Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ackval3 Structured version   Visualization version   GIF version

Theorem ackval3 46029
Description: The Ackermann function at 3. (Contributed by AV, 7-May-2024.)
Assertion
Ref Expression
ackval3 (Ack‘3) = (𝑛 ∈ ℕ0 ↦ ((2↑(𝑛 + 3)) − 3))

Proof of Theorem ackval3
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 df-3 12037 . . 3 3 = (2 + 1)
21fveq2i 6777 . 2 (Ack‘3) = (Ack‘(2 + 1))
3 2nn0 12250 . . 3 2 ∈ ℕ0
4 ackvalsuc1mpt 46024 . . 3 (2 ∈ ℕ0 → (Ack‘(2 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘2))‘(𝑛 + 1))‘1)))
53, 4ax-mp 5 . 2 (Ack‘(2 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘2))‘(𝑛 + 1))‘1))
6 peano2nn0 12273 . . . . . 6 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
7 3nn0 12251 . . . . . 6 3 ∈ ℕ0
8 ackval2 46028 . . . . . . 7 (Ack‘2) = (𝑖 ∈ ℕ0 ↦ ((2 · 𝑖) + 3))
98itcovalt2 46023 . . . . . 6 (((𝑛 + 1) ∈ ℕ0 ∧ 3 ∈ ℕ0) → ((IterComp‘(Ack‘2))‘(𝑛 + 1)) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3)))
106, 7, 9sylancl 586 . . . . 5 (𝑛 ∈ ℕ0 → ((IterComp‘(Ack‘2))‘(𝑛 + 1)) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3)))
1110fveq1d 6776 . . . 4 (𝑛 ∈ ℕ0 → (((IterComp‘(Ack‘2))‘(𝑛 + 1))‘1) = ((𝑖 ∈ ℕ0 ↦ (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3))‘1))
12 eqidd 2739 . . . . 5 (𝑛 ∈ ℕ0 → (𝑖 ∈ ℕ0 ↦ (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3)) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3)))
13 oveq1 7282 . . . . . . . . 9 (𝑖 = 1 → (𝑖 + 3) = (1 + 3))
14 3cn 12054 . . . . . . . . . 10 3 ∈ ℂ
15 ax-1cn 10929 . . . . . . . . . 10 1 ∈ ℂ
16 3p1e4 12118 . . . . . . . . . 10 (3 + 1) = 4
1714, 15, 16addcomli 11167 . . . . . . . . 9 (1 + 3) = 4
1813, 17eqtrdi 2794 . . . . . . . 8 (𝑖 = 1 → (𝑖 + 3) = 4)
1918oveq1d 7290 . . . . . . 7 (𝑖 = 1 → ((𝑖 + 3) · (2↑(𝑛 + 1))) = (4 · (2↑(𝑛 + 1))))
2019oveq1d 7290 . . . . . 6 (𝑖 = 1 → (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3) = ((4 · (2↑(𝑛 + 1))) − 3))
2120adantl 482 . . . . 5 ((𝑛 ∈ ℕ0𝑖 = 1) → (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3) = ((4 · (2↑(𝑛 + 1))) − 3))
22 1nn0 12249 . . . . . 6 1 ∈ ℕ0
2322a1i 11 . . . . 5 (𝑛 ∈ ℕ0 → 1 ∈ ℕ0)
24 ovexd 7310 . . . . 5 (𝑛 ∈ ℕ0 → ((4 · (2↑(𝑛 + 1))) − 3) ∈ V)
2512, 21, 23, 24fvmptd 6882 . . . 4 (𝑛 ∈ ℕ0 → ((𝑖 ∈ ℕ0 ↦ (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3))‘1) = ((4 · (2↑(𝑛 + 1))) − 3))
26 sq2 13914 . . . . . . . . 9 (2↑2) = 4
2726eqcomi 2747 . . . . . . . 8 4 = (2↑2)
2827a1i 11 . . . . . . 7 (𝑛 ∈ ℕ0 → 4 = (2↑2))
2928oveq1d 7290 . . . . . 6 (𝑛 ∈ ℕ0 → (4 · (2↑(𝑛 + 1))) = ((2↑2) · (2↑(𝑛 + 1))))
30 2cnd 12051 . . . . . . 7 (𝑛 ∈ ℕ0 → 2 ∈ ℂ)
313a1i 11 . . . . . . 7 (𝑛 ∈ ℕ0 → 2 ∈ ℕ0)
3230, 6, 31expaddd 13866 . . . . . 6 (𝑛 ∈ ℕ0 → (2↑(2 + (𝑛 + 1))) = ((2↑2) · (2↑(𝑛 + 1))))
33 nn0cn 12243 . . . . . . . . 9 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
34 1cnd 10970 . . . . . . . . 9 (𝑛 ∈ ℕ0 → 1 ∈ ℂ)
3530, 33, 34add12d 11201 . . . . . . . 8 (𝑛 ∈ ℕ0 → (2 + (𝑛 + 1)) = (𝑛 + (2 + 1)))
36 2p1e3 12115 . . . . . . . . 9 (2 + 1) = 3
3736oveq2i 7286 . . . . . . . 8 (𝑛 + (2 + 1)) = (𝑛 + 3)
3835, 37eqtrdi 2794 . . . . . . 7 (𝑛 ∈ ℕ0 → (2 + (𝑛 + 1)) = (𝑛 + 3))
3938oveq2d 7291 . . . . . 6 (𝑛 ∈ ℕ0 → (2↑(2 + (𝑛 + 1))) = (2↑(𝑛 + 3)))
4029, 32, 393eqtr2d 2784 . . . . 5 (𝑛 ∈ ℕ0 → (4 · (2↑(𝑛 + 1))) = (2↑(𝑛 + 3)))
4140oveq1d 7290 . . . 4 (𝑛 ∈ ℕ0 → ((4 · (2↑(𝑛 + 1))) − 3) = ((2↑(𝑛 + 3)) − 3))
4211, 25, 413eqtrd 2782 . . 3 (𝑛 ∈ ℕ0 → (((IterComp‘(Ack‘2))‘(𝑛 + 1))‘1) = ((2↑(𝑛 + 3)) − 3))
4342mpteq2ia 5177 . 2 (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘2))‘(𝑛 + 1))‘1)) = (𝑛 ∈ ℕ0 ↦ ((2↑(𝑛 + 3)) − 3))
442, 5, 433eqtri 2770 1 (Ack‘3) = (𝑛 ∈ ℕ0 ↦ ((2↑(𝑛 + 3)) − 3))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  Vcvv 3432  cmpt 5157  cfv 6433  (class class class)co 7275  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205  2c2 12028  3c3 12029  4c4 12030  0cn0 12233  cexp 13782  IterCompcitco 46003  Ackcack 46004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-n0 12234  df-z 12320  df-uz 12583  df-seq 13722  df-exp 13783  df-itco 46005  df-ack 46006
This theorem is referenced by:  ackval3012  46038  ackval41a  46040  ackval42  46042
  Copyright terms: Public domain W3C validator