MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvcl Structured version   Visualization version   GIF version

Theorem abvcl 19030
Description: An absolute value is a function from the ring to the real numbers. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abvf.a 𝐴 = (AbsVal‘𝑅)
abvf.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
abvcl ((𝐹𝐴𝑋𝐵) → (𝐹𝑋) ∈ ℝ)

Proof of Theorem abvcl
StepHypRef Expression
1 abvf.a . . 3 𝐴 = (AbsVal‘𝑅)
2 abvf.b . . 3 𝐵 = (Base‘𝑅)
31, 2abvf 19029 . 2 (𝐹𝐴𝐹:𝐵⟶ℝ)
43ffvelrnda 6501 1 ((𝐹𝐴𝑋𝐵) → (𝐹𝑋) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  cfv 6029  cr 10137  Basecbs 16060  AbsValcabv 19022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-i2m1 10206  ax-1ne0 10207  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-ico 12382  df-abv 19023
This theorem is referenced by:  abvgt0  19034  abv1z  19038  abvneg  19040  abvrec  19042  abvdiv  19043  abvdom  19044  abvcxp  25521  qabvle  25531  qabvexp  25532  ostth1  25539  ostth2lem2  25540  ostth2lem3  25541  ostth2lem4  25542  ostth2  25543  ostth3  25544
  Copyright terms: Public domain W3C validator