Proof of Theorem 2llnma3r
Step | Hyp | Ref
| Expression |
1 | | simp1 1134 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → 𝐾 ∈ HL) |
2 | | simp21 1204 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → 𝑃 ∈ 𝐴) |
3 | | simp23 1206 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → 𝑅 ∈ 𝐴) |
4 | | 2llnm.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
5 | | 2llnm.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
6 | 4, 5 | hlatjcom 37309 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑃 ∨ 𝑅) = (𝑅 ∨ 𝑃)) |
7 | 1, 2, 3, 6 | syl3anc 1369 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → (𝑃 ∨ 𝑅) = (𝑅 ∨ 𝑃)) |
8 | | simp22 1205 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → 𝑄 ∈ 𝐴) |
9 | 4, 5 | hlatjcom 37309 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑄 ∨ 𝑅) = (𝑅 ∨ 𝑄)) |
10 | 1, 8, 3, 9 | syl3anc 1369 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → (𝑄 ∨ 𝑅) = (𝑅 ∨ 𝑄)) |
11 | 7, 10 | oveq12d 7273 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → ((𝑃 ∨ 𝑅) ∧ (𝑄 ∨ 𝑅)) = ((𝑅 ∨ 𝑃) ∧ (𝑅 ∨ 𝑄))) |
12 | | simpr 484 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 = 𝑅) → 𝑄 = 𝑅) |
13 | 12 | oveq2d 7271 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 = 𝑅) → (𝑅 ∨ 𝑄) = (𝑅 ∨ 𝑅)) |
14 | | simpl1 1189 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 = 𝑅) → 𝐾 ∈ HL) |
15 | | simpl23 1251 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 = 𝑅) → 𝑅 ∈ 𝐴) |
16 | 4, 5 | hlatjidm 37310 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴) → (𝑅 ∨ 𝑅) = 𝑅) |
17 | 14, 15, 16 | syl2anc 583 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 = 𝑅) → (𝑅 ∨ 𝑅) = 𝑅) |
18 | 13, 17 | eqtrd 2778 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 = 𝑅) → (𝑅 ∨ 𝑄) = 𝑅) |
19 | 18 | oveq2d 7271 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 = 𝑅) → ((𝑅 ∨ 𝑃) ∧ (𝑅 ∨ 𝑄)) = ((𝑅 ∨ 𝑃) ∧ 𝑅)) |
20 | | 2llnm.l |
. . . . . . . 8
⊢ ≤ =
(le‘𝐾) |
21 | 20, 4, 5 | hlatlej1 37316 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → 𝑅 ≤ (𝑅 ∨ 𝑃)) |
22 | 1, 3, 2, 21 | syl3anc 1369 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → 𝑅 ≤ (𝑅 ∨ 𝑃)) |
23 | | hllat 37304 |
. . . . . . . 8
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
24 | 23 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → 𝐾 ∈ Lat) |
25 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝐾) =
(Base‘𝐾) |
26 | 25, 5 | atbase 37230 |
. . . . . . . 8
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ (Base‘𝐾)) |
27 | 3, 26 | syl 17 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → 𝑅 ∈ (Base‘𝐾)) |
28 | 25, 4, 5 | hlatjcl 37308 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → (𝑅 ∨ 𝑃) ∈ (Base‘𝐾)) |
29 | 1, 3, 2, 28 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → (𝑅 ∨ 𝑃) ∈ (Base‘𝐾)) |
30 | | 2llnm.m |
. . . . . . . 8
⊢ ∧ =
(meet‘𝐾) |
31 | 25, 20, 30 | latleeqm2 18101 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝑅 ∨ 𝑃) ∈ (Base‘𝐾)) → (𝑅 ≤ (𝑅 ∨ 𝑃) ↔ ((𝑅 ∨ 𝑃) ∧ 𝑅) = 𝑅)) |
32 | 24, 27, 29, 31 | syl3anc 1369 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → (𝑅 ≤ (𝑅 ∨ 𝑃) ↔ ((𝑅 ∨ 𝑃) ∧ 𝑅) = 𝑅)) |
33 | 22, 32 | mpbid 231 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → ((𝑅 ∨ 𝑃) ∧ 𝑅) = 𝑅) |
34 | 33 | adantr 480 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 = 𝑅) → ((𝑅 ∨ 𝑃) ∧ 𝑅) = 𝑅) |
35 | 19, 34 | eqtrd 2778 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 = 𝑅) → ((𝑅 ∨ 𝑃) ∧ (𝑅 ∨ 𝑄)) = 𝑅) |
