Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2llnma3r Structured version   Visualization version   GIF version

Theorem 2llnma3r 39755
Description: Two different intersecting lines (expressed in terms of atoms) meet at their common point (atom). (Contributed by NM, 30-Apr-2013.)
Hypotheses
Ref Expression
2llnm.l = (le‘𝐾)
2llnm.j = (join‘𝐾)
2llnm.m = (meet‘𝐾)
2llnm.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
2llnma3r ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → ((𝑃 𝑅) (𝑄 𝑅)) = 𝑅)

Proof of Theorem 2llnma3r
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → 𝐾 ∈ HL)
2 simp21 1207 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → 𝑃𝐴)
3 simp23 1209 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → 𝑅𝐴)
4 2llnm.j . . . . 5 = (join‘𝐾)
5 2llnm.a . . . . 5 𝐴 = (Atoms‘𝐾)
64, 5hlatjcom 39334 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) → (𝑃 𝑅) = (𝑅 𝑃))
71, 2, 3, 6syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → (𝑃 𝑅) = (𝑅 𝑃))
8 simp22 1208 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → 𝑄𝐴)
94, 5hlatjcom 39334 . . . 4 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) = (𝑅 𝑄))
101, 8, 3, 9syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → (𝑄 𝑅) = (𝑅 𝑄))
117, 10oveq12d 7387 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → ((𝑃 𝑅) (𝑄 𝑅)) = ((𝑅 𝑃) (𝑅 𝑄)))
12 simpr 484 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄 = 𝑅) → 𝑄 = 𝑅)
1312oveq2d 7385 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄 = 𝑅) → (𝑅 𝑄) = (𝑅 𝑅))
14 simpl1 1192 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄 = 𝑅) → 𝐾 ∈ HL)
15 simpl23 1254 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄 = 𝑅) → 𝑅𝐴)
164, 5hlatjidm 39335 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅𝐴) → (𝑅 𝑅) = 𝑅)
1714, 15, 16syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄 = 𝑅) → (𝑅 𝑅) = 𝑅)
1813, 17eqtrd 2764 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄 = 𝑅) → (𝑅 𝑄) = 𝑅)
1918oveq2d 7385 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄 = 𝑅) → ((𝑅 𝑃) (𝑅 𝑄)) = ((𝑅 𝑃) 𝑅))
20 2llnm.l . . . . . . . 8 = (le‘𝐾)
2120, 4, 5hlatlej1 39341 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑃𝐴) → 𝑅 (𝑅 𝑃))
221, 3, 2, 21syl3anc 1373 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → 𝑅 (𝑅 𝑃))
23 hllat 39329 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Lat)
24233ad2ant1 1133 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → 𝐾 ∈ Lat)
25 eqid 2729 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
2625, 5atbase 39255 . . . . . . . 8 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
273, 26syl 17 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → 𝑅 ∈ (Base‘𝐾))
2825, 4, 5hlatjcl 39333 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑃𝐴) → (𝑅 𝑃) ∈ (Base‘𝐾))
291, 3, 2, 28syl3anc 1373 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → (𝑅 𝑃) ∈ (Base‘𝐾))
30 2llnm.m . . . . . . . 8 = (meet‘𝐾)
3125, 20, 30latleeqm2 18403 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝑅 𝑃) ∈ (Base‘𝐾)) → (𝑅 (𝑅 𝑃) ↔ ((𝑅 𝑃) 𝑅) = 𝑅))
3224, 27, 29, 31syl3anc 1373 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → (𝑅 (𝑅 𝑃) ↔ ((𝑅 𝑃) 𝑅) = 𝑅))
3322, 32mpbid 232 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → ((𝑅 𝑃) 𝑅) = 𝑅)
3433adantr 480 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄 = 𝑅) → ((𝑅 𝑃) 𝑅) = 𝑅)
