MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsflsumcom Structured version   Visualization version   GIF version

Theorem dvdsflsumcom 26537
Description: A sum commutation from Σ𝑛𝐴, Σ𝑑𝑛, 𝐵(𝑛, 𝑑) to Σ𝑑𝐴, Σ𝑚𝐴 / 𝑑, 𝐵(𝑛, 𝑑𝑚). (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
dvdsflsumcom.1 (𝑛 = (𝑑 · 𝑚) → 𝐵 = 𝐶)
dvdsflsumcom.2 (𝜑𝐴 ∈ ℝ)
dvdsflsumcom.3 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
dvdsflsumcom (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}𝐵 = Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))𝐶)
Distinct variable groups:   𝑚,𝑑,𝑛,𝑥,𝐴   𝐵,𝑚   𝐶,𝑛   𝜑,𝑑,𝑚,𝑛
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥,𝑛,𝑑)   𝐶(𝑥,𝑚,𝑑)

Proof of Theorem dvdsflsumcom
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fzfid 13878 . . 3 (𝜑 → (1...(⌊‘𝐴)) ∈ Fin)
2 fzfid 13878 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (1...𝑛) ∈ Fin)
3 elfznn 13470 . . . . . 6 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℕ)
43adantl 482 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ)
5 dvdsssfz1 16200 . . . . 5 (𝑛 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑛} ⊆ (1...𝑛))
64, 5syl 17 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → {𝑥 ∈ ℕ ∣ 𝑥𝑛} ⊆ (1...𝑛))
72, 6ssfid 9211 . . 3 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → {𝑥 ∈ ℕ ∣ 𝑥𝑛} ∈ Fin)
8 nnre 12160 . . . . . . . . . . . 12 (𝑑 ∈ ℕ → 𝑑 ∈ ℝ)
98ad2antrl 726 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛)) → 𝑑 ∈ ℝ)
104adantr 481 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛)) → 𝑛 ∈ ℕ)
1110nnred 12168 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛)) → 𝑛 ∈ ℝ)
12 dvdsflsumcom.2 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ)
1312ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛)) → 𝐴 ∈ ℝ)
14 nnz 12520 . . . . . . . . . . . . 13 (𝑑 ∈ ℕ → 𝑑 ∈ ℤ)
15 dvdsle 16192 . . . . . . . . . . . . 13 ((𝑑 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑑𝑛𝑑𝑛))
1614, 4, 15syl2anr 597 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ ℕ) → (𝑑𝑛𝑑𝑛))
1716impr 455 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛)) → 𝑑𝑛)
18 fznnfl 13767 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → (𝑛 ∈ (1...(⌊‘𝐴)) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝐴)))
1912, 18syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑛 ∈ (1...(⌊‘𝐴)) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝐴)))
2019simplbda 500 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛𝐴)
2120adantr 481 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛)) → 𝑛𝐴)
229, 11, 13, 17, 21letrd 11312 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛)) → 𝑑𝐴)
2322ex 413 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑑 ∈ ℕ ∧ 𝑑𝑛) → 𝑑𝐴))
2423pm4.71rd 563 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑑 ∈ ℕ ∧ 𝑑𝑛) ↔ (𝑑𝐴 ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛))))
25 ancom 461 . . . . . . . . 9 ((𝑑𝐴 ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛)) ↔ ((𝑑 ∈ ℕ ∧ 𝑑𝑛) ∧ 𝑑𝐴))
26 an32 644 . . . . . . . . 9 (((𝑑 ∈ ℕ ∧ 𝑑𝑛) ∧ 𝑑𝐴) ↔ ((𝑑 ∈ ℕ ∧ 𝑑𝐴) ∧ 𝑑𝑛))
2725, 26bitri 274 . . . . . . . 8 ((𝑑𝐴 ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛)) ↔ ((𝑑 ∈ ℕ ∧ 𝑑𝐴) ∧ 𝑑𝑛))
2824, 27bitrdi 286 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑑 ∈ ℕ ∧ 𝑑𝑛) ↔ ((𝑑 ∈ ℕ ∧ 𝑑𝐴) ∧ 𝑑𝑛)))
29 fznnfl 13767 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝑑 ∈ (1...(⌊‘𝐴)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝐴)))
3012, 29syl 17 . . . . . . . . 9 (𝜑 → (𝑑 ∈ (1...(⌊‘𝐴)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝐴)))
3130adantr 481 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (𝑑 ∈ (1...(⌊‘𝐴)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝐴)))
3231anbi1d 630 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑑 ∈ (1...(⌊‘𝐴)) ∧ 𝑑𝑛) ↔ ((𝑑 ∈ ℕ ∧ 𝑑𝐴) ∧ 𝑑𝑛)))
3328, 32bitr4d 281 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑑 ∈ ℕ ∧ 𝑑𝑛) ↔ (𝑑 ∈ (1...(⌊‘𝐴)) ∧ 𝑑𝑛)))