36 | | simpl1 1189 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 ≠ 𝑅) → 𝐾 ∈ HL) |
37 | | simpl21 1249 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 ≠ 𝑅) → 𝑃 ∈ 𝐴) |
38 | | simpl23 1251 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 ≠ 𝑅) → 𝑅 ∈ 𝐴) |
39 | | simpl22 1250 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 ≠ 𝑅) → 𝑄 ∈ 𝐴) |
40 | | simpl3 1191 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 ≠ 𝑅) → (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) |
41 | 20, 4, 5 | hlatlej2 37317 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → 𝑅 ≤ (𝑃 ∨ 𝑅)) |
42 | 1, 2, 3, 41 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → 𝑅 ≤ (𝑃 ∨ 𝑅)) |
43 | 25, 5 | atbase 37230 |
. . . . . . . . . . . 12
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
44 | 8, 43 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → 𝑄 ∈ (Base‘𝐾)) |
45 | 25, 4, 5 | hlatjcl 37308 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑃 ∨ 𝑅) ∈ (Base‘𝐾)) |
46 | 1, 2, 3, 45 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → (𝑃 ∨ 𝑅) ∈ (Base‘𝐾)) |
47 | 25, 20, 4 | latjle12 18083 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑅) ∈ (Base‘𝐾))) → ((𝑄 ≤ (𝑃 ∨ 𝑅) ∧ 𝑅 ≤ (𝑃 ∨ 𝑅)) ↔ (𝑄 ∨ 𝑅) ≤ (𝑃 ∨ 𝑅))) |
48 | 24, 44, 27, 46, 47 | syl13anc 1370 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → ((𝑄 ≤ (𝑃 ∨ 𝑅) ∧ 𝑅 ≤ (𝑃 ∨ 𝑅)) ↔ (𝑄 ∨ 𝑅) ≤ (𝑃 ∨ 𝑅))) |
49 | 48 | biimpd 228 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → ((𝑄 ≤ (𝑃 ∨ 𝑅) ∧ 𝑅 ≤ (𝑃 ∨ 𝑅)) → (𝑄 ∨ 𝑅) ≤ (𝑃 ∨ 𝑅))) |
50 | 42, 49 | mpan2d 690 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → (𝑄 ≤ (𝑃 ∨ 𝑅) → (𝑄 ∨ 𝑅) ≤ (𝑃 ∨ 𝑅))) |
51 | 50 | adantr 480 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 ≠ 𝑅) → (𝑄 ≤ (𝑃 ∨ 𝑅) → (𝑄 ∨ 𝑅) ≤ (𝑃 ∨ 𝑅))) |
52 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 ≠ 𝑅) → 𝑄 ≠ 𝑅) |
53 | 20, 4, 5 | ps-1 37418 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑄 ∨ 𝑅) ≤ (𝑃 ∨ 𝑅) ↔ (𝑄 ∨ 𝑅) = (𝑃 ∨ 𝑅))) |
54 | 36, 39, 38, 52, 37, 38, 53 | syl132anc 1386 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 ≠ 𝑅) → ((𝑄 ∨ 𝑅) ≤ (𝑃 ∨ 𝑅) ↔ (𝑄 ∨ 𝑅) = (𝑃 ∨ 𝑅))) |
55 | 54 | biimpd 228 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 ≠ 𝑅) → ((𝑄 ∨ 𝑅) ≤ (𝑃 ∨ 𝑅) → (𝑄 ∨ 𝑅) = (𝑃 ∨ 𝑅))) |
56 | | eqcom 2745 |
. . . . . . . 8
⊢ ((𝑄 ∨ 𝑅) = (𝑃 ∨ 𝑅) ↔ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) |
57 | 55, 56 | syl6ib 250 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 ≠ 𝑅) → ((𝑄 ∨ 𝑅) ≤ (𝑃 ∨ 𝑅) → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) |
58 | 51, 57 | syld 47 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 ≠ 𝑅) → (𝑄 ≤ (𝑃 ∨ 𝑅) → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) |
59 | 58 | necon3ad 2955 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 ≠ 𝑅) → ((𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅) → ¬ 𝑄 ≤ (𝑃 ∨ 𝑅))) |
60 | 40, 59 | mpd 15 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 ≠ 𝑅) → ¬ 𝑄 ≤ (𝑃 ∨ 𝑅)) |
61 | 20, 4, 30, 5 | 2llnma1 37728 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑅)) → ((𝑅 ∨ 𝑃) ∧ (𝑅 ∨ 𝑄)) = 𝑅) |
62 | 36, 37, 38, 39, 60, 61 | syl131anc 1381 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 ≠ 𝑅) → ((𝑅 ∨ 𝑃) ∧ (𝑅 ∨ 𝑄)) = 𝑅) |
63 | 35, 62 | pm2.61dane 3031 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → ((𝑅 ∨ 𝑃) ∧ (𝑅 ∨ 𝑄)) = 𝑅) |
64 | 11, 63 | eqtrd 2778 |
1
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → ((𝑃 ∨ 𝑅) ∧ (𝑄 ∨ 𝑅)) = 𝑅) |