| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abvcl | Structured version Visualization version GIF version | ||
| Description: An absolute value is a function from the ring to the real numbers. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| Ref | Expression |
|---|---|
| abvf.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
| abvf.b | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| abvcl | ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abvf.a | . . 3 ⊢ 𝐴 = (AbsVal‘𝑅) | |
| 2 | abvf.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | 1, 2 | abvf 20732 | . 2 ⊢ (𝐹 ∈ 𝐴 → 𝐹:𝐵⟶ℝ) |
| 4 | 3 | ffvelcdmda 7023 | 1 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ‘cfv 6486 ℝcr 11012 Basecbs 17122 AbsValcabv 20725 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-addrcl 11074 ax-rnegex 11084 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-ico 13253 df-abv 20726 |
| This theorem is referenced by: abvgt0 20737 abv1z 20741 abvneg 20743 abvrec 20745 abvdiv 20746 abvdom 20747 abvcxp 27554 qabvle 27564 qabvexp 27565 ostth1 27572 ostth2lem2 27573 ostth2lem3 27574 ostth2lem4 27575 ostth2 27576 ostth3 27577 abvexp 42650 fiabv 42654 |
| Copyright terms: Public domain | W3C validator |