Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ackval3 Structured version   Visualization version   GIF version

Theorem ackval3 48672
Description: The Ackermann function at 3. (Contributed by AV, 7-May-2024.)
Assertion
Ref Expression
ackval3 (Ack‘3) = (𝑛 ∈ ℕ0 ↦ ((2↑(𝑛 + 3)) − 3))

Proof of Theorem ackval3
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 df-3 12250 . . 3 3 = (2 + 1)
21fveq2i 6861 . 2 (Ack‘3) = (Ack‘(2 + 1))
3 2nn0 12459 . . 3 2 ∈ ℕ0
4 ackvalsuc1mpt 48667 . . 3 (2 ∈ ℕ0 → (Ack‘(2 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘2))‘(𝑛 + 1))‘1)))
53, 4ax-mp 5 . 2 (Ack‘(2 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘2))‘(𝑛 + 1))‘1))
6 peano2nn0 12482 . . . . . 6 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
7 3nn0 12460 . . . . . 6 3 ∈ ℕ0
8 ackval2 48671 . . . . . . 7 (Ack‘2) = (𝑖 ∈ ℕ0 ↦ ((2 · 𝑖) + 3))
98itcovalt2 48666 . . . . . 6 (((𝑛 + 1) ∈ ℕ0 ∧ 3 ∈ ℕ0) → ((IterComp‘(Ack‘2))‘(𝑛 + 1)) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3)))
106, 7, 9sylancl 586 . . . . 5 (𝑛 ∈ ℕ0 → ((IterComp‘(Ack‘2))‘(𝑛 + 1)) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3)))
1110fveq1d 6860 . . . 4 (𝑛 ∈ ℕ0 → (((IterComp‘(Ack‘2))‘(𝑛 + 1))‘1) = ((𝑖 ∈ ℕ0 ↦ (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3))‘1))
12 eqidd 2730 . . . . 5 (𝑛 ∈ ℕ0 → (𝑖 ∈ ℕ0 ↦ (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3)) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3)))
13 oveq1 7394 . . . . . . . . 9 (𝑖 = 1 → (𝑖 + 3) = (1 + 3))
14 3cn 12267 . . . . . . . . . 10 3 ∈ ℂ
15 ax-1cn 11126 . . . . . . . . . 10 1 ∈ ℂ
16 3p1e4 12326 . . . . . . . . . 10 (3 + 1) = 4
1714, 15, 16addcomli 11366 . . . . . . . . 9 (1 + 3) = 4
1813, 17eqtrdi 2780 . . . . . . . 8 (𝑖 = 1 → (𝑖 + 3) = 4)
1918oveq1d 7402 . . . . . . 7 (𝑖 = 1 → ((𝑖 + 3) · (2↑(𝑛 + 1))) = (4 · (2↑(𝑛 + 1))))
2019oveq1d 7402 . . . . . 6 (𝑖 = 1 → (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3) = ((4 · (2↑(𝑛 + 1))) − 3))
2120adantl 481 . . . . 5 ((𝑛 ∈ ℕ0𝑖 = 1) → (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3) = ((4 · (2↑(𝑛 + 1))) − 3))
22 1nn0 12458 . . . . . 6 1 ∈ ℕ0
2322a1i 11 . . . . 5 (𝑛 ∈ ℕ0 → 1 ∈ ℕ0)
24 ovexd 7422 . . . . 5 (𝑛 ∈ ℕ0 → ((4 · (2↑(𝑛 + 1))) − 3) ∈ V)
2512, 21, 23, 24fvmptd 6975 . . . 4 (𝑛 ∈ ℕ0 → ((𝑖 ∈ ℕ0 ↦ (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3))‘1) = ((4 · (2↑(𝑛 + 1))) − 3))
26 sq2 14162 . . . . . . . . 9 (2↑2) = 4
2726eqcomi 2738 . . . . . . . 8 4 = (2↑2)
2827a1i 11 . . . . . . 7 (𝑛 ∈ ℕ0 → 4 = (2↑2))
2928oveq1d 7402 . . . . . 6 (𝑛 ∈ ℕ0 → (4 · (2↑(𝑛 + 1))) = ((2↑2) · (2↑(𝑛 + 1))))
30 2cnd 12264 . . . . . . 7 (𝑛 ∈ ℕ0 → 2 ∈ ℂ)
313a1i 11 . . . . . . 7 (𝑛 ∈ ℕ0 → 2 ∈ ℕ0)
3230, 6, 31expaddd 14113 . . . . . 6 (𝑛 ∈ ℕ0 → (2↑(2 + (𝑛 + 1))) = ((2↑2) · (2↑(𝑛 + 1))))
33 nn0cn 12452 . . . . . . . . 9 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
34 1cnd 11169 . . . . . . . . 9 (𝑛 ∈ ℕ0 → 1 ∈ ℂ)
3530, 33, 34add12d 11401 . . . . . . . 8 (𝑛 ∈ ℕ0 → (2 + (𝑛 + 1)) = (𝑛 + (2 + 1)))
36 2p1e3 12323 . . . . . . . . 9 (2 + 1) = 3
3736oveq2i 7398 . . . . . . . 8 (𝑛 + (2 + 1)) = (𝑛 + 3)
3835, 37eqtrdi 2780 . . . . . . 7 (𝑛 ∈ ℕ0 → (2 + (𝑛 + 1)) = (𝑛 + 3))
3938oveq2d 7403 . . . . . 6 (𝑛 ∈ ℕ0 → (2↑(2 + (𝑛 + 1))) = (2↑(𝑛 + 3)))
4029, 32, 393eqtr2d 2770 . . . . 5 (𝑛 ∈ ℕ0 → (4 · (2↑(𝑛 + 1))) = (2↑(𝑛 + 3)))
4140oveq1d 7402 . . . 4 (𝑛 ∈ ℕ0 → ((4 · (2↑(𝑛 + 1))) − 3) = ((2↑(𝑛 + 3)) − 3))
4211, 25, 413eqtrd 2768 . . 3 (𝑛 ∈ ℕ0 → (((IterComp‘(Ack‘2))‘(𝑛 + 1))‘1) = ((2↑(𝑛 + 3)) − 3))
4342mpteq2ia 5202 . 2 (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘2))‘(𝑛 + 1))‘1)) = (𝑛 ∈ ℕ0 ↦ ((2↑(𝑛 + 3)) − 3))
442, 5, 433eqtri 2756 1 (Ack‘3) = (𝑛 ∈ ℕ0 ↦ ((2↑(𝑛 + 3)) − 3))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3447  cmpt 5188  cfv 6511  (class class class)co 7387  1c1 11069   + caddc 11071   · cmul 11073  cmin 11405  2c2 12241  3c3 12242  4c4 12243  0cn0 12442  cexp 14026  IterCompcitco 48646  Ackcack 48647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-n0 12443  df-z 12530  df-uz 12794  df-seq 13967  df-exp 14027  df-itco 48648  df-ack 48649
This theorem is referenced by:  ackval3012  48681  ackval41a  48683  ackval42  48685
  Copyright terms: Public domain W3C validator