Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3noncolr2 Structured version   Visualization version   GIF version

Theorem 3noncolr2 39432
Description: Two ways to express 3 non-colinear atoms (rotated right 2 places). (Contributed by NM, 12-Jul-2012.)
Hypotheses
Ref Expression
3noncol.l = (le‘𝐾)
3noncol.j = (join‘𝐾)
3noncol.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
3noncolr2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → (𝑄𝑅 ∧ ¬ 𝑃 (𝑄 𝑅)))

Proof of Theorem 3noncolr2
StepHypRef Expression
1 hllat 39346 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
213ad2ant1 1133 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝐾 ∈ Lat)
3 simp23 1209 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝑅𝐴)
4 eqid 2729 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
5 3noncol.a . . . . . 6 𝐴 = (Atoms‘𝐾)
64, 5atbase 39272 . . . . 5 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
73, 6syl 17 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝑅 ∈ (Base‘𝐾))
8 simp21 1207 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝑃𝐴)
94, 5atbase 39272 . . . . 5 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
108, 9syl 17 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝑃 ∈ (Base‘𝐾))
11 simp22 1208 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝑄𝐴)
124, 5atbase 39272 . . . . 5 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
1311, 12syl 17 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝑄 ∈ (Base‘𝐾))
14 simp3r 1203 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → ¬ 𝑅 (𝑃 𝑄))
15 3noncol.l . . . . 5 = (le‘𝐾)
16 3noncol.j . . . . 5 = (join‘𝐾)
174, 15, 16latnlej1r 18364 . . . 4 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑅𝑄)
182, 7, 10, 13, 14, 17syl131anc 1385 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝑅𝑄)
1918necomd 2980 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝑄𝑅)
20 simp1 1136 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝐾 ∈ HL)
21 simp3l 1202 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝑃𝑄)
2215, 16, 5hlatexch1 39378 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑅𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 (𝑄 𝑅) → 𝑅 (𝑄 𝑃)))
2320, 8, 3, 11, 21, 22syl131anc 1385 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → (𝑃 (𝑄 𝑅) → 𝑅 (𝑄 𝑃)))
2416, 5hlatjcom 39351 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) = (𝑄 𝑃))
2520, 8, 11, 24syl3anc 1373 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → (𝑃 𝑄) = (𝑄 𝑃))
2625breq2d 5104 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → (𝑅 (𝑃 𝑄) ↔ 𝑅 (𝑄 𝑃)))
2723, 26sylibrd 259 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → (𝑃 (𝑄 𝑅) → 𝑅 (𝑃 𝑄)))
2814, 27mtod 198 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → ¬ 𝑃 (𝑄 𝑅))
2919, 28jca 511 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → (𝑄𝑅 ∧ ¬ 𝑃 (𝑄 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5092  cfv 6482  (class class class)co 7349  Basecbs 17120  lecple 17168  joincjn 18217  Latclat 18337  Atomscatm 39246  HLchlt 39333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-covers 39249  df-ats 39250  df-atl 39281  df-cvlat 39305  df-hlat 39334
This theorem is referenced by:  3noncolr1N  39433  hlatcon3  39434
  Copyright terms: Public domain W3C validator