Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atlem11a Structured version   Visualization version   GIF version

Theorem 4atlem11a 37244
Description: Lemma for 4at 37250. Substitute 𝑈 for 𝑄. (Contributed by NM, 9-Jul-2012.)
Hypotheses
Ref Expression
4at.l = (le‘𝐾)
4at.j = (join‘𝐾)
4at.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
4atlem11a (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) → (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ↔ ((𝑃 𝑄) (𝑉 𝑊)) = ((𝑃 𝑈) (𝑉 𝑊))))

Proof of Theorem 4atlem11a
StepHypRef Expression
1 simp11 1204 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) → 𝐾 ∈ HL)
2 simp13 1206 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) → 𝑄𝐴)
3 simp21 1207 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) → 𝑈𝐴)
41hllatd 37001 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) → 𝐾 ∈ Lat)
5 simp12 1205 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) → 𝑃𝐴)
6 simp22 1208 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) → 𝑉𝐴)
7 eqid 2738 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
8 4at.j . . . . . 6 = (join‘𝐾)
9 4at.a . . . . . 6 𝐴 = (Atoms‘𝐾)
107, 8, 9hlatjcl 37004 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑉𝐴) → (𝑃 𝑉) ∈ (Base‘𝐾))
111, 5, 6, 10syl3anc 1372 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) → (𝑃 𝑉) ∈ (Base‘𝐾))
12 simp23 1209 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) → 𝑊𝐴)
137, 9atbase 36926 . . . . 5 (𝑊𝐴𝑊 ∈ (Base‘𝐾))
1412, 13syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) → 𝑊 ∈ (Base‘𝐾))
157, 8latjcl 17777 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 𝑉) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑉) 𝑊) ∈ (Base‘𝐾))
164, 11, 14, 15syl3anc 1372 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) → ((𝑃 𝑉) 𝑊) ∈ (Base‘𝐾))
17 simp3 1139 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) → ¬ 𝑄 ((𝑃 𝑉) 𝑊))
18 4at.l . . . 4 = (le‘𝐾)
197, 18, 8, 9hlexchb2 37022 . . 3 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑈𝐴 ∧ ((𝑃 𝑉) 𝑊) ∈ (Base‘𝐾)) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) → (𝑄 (𝑈 ((𝑃 𝑉) 𝑊)) ↔ (𝑄 ((𝑃 𝑉) 𝑊)) = (𝑈 ((𝑃 𝑉) 𝑊))))
201, 2, 3, 16, 17, 19syl131anc 1384 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) → (𝑄 (𝑈 ((𝑃 𝑉) 𝑊)) ↔ (𝑄 ((𝑃 𝑉) 𝑊)) = (𝑈 ((𝑃 𝑉) 𝑊))))
2118, 8, 94atlem4b 37237 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) ∧ (𝑉𝐴𝑊𝐴)) → ((𝑃 𝑈) (𝑉 𝑊)) = (𝑈 ((𝑃 𝑉) 𝑊)))
221, 5, 3, 6, 12, 21syl32anc 1379 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) → ((𝑃 𝑈) (𝑉 𝑊)) = (𝑈 ((𝑃 𝑉) 𝑊)))
2322breq2d 5042 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) → (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ↔ 𝑄 (𝑈 ((𝑃 𝑉) 𝑊))))
2418, 8, 94atlem4b 37237 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑉𝐴𝑊𝐴)) → ((𝑃 𝑄) (𝑉 𝑊)) = (𝑄 ((𝑃 𝑉) 𝑊)))
251, 5, 2, 6, 12, 24syl32anc 1379 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) → ((𝑃 𝑄) (𝑉 𝑊)) = (𝑄 ((𝑃 𝑉) 𝑊)))
2625, 22eqeq12d 2754 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) → (((𝑃 𝑄) (𝑉 𝑊)) = ((𝑃 𝑈) (𝑉 𝑊)) ↔ (𝑄 ((𝑃 𝑉) 𝑊)) = (𝑈 ((𝑃 𝑉) 𝑊))))
2720, 23, 263bitr4d 314 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) → (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ↔ ((𝑃 𝑄) (𝑉 𝑊)) = ((𝑃 𝑈) (𝑉 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  w3a 1088   = wceq 1542  wcel 2114   class class class wbr 5030  cfv 6339  (class class class)co 7170  Basecbs 16586  lecple 16675  joincjn 17670  Latclat 17771  Atomscatm 36900  HLchlt 36987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-proset 17654  df-poset 17672  df-lub 17700  df-glb 17701  df-join 17702  df-meet 17703  df-lat 17772  df-ats 36904  df-atl 36935  df-cvlat 36959  df-hlat 36988
This theorem is referenced by:  4atlem11b  37245
  Copyright terms: Public domain W3C validator