MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvcl Structured version   Visualization version   GIF version

Theorem abvcl 20663
Description: An absolute value is a function from the ring to the real numbers. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abvf.a 𝐴 = (AbsValβ€˜π‘…)
abvf.b 𝐡 = (Baseβ€˜π‘…)
Assertion
Ref Expression
abvcl ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) β†’ (πΉβ€˜π‘‹) ∈ ℝ)

Proof of Theorem abvcl
StepHypRef Expression
1 abvf.a . . 3 𝐴 = (AbsValβ€˜π‘…)
2 abvf.b . . 3 𝐡 = (Baseβ€˜π‘…)
31, 2abvf 20662 . 2 (𝐹 ∈ 𝐴 β†’ 𝐹:π΅βŸΆβ„)
43ffvelcdmda 7077 1 ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) β†’ (πΉβ€˜π‘‹) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098  β€˜cfv 6534  β„cr 11106  Basecbs 17149  AbsValcabv 20655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-addrcl 11168  ax-rnegex 11178  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-po 5579  df-so 5580  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-ov 7405  df-oprab 7406  df-mpo 7407  df-er 8700  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-ico 13331  df-abv 20656
This theorem is referenced by:  abvgt0  20667  abv1z  20671  abvneg  20673  abvrec  20675  abvdiv  20676  abvdom  20677  abvcxp  27488  qabvle  27498  qabvexp  27499  ostth1  27506  ostth2lem2  27507  ostth2lem3  27508  ostth2lem4  27509  ostth2  27510  ostth3  27511
  Copyright terms: Public domain W3C validator