Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3noncolr2 Structured version   Visualization version   GIF version

Theorem 3noncolr2 38978
Description: Two ways to express 3 non-colinear atoms (rotated right 2 places). (Contributed by NM, 12-Jul-2012.)
Hypotheses
Ref Expression
3noncol.l ≀ = (leβ€˜πΎ)
3noncol.j ∨ = (joinβ€˜πΎ)
3noncol.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
3noncolr2 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑄 β‰  𝑅 ∧ Β¬ 𝑃 ≀ (𝑄 ∨ 𝑅)))

Proof of Theorem 3noncolr2
StepHypRef Expression
1 hllat 38891 . . . . 5 (𝐾 ∈ HL β†’ 𝐾 ∈ Lat)
213ad2ant1 1130 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝐾 ∈ Lat)
3 simp23 1205 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑅 ∈ 𝐴)
4 eqid 2725 . . . . . 6 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
5 3noncol.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
64, 5atbase 38817 . . . . 5 (𝑅 ∈ 𝐴 β†’ 𝑅 ∈ (Baseβ€˜πΎ))
73, 6syl 17 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑅 ∈ (Baseβ€˜πΎ))
8 simp21 1203 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑃 ∈ 𝐴)
94, 5atbase 38817 . . . . 5 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ (Baseβ€˜πΎ))
108, 9syl 17 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
11 simp22 1204 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑄 ∈ 𝐴)
124, 5atbase 38817 . . . . 5 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ (Baseβ€˜πΎ))
1311, 12syl 17 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑄 ∈ (Baseβ€˜πΎ))
14 simp3r 1199 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄))
15 3noncol.l . . . . 5 ≀ = (leβ€˜πΎ)
16 3noncol.j . . . . 5 ∨ = (joinβ€˜πΎ)
174, 15, 16latnlej1r 18449 . . . 4 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Baseβ€˜πΎ) ∧ 𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝑄 ∈ (Baseβ€˜πΎ)) ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑅 β‰  𝑄)
182, 7, 10, 13, 14, 17syl131anc 1380 . . 3 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑅 β‰  𝑄)
1918necomd 2986 . 2 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑄 β‰  𝑅)
20 simp1 1133 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝐾 ∈ HL)
21 simp3l 1198 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑃 β‰  𝑄)
2215, 16, 5hlatexch1 38924 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) β†’ (𝑃 ≀ (𝑄 ∨ 𝑅) β†’ 𝑅 ≀ (𝑄 ∨ 𝑃)))
2320, 8, 3, 11, 21, 22syl131anc 1380 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑃 ≀ (𝑄 ∨ 𝑅) β†’ 𝑅 ≀ (𝑄 ∨ 𝑃)))
2416, 5hlatjcom 38896 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃))
2520, 8, 11, 24syl3anc 1368 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃))
2625breq2d 5155 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ≀ (𝑃 ∨ 𝑄) ↔ 𝑅 ≀ (𝑄 ∨ 𝑃)))
2723, 26sylibrd 258 . . 3 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑃 ≀ (𝑄 ∨ 𝑅) β†’ 𝑅 ≀ (𝑃 ∨ 𝑄)))
2814, 27mtod 197 . 2 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ Β¬ 𝑃 ≀ (𝑄 ∨ 𝑅))
2919, 28jca 510 1 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑄 β‰  𝑅 ∧ Β¬ 𝑃 ≀ (𝑄 ∨ 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2930   class class class wbr 5143  β€˜cfv 6543  (class class class)co 7416  Basecbs 17179  lecple 17239  joincjn 18302  Latclat 18422  Atomscatm 38791  HLchlt 38878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-proset 18286  df-poset 18304  df-plt 18321  df-lub 18337  df-glb 18338  df-join 18339  df-meet 18340  df-p0 18416  df-lat 18423  df-covers 38794  df-ats 38795  df-atl 38826  df-cvlat 38850  df-hlat 38879
This theorem is referenced by:  3noncolr1N  38979  hlatcon3  38980
  Copyright terms: Public domain W3C validator