Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ackval3 Structured version   Visualization version   GIF version

Theorem ackval3 48672
Description: The Ackermann function at 3. (Contributed by AV, 7-May-2024.)
Assertion
Ref Expression
ackval3 (Ack‘3) = (𝑛 ∈ ℕ0 ↦ ((2↑(𝑛 + 3)) − 3))

Proof of Theorem ackval3
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 df-3 12210 . . 3 3 = (2 + 1)
21fveq2i 6829 . 2 (Ack‘3) = (Ack‘(2 + 1))
3 2nn0 12419 . . 3 2 ∈ ℕ0
4 ackvalsuc1mpt 48667 . . 3 (2 ∈ ℕ0 → (Ack‘(2 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘2))‘(𝑛 + 1))‘1)))
53, 4ax-mp 5 . 2 (Ack‘(2 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘2))‘(𝑛 + 1))‘1))
6 peano2nn0 12442 . . . . . 6 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
7 3nn0 12420 . . . . . 6 3 ∈ ℕ0
8 ackval2 48671 . . . . . . 7 (Ack‘2) = (𝑖 ∈ ℕ0 ↦ ((2 · 𝑖) + 3))
98itcovalt2 48666 . . . . . 6 (((𝑛 + 1) ∈ ℕ0 ∧ 3 ∈ ℕ0) → ((IterComp‘(Ack‘2))‘(𝑛 + 1)) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3)))
106, 7, 9sylancl 586 . . . . 5 (𝑛 ∈ ℕ0 → ((IterComp‘(Ack‘2))‘(𝑛 + 1)) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3)))
1110fveq1d 6828 . . . 4 (𝑛 ∈ ℕ0 → (((IterComp‘(Ack‘2))‘(𝑛 + 1))‘1) = ((𝑖 ∈ ℕ0 ↦ (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3))‘1))
12 eqidd 2730 . . . . 5 (𝑛 ∈ ℕ0 → (𝑖 ∈ ℕ0 ↦ (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3)) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3)))
13 oveq1 7360 . . . . . . . . 9 (𝑖 = 1 → (𝑖 + 3) = (1 + 3))
14 3cn 12227 . . . . . . . . . 10 3 ∈ ℂ
15 ax-1cn 11086 . . . . . . . . . 10 1 ∈ ℂ
16 3p1e4 12286 . . . . . . . . . 10 (3 + 1) = 4
1714, 15, 16addcomli 11326 . . . . . . . . 9 (1 + 3) = 4
1813, 17eqtrdi 2780 . . . . . . . 8 (𝑖 = 1 → (𝑖 + 3) = 4)
1918oveq1d 7368 . . . . . . 7 (𝑖 = 1 → ((𝑖 + 3) · (2↑(𝑛 + 1))) = (4 · (2↑(𝑛 + 1))))
2019oveq1d 7368 . . . . . 6 (𝑖 = 1 → (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3) = ((4 · (2↑(𝑛 + 1))) − 3))
2120adantl 481 . . . . 5 ((𝑛 ∈ ℕ0𝑖 = 1) → (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3) = ((4 · (2↑(𝑛 + 1))) − 3))
22 1nn0 12418 . . . . . 6 1 ∈ ℕ0
2322a1i 11 . . . . 5 (𝑛 ∈ ℕ0 → 1 ∈ ℕ0)
24 ovexd 7388 . . . . 5 (𝑛 ∈ ℕ0 → ((4 · (2↑(𝑛 + 1))) − 3) ∈ V)
2512, 21, 23, 24fvmptd 6941 . . . 4 (𝑛 ∈ ℕ0 → ((𝑖 ∈ ℕ0 ↦ (((𝑖 + 3) · (2↑(𝑛 + 1))) − 3))‘1) = ((4 · (2↑(𝑛 + 1))) − 3))
26 sq2 14122 . . . . . . . . 9 (2↑2) = 4
2726eqcomi 2738 . . . . . . . 8 4 = (2↑2)
2827a1i 11 . . . . . . 7 (𝑛 ∈ ℕ0 → 4 = (2↑2))
2928oveq1d 7368 . . . . . 6 (𝑛 ∈ ℕ0 → (4 · (2↑(𝑛 + 1))) = ((2↑2) · (2↑(𝑛 + 1))))
30 2cnd 12224 . . . . . . 7 (𝑛 ∈ ℕ0 → 2 ∈ ℂ)
313a1i 11 . . . . . . 7 (𝑛 ∈ ℕ0 → 2 ∈ ℕ0)
3230, 6, 31expaddd 14073 . . . . . 6 (𝑛 ∈ ℕ0 → (2↑(2 + (𝑛 + 1))) = ((2↑2) · (2↑(𝑛 + 1))))
33 nn0cn 12412 . . . . . . . . 9 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
34 1cnd 11129 . . . . . . . . 9 (𝑛 ∈ ℕ0 → 1 ∈ ℂ)
3530, 33, 34add12d 11361 . . . . . . . 8 (𝑛 ∈ ℕ0 → (2 + (𝑛 + 1)) = (𝑛 + (2 + 1)))
36 2p1e3 12283 . . . . . . . . 9 (2 + 1) = 3
3736oveq2i 7364 . . . . . . . 8 (𝑛 + (2 + 1)) = (𝑛 + 3)
3835, 37eqtrdi 2780 . . . . . . 7 (𝑛 ∈ ℕ0 → (2 + (𝑛 + 1)) = (𝑛 + 3))
3938oveq2d 7369 . . . . . 6 (𝑛 ∈ ℕ0 → (2↑(2 + (𝑛 + 1))) = (2↑(𝑛 + 3)))
4029, 32, 393eqtr2d 2770 . . . . 5 (𝑛 ∈ ℕ0 → (4 · (2↑(𝑛 + 1))) = (2↑(𝑛 + 3)))
4140oveq1d 7368 . . . 4 (𝑛 ∈ ℕ0 → ((4 · (2↑(𝑛 + 1))) − 3) = ((2↑(𝑛 + 3)) − 3))
4211, 25, 413eqtrd 2768 . . 3 (𝑛 ∈ ℕ0 → (((IterComp‘(Ack‘2))‘(𝑛 + 1))‘1) = ((2↑(𝑛 + 3)) − 3))
4342mpteq2ia 5190 . 2 (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘2))‘(𝑛 + 1))‘1)) = (𝑛 ∈ ℕ0 ↦ ((2↑(𝑛 + 3)) − 3))
442, 5, 433eqtri 2756 1 (Ack‘3) = (𝑛 ∈ ℕ0 ↦ ((2↑(𝑛 + 3)) − 3))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3438  cmpt 5176  cfv 6486  (class class class)co 7353  1c1 11029   + caddc 11031   · cmul 11033  cmin 11365  2c2 12201  3c3 12202  4c4 12203  0cn0 12402  cexp 13986  IterCompcitco 48646  Ackcack 48647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-n0 12403  df-z 12490  df-uz 12754  df-seq 13927  df-exp 13987  df-itco 48648  df-ack 48649
This theorem is referenced by:  ackval3012  48681  ackval41a  48683  ackval42  48685
  Copyright terms: Public domain W3C validator