Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsflsumcom Structured version   Visualization version   GIF version

Theorem dvdsflsumcom 25752
 Description: A sum commutation from Σ𝑛 ≤ 𝐴, Σ𝑑 ∥ 𝑛, 𝐵(𝑛, 𝑑) to Σ𝑑 ≤ 𝐴, Σ𝑚 ≤ 𝐴 / 𝑑, 𝐵(𝑛, 𝑑𝑚). (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
dvdsflsumcom.1 (𝑛 = (𝑑 · 𝑚) → 𝐵 = 𝐶)
dvdsflsumcom.2 (𝜑𝐴 ∈ ℝ)
dvdsflsumcom.3 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
dvdsflsumcom (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}𝐵 = Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))𝐶)
Distinct variable groups:   𝑚,𝑑,𝑛,𝑥,𝐴   𝐵,𝑚   𝐶,𝑛   𝜑,𝑑,𝑚,𝑛
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥,𝑛,𝑑)   𝐶(𝑥,𝑚,𝑑)

Proof of Theorem dvdsflsumcom
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fzfid 13324 . . 3 (𝜑 → (1...(⌊‘𝐴)) ∈ Fin)
2 fzfid 13324 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (1...𝑛) ∈ Fin)
3 elfznn 12919 . . . . . 6 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℕ)
43adantl 485 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ)
5 dvdsssfz1 15647 . . . . 5 (𝑛 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑛} ⊆ (1...𝑛))
64, 5syl 17 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → {𝑥 ∈ ℕ ∣ 𝑥𝑛} ⊆ (1...𝑛))
72, 6ssfid 8717 . . 3 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → {𝑥 ∈ ℕ ∣ 𝑥𝑛} ∈ Fin)
8 nnre 11622 . . . . . . . . . . . 12 (𝑑 ∈ ℕ → 𝑑 ∈ ℝ)
98ad2antrl 727 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛)) → 𝑑 ∈ ℝ)
104adantr 484 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛)) → 𝑛 ∈ ℕ)
1110nnred 11630 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛)) → 𝑛 ∈ ℝ)
12 dvdsflsumcom.2 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ)
1312ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛)) → 𝐴 ∈ ℝ)
14 nnz 11982 . . . . . . . . . . . . 13 (𝑑 ∈ ℕ → 𝑑 ∈ ℤ)
15 dvdsle 15639 . . . . . . . . . . . . 13 ((𝑑 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑑𝑛𝑑𝑛))
1614, 4, 15syl2anr 599 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ ℕ) → (𝑑𝑛𝑑𝑛))
1716impr 458 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛)) → 𝑑𝑛)
18 fznnfl 13213 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → (𝑛 ∈ (1...(⌊‘𝐴)) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝐴)))
1912, 18syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑛 ∈ (1...(⌊‘𝐴)) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝐴)))
2019simplbda 503 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛𝐴)
2120adantr 484 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛)) → 𝑛𝐴)
229, 11, 13, 17, 21letrd 10774 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛)) → 𝑑𝐴)
2322ex 416 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑑 ∈ ℕ ∧ 𝑑𝑛) → 𝑑𝐴))
2423pm4.71rd 566 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑑 ∈ ℕ ∧ 𝑑𝑛) ↔ (𝑑𝐴 ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛))))
25 ancom 464 . . . . . . . . 9 ((𝑑𝐴 ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛)) ↔ ((𝑑 ∈ ℕ ∧ 𝑑𝑛) ∧ 𝑑𝐴))
26 an32 645 . . . . . . . . 9 (((𝑑 ∈ ℕ ∧ 𝑑𝑛) ∧ 𝑑𝐴) ↔ ((𝑑 ∈ ℕ ∧ 𝑑𝐴) ∧ 𝑑𝑛))
2725, 26bitri 278 . . . . . . . 8 ((𝑑𝐴 ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛)) ↔ ((𝑑 ∈ ℕ ∧ 𝑑𝐴) ∧ 𝑑𝑛))
2824, 27syl6bb 290 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑑 ∈ ℕ ∧ 𝑑𝑛) ↔ ((𝑑 ∈ ℕ ∧ 𝑑𝐴) ∧ 𝑑𝑛)))
29 fznnfl 13213 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝑑 ∈ (1...(⌊‘𝐴)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝐴)))
3012, 29syl 17 . . . . . . . . 9 (𝜑 → (𝑑 ∈ (1...(⌊‘𝐴)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝐴)))
3130adantr 484 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (𝑑 ∈ (1...(⌊‘𝐴)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝐴)))
3231anbi1d 632 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑑 ∈ (1...(⌊‘𝐴)) ∧ 𝑑𝑛) ↔ ((𝑑 ∈ ℕ ∧ 𝑑𝐴) ∧ 𝑑𝑛)))
3328, 32bitr4d 285 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑑 ∈ ℕ ∧ 𝑑𝑛) ↔ (𝑑 ∈ (1...(⌊‘𝐴)) ∧ 𝑑𝑛)))
3433pm5.32da 582 . . . . 5 (𝜑 → ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛)) ↔ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (𝑑 ∈ (1...(⌊‘𝐴)) ∧ 𝑑𝑛))))
