Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2llnma3r Structured version   Visualization version   GIF version

Theorem 2llnma3r 39812
Description: Two different intersecting lines (expressed in terms of atoms) meet at their common point (atom). (Contributed by NM, 30-Apr-2013.)
Hypotheses
Ref Expression
2llnm.l = (le‘𝐾)
2llnm.j = (join‘𝐾)
2llnm.m = (meet‘𝐾)
2llnm.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
2llnma3r ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → ((𝑃 𝑅) (𝑄 𝑅)) = 𝑅)

Proof of Theorem 2llnma3r
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → 𝐾 ∈ HL)
2 simp21 1207 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → 𝑃𝐴)
3 simp23 1209 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → 𝑅𝐴)
4 2llnm.j . . . . 5 = (join‘𝐾)
5 2llnm.a . . . . 5 𝐴 = (Atoms‘𝐾)
64, 5hlatjcom 39391 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) → (𝑃 𝑅) = (𝑅 𝑃))
71, 2, 3, 6syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → (𝑃 𝑅) = (𝑅 𝑃))
8 simp22 1208 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → 𝑄𝐴)
94, 5hlatjcom 39391 . . . 4 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) = (𝑅 𝑄))
101, 8, 3, 9syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → (𝑄 𝑅) = (𝑅 𝑄))
117, 10oveq12d 7428 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → ((𝑃 𝑅) (𝑄 𝑅)) = ((𝑅 𝑃) (𝑅 𝑄)))
12 simpr 484 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄 = 𝑅) → 𝑄 = 𝑅)
1312oveq2d 7426 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄 = 𝑅) → (𝑅 𝑄) = (𝑅 𝑅))
14 simpl1 1192 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄 = 𝑅) → 𝐾 ∈ HL)
15 simpl23 1254 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄 = 𝑅) → 𝑅𝐴)
164, 5hlatjidm 39392 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅𝐴) → (𝑅 𝑅) = 𝑅)
1714, 15, 16syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄 = 𝑅) → (𝑅 𝑅) = 𝑅)
1813, 17eqtrd 2771 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄 = 𝑅) → (𝑅 𝑄) = 𝑅)
1918oveq2d 7426 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄 = 𝑅) → ((𝑅 𝑃) (𝑅 𝑄)) = ((𝑅 𝑃) 𝑅))
20 2llnm.l . . . . . . . 8 = (le‘𝐾)
2120, 4, 5hlatlej1 39398 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑃𝐴) → 𝑅 (𝑅 𝑃))
221, 3, 2, 21syl3anc 1373 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → 𝑅 (𝑅 𝑃))
23 hllat 39386 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Lat)
24233ad2ant1 1133 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → 𝐾 ∈ Lat)
25 eqid 2736 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
2625, 5atbase 39312 . . . . . . . 8 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
273, 26syl 17 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → 𝑅 ∈ (Base‘𝐾))
2825, 4, 5hlatjcl 39390 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑃𝐴) → (𝑅 𝑃) ∈ (Base‘𝐾))
291, 3, 2, 28syl3anc 1373 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → (𝑅 𝑃) ∈ (Base‘𝐾))
30 2llnm.m . . . . . . . 8 = (meet‘𝐾)
3125, 20, 30latleeqm2 18483 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝑅 𝑃) ∈ (Base‘𝐾)) → (𝑅 (𝑅 𝑃) ↔ ((𝑅 𝑃) 𝑅) = 𝑅))
3224, 27, 29, 31syl3anc 1373 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → (𝑅 (𝑅 𝑃) ↔ ((𝑅 𝑃) 𝑅) = 𝑅))
3322, 32mpbid 232 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → ((𝑅 𝑃) 𝑅) = 𝑅)
3433adantr 480 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄 = 𝑅) → ((𝑅 𝑃) 𝑅) = 𝑅)
3519, 34eqtrd 2771 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄 = 𝑅) → ((𝑅 𝑃) (𝑅 𝑄)) = 𝑅)
