Proof of Theorem 2llnma3r
| Step | Hyp | Ref
| Expression |
| 1 | | simp1 1136 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → 𝐾 ∈ HL) |
| 2 | | simp21 1207 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → 𝑃 ∈ 𝐴) |
| 3 | | simp23 1209 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → 𝑅 ∈ 𝐴) |
| 4 | | 2llnm.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
| 5 | | 2llnm.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
| 6 | 4, 5 | hlatjcom 39391 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑃 ∨ 𝑅) = (𝑅 ∨ 𝑃)) |
| 7 | 1, 2, 3, 6 | syl3anc 1373 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → (𝑃 ∨ 𝑅) = (𝑅 ∨ 𝑃)) |
| 8 | | simp22 1208 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → 𝑄 ∈ 𝐴) |
| 9 | 4, 5 | hlatjcom 39391 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑄 ∨ 𝑅) = (𝑅 ∨ 𝑄)) |
| 10 | 1, 8, 3, 9 | syl3anc 1373 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → (𝑄 ∨ 𝑅) = (𝑅 ∨ 𝑄)) |
| 11 | 7, 10 | oveq12d 7428 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → ((𝑃 ∨ 𝑅) ∧ (𝑄 ∨ 𝑅)) = ((𝑅 ∨ 𝑃) ∧ (𝑅 ∨ 𝑄))) |
| 12 | | simpr 484 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 = 𝑅) → 𝑄 = 𝑅) |
| 13 | 12 | oveq2d 7426 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 = 𝑅) → (𝑅 ∨ 𝑄) = (𝑅 ∨ 𝑅)) |
| 14 | | simpl1 1192 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 = 𝑅) → 𝐾 ∈ HL) |
| 15 | | simpl23 1254 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 = 𝑅) → 𝑅 ∈ 𝐴) |
| 16 | 4, 5 | hlatjidm 39392 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴) → (𝑅 ∨ 𝑅) = 𝑅) |
| 17 | 14, 15, 16 | syl2anc 584 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 = 𝑅) → (𝑅 ∨ 𝑅) = 𝑅) |
| 18 | 13, 17 | eqtrd 2771 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 = 𝑅) → (𝑅 ∨ 𝑄) = 𝑅) |
| 19 | 18 | oveq2d 7426 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 = 𝑅) → ((𝑅 ∨ 𝑃) ∧ (𝑅 ∨ 𝑄)) = ((𝑅 ∨ 𝑃) ∧ 𝑅)) |
| 20 | | 2llnm.l |
. . . . . . . 8
⊢ ≤ =
(le‘𝐾) |
| 21 | 20, 4, 5 | hlatlej1 39398 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → 𝑅 ≤ (𝑅 ∨ 𝑃)) |
| 22 | 1, 3, 2, 21 | syl3anc 1373 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → 𝑅 ≤ (𝑅 ∨ 𝑃)) |
| 23 | | hllat 39386 |
. . . . . . . 8
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| 24 | 23 | 3ad2ant1 1133 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → 𝐾 ∈ Lat) |
| 25 | | eqid 2736 |
. . . . . . . . 9
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 26 | 25, 5 | atbase 39312 |
. . . . . . . 8
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ (Base‘𝐾)) |
| 27 | 3, 26 | syl 17 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → 𝑅 ∈ (Base‘𝐾)) |
| 28 | 25, 4, 5 | hlatjcl 39390 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → (𝑅 ∨ 𝑃) ∈ (Base‘𝐾)) |
| 29 | 1, 3, 2, 28 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → (𝑅 ∨ 𝑃) ∈ (Base‘𝐾)) |
| 30 | | 2llnm.m |
. . . . . . . 8
⊢ ∧ =
(meet‘𝐾) |
| 31 | 25, 20, 30 | latleeqm2 18483 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝑅 ∨ 𝑃) ∈ (Base‘𝐾)) → (𝑅 ≤ (𝑅 ∨ 𝑃) ↔ ((𝑅 ∨ 𝑃) ∧ 𝑅) = 𝑅)) |
| 32 | 24, 27, 29, 31 | syl3anc 1373 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → (𝑅 ≤ (𝑅 ∨ 𝑃) ↔ ((𝑅 ∨ 𝑃) ∧ 𝑅) = 𝑅)) |
| 33 | 22, 32 | mpbid 232 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → ((𝑅 ∨ 𝑃) ∧ 𝑅) = 𝑅) |
| 34 | 33 | adantr 480 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 = 𝑅) → ((𝑅 ∨ 𝑃) ∧ 𝑅) = 𝑅) |
| 35 | 19, 34 | eqtrd 2771 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 = 𝑅) → ((𝑅 ∨ 𝑃) ∧ (𝑅 ∨ 𝑄)) = 𝑅) |
