Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ackval3 Structured version   Visualization version   GIF version

Theorem ackval3 47756
Description: The Ackermann function at 3. (Contributed by AV, 7-May-2024.)
Assertion
Ref Expression
ackval3 (Ack‘3) = (𝑛 ∈ ℕ0 ↦ ((2↑(𝑛 + 3)) − 3))

Proof of Theorem ackval3
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 df-3 12307 . . 3 3 = (2 + 1)
21fveq2i 6900 . 2 (Ack‘3) = (Ack‘(2 + 1))
3 2nn0 12520 . . 3 2 ∈ ℕ0
4 ackvalsuc1mpt 47751 . . 3 (2 ∈ ℕ0 → (Ack‘(2 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘2))‘(𝑛 + 1))‘1)))
53, 4ax-mp 5 . 2 (Ack‘(2 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘2))‘(𝑛 + 1))‘1))
6 peano2nn0 12543 . . . . . 6 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
7 3nn0 12521 . . . . . 6 3 ∈ ℕ0
8 ackval2 47755 . . . . . . 7 (Ack‘2) = (𝑖 ∈ ℕ0 ↦ ((2 · 𝑖) + 3))
98itcovalt2 47750 . . . . . 6 (((𝑛 + 1) ∈ ℕ0 ∧ 3 ∈ ℕ0) → ((IterComp‘(Ack‘2))‘(𝑛 + 1)) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3)))
106, 7, 9sylancl 585 . . . . 5 (𝑛 ∈ ℕ0 → ((IterComp‘(Ack‘2))‘(𝑛 + 1)) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3)))
1110fveq1d 6899 . . . 4 (𝑛 ∈ ℕ0 → (((IterComp‘(Ack‘2))‘(𝑛 + 1))‘1) = ((𝑖 ∈ ℕ0 ↦ (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3))‘1))
12 eqidd 2729 . . . . 5 (𝑛 ∈ ℕ0 → (𝑖 ∈ ℕ0 ↦ (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3)) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3)))
13 oveq1 7427 . . . . . . . . 9 (𝑖 = 1 → (𝑖 + 3) = (1 + 3))
14 3cn 12324 . . . . . . . . . 10 3 ∈ ℂ
15 ax-1cn 11197 . . . . . . . . . 10 1 ∈ ℂ
16 3p1e4 12388 . . . . . . . . . 10 (3 + 1) = 4
1714, 15, 16addcomli 11437 . . . . . . . . 9 (1 + 3) = 4
1813, 17eqtrdi 2784 . . . . . . . 8 (𝑖 = 1 → (𝑖 + 3) = 4)
1918oveq1d 7435 . . . . . . 7 (𝑖 = 1 → ((𝑖 + 3) · (2↑(𝑛 + 1))) = (4 · (2↑(𝑛 + 1))))
2019oveq1d 7435 . . . . . 6 (𝑖 = 1 → (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3) = ((4 · (2↑(𝑛 + 1))) − 3))
2120adantl 481 . . . . 5 ((𝑛 ∈ ℕ0𝑖 = 1) → (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3) = ((4 · (2↑(𝑛 + 1))) − 3))
22 1nn0 12519 . . . . . 6 1 ∈ ℕ0
2322a1i 11 . . . . 5 (𝑛 ∈ ℕ0 → 1 ∈ ℕ0)
24 ovexd 7455 . . . . 5 (𝑛 ∈ ℕ0 → ((4 · (2↑(𝑛 + 1))) − 3) ∈ V)
2512, 21, 23, 24fvmptd 7012 . . . 4 (𝑛 ∈ ℕ0 → ((𝑖 ∈ ℕ0 ↦ (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3))‘1) = ((4 · (2↑(𝑛 + 1))) − 3))
26 sq2 14193 . . . . . . . . 9 (2↑2) = 4
2726eqcomi 2737 . . . . . . . 8 4 = (2↑2)
2827a1i 11 . . . . . . 7 (𝑛 ∈ ℕ0 → 4 = (2↑2))
2928oveq1d 7435 . . . . . 6 (𝑛 ∈ ℕ0 → (4 · (2↑(𝑛 + 1))) = ((2↑2) · (2↑(𝑛 + 1))))
30 2cnd 12321 . . . . . . 7 (𝑛 ∈ ℕ0 → 2 ∈ ℂ)
313a1i 11 . . . . . . 7 (𝑛 ∈ ℕ0 → 2 ∈ ℕ0)
3230, 6, 31expaddd 14145 . . . . . 6 (𝑛 ∈ ℕ0 → (2↑(2 + (𝑛 + 1))) = ((2↑2) · (2↑(𝑛 + 1))))
33 nn0cn 12513 . . . . . . . . 9 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
34 1cnd 11240 . . . . . . . . 9 (𝑛 ∈ ℕ0 → 1 ∈ ℂ)
3530, 33, 34add12d 11471 . . . . . . . 8 (𝑛 ∈ ℕ0 → (2 + (𝑛 + 1)) = (𝑛 + (2 + 1)))
36 2p1e3 12385 . . . . . . . . 9 (2 + 1) = 3
3736oveq2i 7431 . . . . . . . 8 (𝑛 + (2 + 1)) = (𝑛 + 3)
3835, 37eqtrdi 2784 . . . . . . 7 (𝑛 ∈ ℕ0 → (2 + (𝑛 + 1)) = (𝑛 + 3))
3938oveq2d 7436 . . . . . 6 (𝑛 ∈ ℕ0 → (2↑(2 + (𝑛 + 1))) = (2↑(𝑛 + 3)))
4029, 32, 393eqtr2d 2774 . . . . 5 (𝑛 ∈ ℕ0 → (4 · (2↑(𝑛 + 1))) = (2↑(𝑛 + 3)))
4140oveq1d 7435 . . . 4 (𝑛 ∈ ℕ0 → ((4 · (2↑(𝑛 + 1))) − 3) = ((2↑(𝑛 + 3)) − 3))
4211, 25, 413eqtrd 2772 . . 3 (𝑛 ∈ ℕ0 → (((IterComp‘(Ack‘2))‘(𝑛 + 1))‘1) = ((2↑(𝑛 + 3)) − 3))
4342mpteq2ia 5251 . 2 (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘2))‘(𝑛 + 1))‘1)) = (𝑛 ∈ ℕ0 ↦ ((2↑(𝑛 + 3)) − 3))
442, 5, 433eqtri 2760 1 (Ack‘3) = (𝑛 ∈ ℕ0 ↦ ((2↑(𝑛 + 3)) − 3))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  Vcvv 3471  cmpt 5231  cfv 6548  (class class class)co 7420  1c1 11140   + caddc 11142   · cmul 11144  cmin 11475  2c2 12298  3c3 12299  4c4 12300  0cn0 12503  cexp 14059  IterCompcitco 47730  Ackcack 47731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-inf2 9665  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-2 12306  df-3 12307  df-4 12308  df-n0 12504  df-z 12590  df-uz 12854  df-seq 14000  df-exp 14060  df-itco 47732  df-ack 47733
This theorem is referenced by:  ackval3012  47765  ackval41a  47767  ackval42  47769
  Copyright terms: Public domain W3C validator