35 an12 644 . . . . 5 ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ (𝑑 ∈ (1...(⌊‘𝐴)) ∧ 𝑑𝑛)) ↔ (𝑑 ∈ (1...(⌊‘𝐴)) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑𝑛)))
3634, 35syl6bb 290 . . . 4 (𝜑 → ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛)) ↔ (𝑑 ∈ (1...(⌊‘𝐴)) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑𝑛))))
37 breq1 5042 . . . . . 6 (𝑥 = 𝑑 → (𝑥𝑛𝑑𝑛))
3837elrab 3657 . . . . 5 (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ↔ (𝑑 ∈ ℕ ∧ 𝑑𝑛))
3938anbi2i 625 . . . 4 ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) ↔ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛)))
40 breq2 5043 . . . . . 6 (𝑥 = 𝑛 → (𝑑𝑥𝑑𝑛))
4140elrab 3657 . . . . 5 (𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑𝑥} ↔ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑𝑛))
4241anbi2i 625 . . . 4 ((𝑑 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑𝑥}) ↔ (𝑑 ∈ (1...(⌊‘𝐴)) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑𝑛)))
4336, 39, 423bitr4g 317 . . 3 (𝜑 → ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) ↔ (𝑑 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑𝑥})))
44 dvdsflsumcom.3 . . 3 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → 𝐵 ∈ ℂ)
451, 1, 7, 43, 44fsumcom2 15108 . 2 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}𝐵 = Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑𝑥}𝐵)
46 dvdsflsumcom.1 . . . 4 (𝑛 = (𝑑 · 𝑚) → 𝐵 = 𝐶)
47 fzfid 13324 . . . 4 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (1...(⌊‘(𝐴 / 𝑑))) ∈ Fin)
4812adantr 484 . . . . 5 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝐴 ∈ ℝ)
4930simprbda 502 . . . . 5 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℕ)
50 eqid 2821 . . . . 5 (𝑦 ∈ (1...(⌊‘(𝐴 / 𝑑))) ↦ (𝑑 · 𝑦)) = (𝑦 ∈ (1...(⌊‘(𝐴 / 𝑑))) ↦ (𝑑 · 𝑦))
5148, 49, 50dvdsflf1o 25751 . . . 4 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (𝑦 ∈ (1...(⌊‘(𝐴 / 𝑑))) ↦ (𝑑 · 𝑦)):(1...(⌊‘(𝐴 / 𝑑)))–1-1-onto→{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑𝑥})
52 oveq2 7138 . . . . . 6 (𝑦 = 𝑚 → (𝑑 · 𝑦) = (𝑑 · 𝑚))
53 ovex 7163 . . . . . 6 (𝑑 · 𝑚) ∈ V
5452, 50, 53fvmpt 6741 . . . . 5 (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑))) → ((𝑦 ∈ (1...(⌊‘(𝐴 / 𝑑))) ↦ (𝑑 · 𝑦))‘𝑚) = (𝑑 · 𝑚))
5554adantl 485 . . . 4 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑦 ∈ (1...(⌊‘(𝐴 / 𝑑))) ↦ (𝑑 · 𝑦))‘𝑚) = (𝑑 · 𝑚))
5643biimpar 481 . . . . . 6 ((𝜑 ∧ (𝑑 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑𝑥})) → (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}))
5756, 44syldan 594 . . . . 5 ((𝜑 ∧ (𝑑 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑𝑥})) → 𝐵 ∈ ℂ)
5857anassrs 471 . . . 4 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑𝑥}) → 𝐵 ∈ ℂ)
5946, 47, 51, 55, 58fsumf1o 15059 . . 3 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑𝑥}𝐵 = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))𝐶)
6059sumeq2dv 15039 . 2 (𝜑 → Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑𝑥}𝐵 = Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))𝐶)
6145, 60eqtrd 2856 1 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}𝐵 = Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2115  {crab 3130   ⊆ wss 3910   class class class wbr 5039   ↦ cmpt 5119  ‘cfv 6328  (class class class)co 7130  ℂcc 10512  ℝcr 10513  1c1 10515   · cmul 10519   ≤ cle 10653   / cdiv 11274  ℕcn 11615  ℤcz 11959  ...cfz 12875  ⌊cfl 13143  Σcsu 15021   ∥ cdvds 15586 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-inf2 9080  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-oadd 8081  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-sup 8882  df-inf 8883  df-oi 8950  df-card 9344  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-2 11678  df-3 11679  df-n0 11876  df-z 11960  df-uz 12222  df-rp 12368  df-fz 12876  df-fzo 13017  df-fl 13145  df-seq 13353  df-exp 13414  df-hash 13675  df-cj 14437  df-re 14438  df-im 14439  df-sqrt 14573  df-abs 14574  df-clim 14824  df-sum 15022  df-dvds 15587 This theorem is referenced by:  dchrmusum2  26057  dchrvmasumlem1  26058  dchrvmasum2lem  26059  dchrisum0  26083  mudivsum  26093  mulogsum  26095  mulog2sumlem2  26098  vmalogdivsum2  26101  selberglem3  26110  selberg  26111  selberg34r  26134  pntsval2  26139
 Copyright terms: Public domain W3C validator