| 36 | | simpl1 1192 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 ≠ 𝑅) → 𝐾 ∈ HL) |
| 37 | | simpl21 1252 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 ≠ 𝑅) → 𝑃 ∈ 𝐴) |
| 38 | | simpl23 1254 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 ≠ 𝑅) → 𝑅 ∈ 𝐴) |
| 39 | | simpl22 1253 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 ≠ 𝑅) → 𝑄 ∈ 𝐴) |
| 40 | | simpl3 1194 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 ≠ 𝑅) → (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) |
| 41 | 20, 4, 5 | hlatlej2 39399 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → 𝑅 ≤ (𝑃 ∨ 𝑅)) |
| 42 | 1, 2, 3, 41 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → 𝑅 ≤ (𝑃 ∨ 𝑅)) |
| 43 | 25, 5 | atbase 39312 |
. . . . . . . . . . . 12
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
| 44 | 8, 43 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → 𝑄 ∈ (Base‘𝐾)) |
| 45 | 25, 4, 5 | hlatjcl 39390 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑃 ∨ 𝑅) ∈ (Base‘𝐾)) |
| 46 | 1, 2, 3, 45 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → (𝑃 ∨ 𝑅) ∈ (Base‘𝐾)) |
| 47 | 25, 20, 4 | latjle12 18465 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑅) ∈ (Base‘𝐾))) → ((𝑄 ≤ (𝑃 ∨ 𝑅) ∧ 𝑅 ≤ (𝑃 ∨ 𝑅)) ↔ (𝑄 ∨ 𝑅) ≤ (𝑃 ∨ 𝑅))) |
| 48 | 24, 44, 27, 46, 47 | syl13anc 1374 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → ((𝑄 ≤ (𝑃 ∨ 𝑅) ∧ 𝑅 ≤ (𝑃 ∨ 𝑅)) ↔ (𝑄 ∨ 𝑅) ≤ (𝑃 ∨ 𝑅))) |
| 49 | 48 | biimpd 229 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → ((𝑄 ≤ (𝑃 ∨ 𝑅) ∧ 𝑅 ≤ (𝑃 ∨ 𝑅)) → (𝑄 ∨ 𝑅) ≤ (𝑃 ∨ 𝑅))) |
| 50 | 42, 49 | mpan2d 694 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → (𝑄 ≤ (𝑃 ∨ 𝑅) → (𝑄 ∨ 𝑅) ≤ (𝑃 ∨ 𝑅))) |
| 51 | 50 | adantr 480 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 ≠ 𝑅) → (𝑄 ≤ (𝑃 ∨ 𝑅) → (𝑄 ∨ 𝑅) ≤ (𝑃 ∨ 𝑅))) |
| 52 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 ≠ 𝑅) → 𝑄 ≠ 𝑅) |
| 53 | 20, 4, 5 | ps-1 39501 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑄 ∨ 𝑅) ≤ (𝑃 ∨ 𝑅) ↔ (𝑄 ∨ 𝑅) = (𝑃 ∨ 𝑅))) |
| 54 | 36, 39, 38, 52, 37, 38, 53 | syl132anc 1390 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 ≠ 𝑅) → ((𝑄 ∨ 𝑅) ≤ (𝑃 ∨ 𝑅) ↔ (𝑄 ∨ 𝑅) = (𝑃 ∨ 𝑅))) |
| 55 | 54 | biimpd 229 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 ≠ 𝑅) → ((𝑄 ∨ 𝑅) ≤ (𝑃 ∨ 𝑅) → (𝑄 ∨ 𝑅) = (𝑃 ∨ 𝑅))) |
| 56 | | eqcom 2743 |
. . . . . . . 8
⊢ ((𝑄 ∨ 𝑅) = (𝑃 ∨ 𝑅) ↔ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) |
| 57 | 55, 56 | imbitrdi 251 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 ≠ 𝑅) → ((𝑄 ∨ 𝑅) ≤ (𝑃 ∨ 𝑅) → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) |
| 58 | 51, 57 | syld 47 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 ≠ 𝑅) → (𝑄 ≤ (𝑃 ∨ 𝑅) → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) |
| 59 | 58 | necon3ad 2946 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 ≠ 𝑅) → ((𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅) → ¬ 𝑄 ≤ (𝑃 ∨ 𝑅))) |
| 60 | 40, 59 | mpd 15 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 ≠ 𝑅) → ¬ 𝑄 ≤ (𝑃 ∨ 𝑅)) |
| 61 | 20, 4, 30, 5 | 2llnma1 39811 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑅)) → ((𝑅 ∨ 𝑃) ∧ (𝑅 ∨ 𝑄)) = 𝑅) |
| 62 | 36, 37, 38, 39, 60, 61 | syl131anc 1385 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) ∧ 𝑄 ≠ 𝑅) → ((𝑅 ∨ 𝑃) ∧ (𝑅 ∨ 𝑄)) = 𝑅) |
| 63 | 35, 62 | pm2.61dane 3020 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → ((𝑅 ∨ 𝑃) ∧ (𝑅 ∨ 𝑄)) = 𝑅) |
| 64 | 11, 63 | eqtrd 2771 |
1
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → ((𝑃 ∨ 𝑅) ∧ (𝑄 ∨ 𝑅)) = 𝑅) |