (class class class)co 7346  Basecbs 17120  lecple 17168  joincjn 18217  meetcmee 18218  Latclat 18337  Atomscatm 39372  HLchlt 39459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-clat 18405  df-oposet 39285  df-ol 39287  df-oml 39288  df-covers 39375  df-ats 39376  df-atl 39407  df-cvlat 39431  df-hlat 39460
This theorem is referenced by:  cdlemg9a  40741  cdlemg12a  40752
  Copyright terms: Public domain W3C validator