3519, 34eqtrd 2764 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄 = 𝑅) → ((𝑅 𝑃) (𝑅 𝑄)) = 𝑅)
36 simpl1 1192 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → 𝐾 ∈ HL)
37 simpl21 1252 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → 𝑃𝐴)
38 simpl23 1254 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → 𝑅𝐴)
39 simpl22 1253 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → 𝑄𝐴)
40 simpl3 1194 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → (𝑃 𝑅) ≠ (𝑄 𝑅))
4120, 4, 5hlatlej2 39342 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) → 𝑅 (𝑃 𝑅))
421, 2, 3, 41syl3anc 1373 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → 𝑅 (𝑃 𝑅))
4325, 5atbase 39255 . . . . . . . . . . . 12 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
448, 43syl 17 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → 𝑄 ∈ (Base‘𝐾))
4525, 4, 5hlatjcl 39333 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) → (𝑃 𝑅) ∈ (Base‘𝐾))
461, 2, 3, 45syl3anc 1373 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → (𝑃 𝑅) ∈ (Base‘𝐾))
4725, 20, 4latjle12 18385 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝑃 𝑅) ∈ (Base‘𝐾))) → ((𝑄 (𝑃 𝑅) ∧ 𝑅 (𝑃 𝑅)) ↔ (𝑄 𝑅) (𝑃 𝑅)))
4824, 44, 27, 46, 47syl13anc 1374 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → ((𝑄 (𝑃 𝑅) ∧ 𝑅 (𝑃 𝑅)) ↔ (𝑄 𝑅) (𝑃 𝑅)))
4948biimpd 229 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → ((𝑄 (𝑃 𝑅) ∧ 𝑅 (𝑃 𝑅)) → (𝑄 𝑅) (𝑃 𝑅)))
5042, 49mpan2d 694 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → (𝑄 (𝑃 𝑅) → (𝑄 𝑅) (𝑃 𝑅)))
5150adantr 480 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → (𝑄 (𝑃 𝑅) → (𝑄 𝑅) (𝑃 𝑅)))
52 simpr 484 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → 𝑄𝑅)
5320, 4, 5ps-1 39444 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑃𝐴𝑅𝐴)) → ((𝑄 𝑅) (𝑃 𝑅) ↔ (𝑄 𝑅) = (𝑃 𝑅)))
5436, 39, 38, 52, 37, 38, 53syl132anc 1390 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → ((𝑄 𝑅) (𝑃 𝑅) ↔ (𝑄 𝑅) = (𝑃 𝑅)))
5554biimpd 229 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → ((𝑄 𝑅) (𝑃 𝑅) → (𝑄 𝑅) = (𝑃 𝑅)))
56 eqcom 2736 . . . . . . . 8 ((𝑄 𝑅) = (𝑃 𝑅) ↔ (𝑃 𝑅) = (𝑄 𝑅))
5755, 56imbitrdi 251 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → ((𝑄 𝑅) (𝑃 𝑅) → (𝑃 𝑅) = (𝑄 𝑅)))
5851, 57syld 47 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → (𝑄 (𝑃 𝑅) → (𝑃 𝑅) = (𝑄 𝑅)))
5958necon3ad 2938 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → ((𝑃 𝑅) ≠ (𝑄 𝑅) → ¬ 𝑄 (𝑃 𝑅)))
6040, 59mpd 15 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → ¬ 𝑄 (𝑃 𝑅))
6120, 4, 30, 52llnma1 39754 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑅𝐴𝑄𝐴) ∧ ¬ 𝑄 (𝑃 𝑅)) → ((𝑅 𝑃) (𝑅 𝑄)) = 𝑅)
6236, 37, 38, 39, 60, 61syl131anc 1385 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) ∧ 𝑄𝑅) → ((𝑅 𝑃) (𝑅 𝑄)) = 𝑅)
6335, 62pm2.61dane 3012 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → ((𝑅 𝑃) (𝑅 𝑄)) = 𝑅)
6411, 63eqtrd 2764 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑅) ≠ (𝑄 𝑅)) → ((𝑃 𝑅) (𝑄 𝑅)) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  joincjn 18248  meetcmee 18249  Latclat 18366  Atomscatm 39229  HLchlt 39316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-lat 18367  df-clat 18434  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317
This theorem is referenced by:  cdlemg9a  40599  cdlemg12a  40610
  Copyright terms: Public domain W3C validator