Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atlem11a Structured version   Visualization version   GIF version

Theorem 4atlem11a 39608
Description: Lemma for 4at 39614. Substitute 𝑈 for 𝑄. (Contributed by NM, 9-Jul-2012.)
Hypotheses
Ref Expression
4at.l = (le‘𝐾)
4at.j = (join‘𝐾)
4at.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
4atlem11a (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) → (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ↔ ((𝑃 𝑄) (𝑉 𝑊)) = ((𝑃 𝑈) (𝑉 𝑊))))

Proof of Theorem 4atlem11a
StepHypRef Expression
1 simp11 1204 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) → 𝐾 ∈ HL)
2 simp13 1206 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) → 𝑄𝐴)
3 simp21 1207 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) → 𝑈𝐴)
41hllatd 39364 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) → 𝐾 ∈ Lat)
5 simp12 1205 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) → 𝑃𝐴)
6 simp22 1208 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) → 𝑉𝐴)
7 eqid 2730 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
8 4at.j . . . . . 6 = (join‘𝐾)
9 4at.a . . . . . 6 𝐴 = (Atoms‘𝐾)
107, 8, 9hlatjcl 39367 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑉𝐴) → (𝑃 𝑉) ∈ (Base‘𝐾))
111, 5, 6, 10syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) → (𝑃 𝑉) ∈ (Base‘𝐾))
12 simp23 1209 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) → 𝑊𝐴)
137, 9atbase 39289 . . . . 5 (𝑊𝐴𝑊 ∈ (Base‘𝐾))
1412, 13syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) → 𝑊 ∈ (Base‘𝐾))
157, 8latjcl 18405 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 𝑉) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑉) 𝑊) ∈ (Base‘𝐾))
164, 11, 14, 15syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) → ((𝑃 𝑉) 𝑊) ∈ (Base‘𝐾))
17 simp3 1138 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) → ¬ 𝑄 ((𝑃 𝑉) 𝑊))
18 4at.l . . . 4 = (le‘𝐾)
197, 18, 8, 9hlexchb2 39386 . . 3 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑈𝐴 ∧ ((𝑃 𝑉) 𝑊) ∈ (Base‘𝐾)) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) → (𝑄 (𝑈 ((𝑃 𝑉) 𝑊)) ↔ (𝑄 ((𝑃 𝑉) 𝑊)) = (𝑈 ((𝑃 𝑉) 𝑊))))
201, 2, 3, 16, 17, 19syl131anc 1385 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) → (𝑄 (𝑈 ((𝑃 𝑉) 𝑊)) ↔ (𝑄 ((𝑃 𝑉) 𝑊)) = (𝑈 ((𝑃 𝑉) 𝑊))))
2118, 8, 94atlem4b 39601 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) ∧ (𝑉𝐴𝑊𝐴)) → ((𝑃 𝑈) (𝑉 𝑊)) = (𝑈 ((𝑃 𝑉) 𝑊)))
221, 5, 3, 6, 12, 21syl32anc 1380 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) → ((𝑃 𝑈) (𝑉 𝑊)) = (𝑈 ((𝑃 𝑉) 𝑊)))
2322breq2d 5122 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) → (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ↔ 𝑄 (𝑈 ((𝑃 𝑉) 𝑊))))
2418, 8, 94atlem4b 39601 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑉𝐴𝑊𝐴)) → ((𝑃 𝑄) (𝑉 𝑊)) = (𝑄 ((𝑃 𝑉) 𝑊)))
251, 5, 2, 6, 12, 24syl32anc 1380 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) → ((𝑃 𝑄) (𝑉 𝑊)) = (𝑄 ((𝑃 𝑉) 𝑊)))
2625, 22eqeq12d 2746 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) → (((𝑃 𝑄) (𝑉 𝑊)) = ((𝑃 𝑈) (𝑉 𝑊)) ↔ (𝑄 ((𝑃 𝑉) 𝑊)) = (𝑈 ((𝑃 𝑉) 𝑊))))
2720, 23, 263bitr4d 311 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑄 ((𝑃 𝑉) 𝑊)) → (𝑄 ((𝑃 𝑈) (𝑉 𝑊)) ↔ ((𝑃 𝑄) (𝑉 𝑊)) = ((𝑃 𝑈) (𝑉 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5110  cfv 6514  (class class class)co 7390  Basecbs 17186  lecple 17234  joincjn 18279  Latclat 18397  Atomscatm 39263  HLchlt 39350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-proset 18262  df-poset 18281  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-lat 18398  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351
This theorem is referenced by:  4atlem11b  39609
  Copyright terms: Public domain W3C validator