36 simpl1 1192 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → 𝐾 ∈ HL)
37 simpl21 1252 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → 𝑃𝐴)
38 simpl23 1254 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → 𝑅𝐴)
39 simpl22 1253 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → 𝑄𝐴)
40 simpl3 1194 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → (𝑃 𝑅) ≠ (𝑄 𝑅))
4120, 4, 5hlatlej2 39399 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) → 𝑅 (𝑃 𝑅))
421, 2, 3, 41syl3anc 1373 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → 𝑅 (𝑃 𝑅))
4325, 5atbase 39312 . . . . . . . . . . . 12 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
448, 43syl 17 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → 𝑄 ∈ (Base‘𝐾))
4525, 4, 5hlatjcl 39390 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) → (𝑃 𝑅) ∈ (Base‘𝐾))
461, 2, 3, 45syl3anc 1373 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → (𝑃 𝑅) ∈ (Base‘𝐾))
4725, 20, 4latjle12 18465 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝑃 𝑅) ∈ (Base‘𝐾))) → ((𝑄 (𝑃 𝑅) ∧ 𝑅 (𝑃 𝑅)) ↔ (𝑄 𝑅) (𝑃 𝑅)))
4824, 44, 27, 46, 47syl13anc 1374 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → ((𝑄 (𝑃 𝑅) ∧ 𝑅 (𝑃 𝑅)) ↔ (𝑄 𝑅) (𝑃 𝑅)))
4948biimpd 229 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → ((𝑄 (𝑃 𝑅) ∧ 𝑅 (𝑃 𝑅)) → (𝑄 𝑅) (𝑃 𝑅)))
5042, 49mpan2d 694 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → (𝑄 (𝑃 𝑅) → (𝑄 𝑅) (𝑃 𝑅)))
5150adantr 480 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → (𝑄 (𝑃 𝑅) → (𝑄 𝑅) (𝑃 𝑅)))
52 simpr 484 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → 𝑄𝑅)
5320, 4, 5ps-1 39501 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑃𝐴𝑅𝐴)) → ((𝑄 𝑅) (𝑃 𝑅) ↔ (𝑄 𝑅) = (𝑃 𝑅)))
5436, 39, 38, 52, 37, 38, 53syl132anc 1390 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → ((𝑄 𝑅) (𝑃 𝑅) ↔ (𝑄 𝑅) = (𝑃 𝑅)))
5554biimpd 229 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → ((𝑄 𝑅) (𝑃 𝑅) → (𝑄 𝑅) = (𝑃 𝑅)))
56 eqcom 2743 . . . . . . . 8 ((𝑄 𝑅) = (𝑃 𝑅) ↔ (𝑃 𝑅) = (𝑄 𝑅))
5755, 56imbitrdi 251 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → ((𝑄 𝑅) (𝑃 𝑅) → (𝑃 𝑅) = (𝑄 𝑅)))
5851, 57syld 47 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → (𝑄 (𝑃 𝑅) → (𝑃 𝑅) = (𝑄 𝑅)))
5958necon3ad 2946 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → ((𝑃 𝑅) ≠ (𝑄 𝑅) → ¬ 𝑄 (𝑃 𝑅)))
6040, 59mpd 15 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → ¬ 𝑄 (𝑃 𝑅))
6120, 4, 30, 52llnma1 39811 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑅𝐴𝑄𝐴) ∧ ¬ 𝑄 (𝑃 𝑅)) → ((𝑅 𝑃) (𝑅 𝑄)) = 𝑅)
6236, 37, 38, 39, 60, 61syl131anc 1385 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → ((𝑅 𝑃) (𝑅 𝑄)) = 𝑅)
6335, 62pm2.61dane 3020 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → ((𝑅 𝑃) (𝑅 𝑄)) = 𝑅)
6411, 63eqtrd 2771 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → ((𝑃 𝑅) (𝑄 𝑅)) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933   class class class wbr 5124  cfv 6536  (class class class)co 7410  Basecbs 17233  lecple 17283  joincjn 18328  meetcmee 18329  Latclat 18446  Atomscatm 39286  HLchlt 39373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-proset 18311  df-poset 18330  df-plt 18345  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-p0 18440  df-lat 18447  df-clat 18514  df-oposet 39199  df-ol 39201  df-oml 39202  df-covers 39289  df-ats 39290  df-atl 39321  df-cvlat 39345  df-hlat 39374
This theorem is referenced by:  cdlemg9a  40656  cdlemg12a  40667
  Copyright terms: Public domain W3C validator