3433pm5.32da 579 . . . . 5 (𝜑 → ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛)) ↔ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (𝑑 ∈ (1...(⌊‘𝐴)) ∧ 𝑑𝑛))))
35 an12 643 . . . . 5 ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ (𝑑 ∈ (1...(⌊‘𝐴)) ∧ 𝑑𝑛)) ↔ (𝑑 ∈ (1...(⌊‘𝐴)) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑𝑛)))
3634, 35bitrdi 286 . . . 4 (𝜑 → ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛)) ↔ (𝑑 ∈ (1...(⌊‘𝐴)) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑𝑛))))
37 breq1 5108 . . . . . 6 (𝑥 = 𝑑 → (𝑥𝑛𝑑𝑛))
3837elrab 3645 . . . . 5 (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ↔ (𝑑 ∈ ℕ ∧ 𝑑𝑛))
3938anbi2i 623 . . . 4 ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) ↔ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛)))
40 breq2 5109 . . . . . 6 (𝑥 = 𝑛 → (𝑑𝑥𝑑𝑛))
4140elrab 3645 . . . . 5 (𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑𝑥} ↔ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑𝑛))
4241anbi2i 623 . . . 4 ((𝑑 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑𝑥}) ↔ (𝑑 ∈ (1...(⌊‘𝐴)) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑𝑛)))
4336, 39, 423bitr4g 313 . . 3 (𝜑 → ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) ↔ (𝑑 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑𝑥})))
44 dvdsflsumcom.3 . . 3 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → 𝐵 ∈ ℂ)
451, 1, 7, 43, 44fsumcom2 15659 . 2 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}𝐵 = Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑𝑥}𝐵)
46 dvdsflsumcom.1 . . . 4 (𝑛 = (𝑑 · 𝑚) → 𝐵 = 𝐶)
47 fzfid 13878 . . . 4 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (1...(⌊‘(𝐴 / 𝑑))) ∈ Fin)
4812adantr 481 . . . . 5 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝐴 ∈ ℝ)
4930simprbda 499 . . . . 5 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℕ)
50 eqid 2736 . . . . 5 (𝑦 ∈ (1...(⌊‘(𝐴 / 𝑑))) ↦ (𝑑 · 𝑦)) = (𝑦 ∈ (1...(⌊‘(𝐴 / 𝑑))) ↦ (𝑑 · 𝑦))
5148, 49, 50dvdsflf1o 26536 . . . 4 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (𝑦 ∈ (1...(⌊‘(𝐴 / 𝑑))) ↦ (𝑑 · 𝑦)):(1...(⌊‘(𝐴 / 𝑑)))–1-1-onto→{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑𝑥})
52 oveq2 7365 . . . . . 6 (𝑦 = 𝑚 → (𝑑 · 𝑦) = (𝑑 · 𝑚))
53 ovex 7390 . . . . . 6 (𝑑 · 𝑚) ∈ V
5452, 50, 53fvmpt 6948 . . . . 5 (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑))) → ((𝑦 ∈ (1...(⌊‘(𝐴 / 𝑑))) ↦ (𝑑 · 𝑦))‘𝑚) = (𝑑 · 𝑚))
5554adantl 482 . . . 4 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑦 ∈ (1...(⌊‘(𝐴 / 𝑑))) ↦ (𝑑 · 𝑦))‘𝑚) = (𝑑 · 𝑚))
5643biimpar 478 . . . . . 6 ((𝜑 ∧ (𝑑 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑𝑥})) → (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}))
5756, 44syldan 591 . . . . 5 ((𝜑 ∧ (𝑑 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑𝑥})) → 𝐵 ∈ ℂ)
5857anassrs 468 . . . 4 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑𝑥}) → 𝐵 ∈ ℂ)
5946, 47, 51, 55, 58fsumf1o 15608 . . 3 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑𝑥}𝐵 = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))𝐶)
6059sumeq2dv 15588 . 2 (𝜑 → Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑𝑥}𝐵 = Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))𝐶)
6145, 60eqtrd 2776 1 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}𝐵 = Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  {crab 3407  wss 3910   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  1c1 11052   · cmul 11056  cle 11190   / cdiv 11812  cn 12153  cz 12499  ...cfz 13424  cfl 13695  Σcsu 15570  cdvds 16136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-dvds 16137
This theorem is referenced by:  dchrmusum2  26842  dchrvmasumlem1  26843  dchrvmasum2lem  26844  dchrisum0  26868  mudivsum  26878  mulogsum  26880  mulog2sumlem2  26883  vmalogdivsum2  26886  selberglem3  26895  selberg  26896  selberg34r  26919  pntsval2  26924
  Copyright terms: Public domain W3C validator