Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ackval3 Structured version   Visualization version   GIF version

Theorem ackval3 48811
Description: The Ackermann function at 3. (Contributed by AV, 7-May-2024.)
Assertion
Ref Expression
ackval3 (Ack‘3) = (𝑛 ∈ ℕ0 ↦ ((2↑(𝑛 + 3)) − 3))

Proof of Theorem ackval3
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 df-3 12198 . . 3 3 = (2 + 1)
21fveq2i 6833 . 2 (Ack‘3) = (Ack‘(2 + 1))
3 2nn0 12407 . . 3 2 ∈ ℕ0
4 ackvalsuc1mpt 48806 . . 3 (2 ∈ ℕ0 → (Ack‘(2 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘2))‘(𝑛 + 1))‘1)))
53, 4ax-mp 5 . 2 (Ack‘(2 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘2))‘(𝑛 + 1))‘1))
6 peano2nn0 12430 . . . . . 6 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
7 3nn0 12408 . . . . . 6 3 ∈ ℕ0
8 ackval2 48810 . . . . . . 7 (Ack‘2) = (𝑖 ∈ ℕ0 ↦ ((2 · 𝑖) + 3))
98itcovalt2 48805 . . . . . 6 (((𝑛 + 1) ∈ ℕ0 ∧ 3 ∈ ℕ0) → ((IterComp‘(Ack‘2))‘(𝑛 + 1)) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3)))
106, 7, 9sylancl 586 . . . . 5 (𝑛 ∈ ℕ0 → ((IterComp‘(Ack‘2))‘(𝑛 + 1)) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3)))
1110fveq1d 6832 . . . 4 (𝑛 ∈ ℕ0 → (((IterComp‘(Ack‘2))‘(𝑛 + 1))‘1) = ((𝑖 ∈ ℕ0 ↦ (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3))‘1))
12 eqidd 2734 . . . . 5 (𝑛 ∈ ℕ0 → (𝑖 ∈ ℕ0 ↦ (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3)) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3)))
13 oveq1 7361 . . . . . . . . 9 (𝑖 = 1 → (𝑖 + 3) = (1 + 3))
14 3cn 12215 . . . . . . . . . 10 3 ∈ ℂ
15 ax-1cn 11073 . . . . . . . . . 10 1 ∈ ℂ
16 3p1e4 12274 . . . . . . . . . 10 (3 + 1) = 4
1714, 15, 16addcomli 11314 . . . . . . . . 9 (1 + 3) = 4
1813, 17eqtrdi 2784 . . . . . . . 8 (𝑖 = 1 → (𝑖 + 3) = 4)
1918oveq1d 7369 . . . . . . 7 (𝑖 = 1 → ((𝑖 + 3) · (2↑(𝑛 + 1))) = (4 · (2↑(𝑛 + 1))))
2019oveq1d 7369 . . . . . 6 (𝑖 = 1 → (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3) = ((4 · (2↑(𝑛 + 1))) − 3))
2120adantl 481 . . . . 5 ((𝑛 ∈ ℕ0𝑖 = 1) → (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3) = ((4 · (2↑(𝑛 + 1))) − 3))
22 1nn0 12406 . . . . . 6 1 ∈ ℕ0
2322a1i 11 . . . . 5 (𝑛 ∈ ℕ0 → 1 ∈ ℕ0)
24 ovexd 7389 . . . . 5 (𝑛 ∈ ℕ0 → ((4 · (2↑(𝑛 + 1))) − 3) ∈ V)
2512, 21, 23, 24fvmptd 6944 . . . 4 (𝑛 ∈ ℕ0 → ((𝑖 ∈ ℕ0 ↦ (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3))‘1) = ((4 · (2↑(𝑛 + 1))) − 3))
26 sq2 14108 . . . . . . . . 9 (2↑2) = 4
2726eqcomi 2742 . . . . . . . 8 4 = (2↑2)
2827a1i 11 . . . . . . 7 (𝑛 ∈ ℕ0 → 4 = (2↑2))
2928oveq1d 7369 . . . . . 6 (𝑛 ∈ ℕ0 → (4 · (2↑(𝑛 + 1))) = ((2↑2) · (2↑(𝑛 + 1))))
30 2cnd 12212 . . . . . . 7 (𝑛 ∈ ℕ0 → 2 ∈ ℂ)
313a1i 11 . . . . . . 7 (𝑛 ∈ ℕ0 → 2 ∈ ℕ0)
3230, 6, 31expaddd 14059 . . . . . 6 (𝑛 ∈ ℕ0 → (2↑(2 + (𝑛 + 1))) = ((2↑2) · (2↑(𝑛 + 1))))
33 nn0cn 12400 . . . . . . . . 9 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
34 1cnd 11116 . . . . . . . . 9 (𝑛 ∈ ℕ0 → 1 ∈ ℂ)
3530, 33, 34add12d 11349 . . . . . . . 8 (𝑛 ∈ ℕ0 → (2 + (𝑛 + 1)) = (𝑛 + (2 + 1)))
36 2p1e3 12271 . . . . . . . . 9 (2 + 1) = 3
3736oveq2i 7365 . . . . . . . 8 (𝑛 + (2 + 1)) = (𝑛 + 3)
3835, 37eqtrdi 2784 . . . . . . 7 (𝑛 ∈ ℕ0 → (2 + (𝑛 + 1)) = (𝑛 + 3))
3938oveq2d 7370 . . . . . 6 (𝑛 ∈ ℕ0 → (2↑(2 + (𝑛 + 1))) = (2↑(𝑛 + 3)))
4029, 32, 393eqtr2d 2774 . . . . 5 (𝑛 ∈ ℕ0 → (4 · (2↑(𝑛 + 1))) = (2↑(𝑛 + 3)))
4140oveq1d 7369 . . . 4 (𝑛 ∈ ℕ0 → ((4 · (2↑(𝑛 + 1))) − 3) = ((2↑(𝑛 + 3)) − 3))
4211, 25, 413eqtrd 2772 . . 3 (𝑛 ∈ ℕ0 → (((IterComp‘(Ack‘2))‘(𝑛 + 1))‘1) = ((2↑(𝑛 + 3)) − 3))
4342mpteq2ia 5190 . 2 (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘2))‘(𝑛 + 1))‘1)) = (𝑛 ∈ ℕ0 ↦ ((2↑(𝑛 + 3)) − 3))
442, 5, 433eqtri 2760 1 (Ack‘3) = (𝑛 ∈ ℕ0 ↦ ((2↑(𝑛 + 3)) − 3))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2113  Vcvv 3437  cmpt 5176  cfv 6488  (class class class)co 7354  1c1 11016   + caddc 11018   · cmul 11020  cmin 11353  2c2 12189  3c3 12190  4c4 12191  0cn0 12390  cexp 13972  IterCompcitco 48785  Ackcack 48786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-inf2 9540  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-n0 12391  df-z 12478  df-uz 12741  df-seq 13913  df-exp 13973  df-itco 48787  df-ack 48788
This theorem is referenced by:  ackval3012  48820  ackval41a  48822  ackval42  48824
  Copyright terms: Public domain W3C validator