MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvcl Structured version   Visualization version   GIF version

Theorem abvcl 19024
Description: An absolute value is a function from the ring to the real numbers. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abvf.a 𝐴 = (AbsVal‘𝑅)
abvf.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
abvcl ((𝐹𝐴𝑋𝐵) → (𝐹𝑋) ∈ ℝ)

Proof of Theorem abvcl
StepHypRef Expression
1 abvf.a . . 3 𝐴 = (AbsVal‘𝑅)
2 abvf.b . . 3 𝐵 = (Base‘𝑅)
31, 2abvf 19023 . 2 (𝐹𝐴𝐹:𝐵⟶ℝ)
43ffvelrnda 6577 1 ((𝐹𝐴𝑋𝐵) → (𝐹𝑋) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1637  wcel 2156  cfv 6097  cr 10216  Basecbs 16064  AbsValcabv 19016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175  ax-cnex 10273  ax-resscn 10274  ax-1cn 10275  ax-icn 10276  ax-addcl 10277  ax-addrcl 10278  ax-mulcl 10279  ax-mulrcl 10280  ax-i2m1 10285  ax-1ne0 10286  ax-rnegex 10288  ax-rrecex 10289  ax-cnre 10290  ax-pre-lttri 10291  ax-pre-lttrn 10292
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-op 4377  df-uni 4631  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5219  df-po 5232  df-so 5233  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-f1 6102  df-fo 6103  df-f1o 6104  df-fv 6105  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-er 7975  df-map 8090  df-en 8189  df-dom 8190  df-sdom 8191  df-pnf 10357  df-mnf 10358  df-xr 10359  df-ltxr 10360  df-le 10361  df-ico 12395  df-abv 19017
This theorem is referenced by:  abvgt0  19028  abv1z  19032  abvneg  19034  abvrec  19036  abvdiv  19037  abvdom  19038  abvcxp  25517  qabvle  25527  qabvexp  25528  ostth1  25535  ostth2lem2  25536  ostth2lem3  25537  ostth2lem4  25538  ostth2  25539  ostth3  25540
  Copyright terms: Public domain W3C validator