Step | Hyp | Ref
| Expression |
1 | | fzfid 13693 |
. . 3
⊢ (𝜑 → (1...(⌊‘𝐴)) ∈ Fin) |
2 | | fzfid 13693 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (1...𝑛) ∈ Fin) |
3 | | elfznn 13285 |
. . . . . 6
⊢ (𝑛 ∈
(1...(⌊‘𝐴))
→ 𝑛 ∈
ℕ) |
4 | 3 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ) |
5 | | dvdsssfz1 16027 |
. . . . 5
⊢ (𝑛 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ⊆ (1...𝑛)) |
6 | 4, 5 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ⊆ (1...𝑛)) |
7 | 2, 6 | ssfid 9042 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ∈ Fin) |
8 | | nnre 11980 |
. . . . . . . . . . . 12
⊢ (𝑑 ∈ ℕ → 𝑑 ∈
ℝ) |
9 | 8 | ad2antrl 725 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ (𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛)) → 𝑑 ∈ ℝ) |
10 | 4 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ (𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛)) → 𝑛 ∈ ℕ) |
11 | 10 | nnred 11988 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ (𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛)) → 𝑛 ∈ ℝ) |
12 | | dvdsflsumcom.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ ℝ) |
13 | 12 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ (𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛)) → 𝐴 ∈ ℝ) |
14 | | nnz 12342 |
. . . . . . . . . . . . 13
⊢ (𝑑 ∈ ℕ → 𝑑 ∈
ℤ) |
15 | | dvdsle 16019 |
. . . . . . . . . . . . 13
⊢ ((𝑑 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑑 ∥ 𝑛 → 𝑑 ≤ 𝑛)) |
16 | 14, 4, 15 | syl2anr 597 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ ℕ) → (𝑑 ∥ 𝑛 → 𝑑 ≤ 𝑛)) |
17 | 16 | impr 455 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ (𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛)) → 𝑑 ≤ 𝑛) |
18 | | fznnfl 13582 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℝ → (𝑛 ∈
(1...(⌊‘𝐴))
↔ (𝑛 ∈ ℕ
∧ 𝑛 ≤ 𝐴))) |
19 | 12, 18 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑛 ∈ (1...(⌊‘𝐴)) ↔ (𝑛 ∈ ℕ ∧ 𝑛 ≤ 𝐴))) |
20 | 19 | simplbda 500 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ≤ 𝐴) |
21 | 20 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ (𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛)) → 𝑛 ≤ 𝐴) |
22 | 9, 11, 13, 17, 21 | letrd 11132 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ (𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛)) → 𝑑 ≤ 𝐴) |
23 | 22 | ex 413 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛) → 𝑑 ≤ 𝐴)) |
24 | 23 | pm4.71rd 563 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛) ↔ (𝑑 ≤ 𝐴 ∧ (𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛)))) |
25 | | ancom 461 |
. . . . . . . . 9
⊢ ((𝑑 ≤ 𝐴 ∧ (𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛)) ↔ ((𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛) ∧ 𝑑 ≤ 𝐴)) |
26 | | an32 643 |
. . . . . . . . 9
⊢ (((𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛) ∧ 𝑑 ≤ 𝐴) ↔ ((𝑑 ∈ ℕ ∧ 𝑑 ≤ 𝐴) ∧ 𝑑 ∥ 𝑛)) |
27 | 25, 26 | bitri 274 |
. . . . . . . 8
⊢ ((𝑑 ≤ 𝐴 ∧ (𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛)) ↔ ((𝑑 ∈ ℕ ∧ 𝑑 ≤ 𝐴) ∧ 𝑑 ∥ 𝑛)) |
28 | 24, 27 | bitrdi 287 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛) ↔ ((𝑑 ∈ ℕ ∧ 𝑑 ≤ 𝐴) ∧ 𝑑 ∥ 𝑛))) |
29 | | fznnfl 13582 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℝ → (𝑑 ∈
(1...(⌊‘𝐴))
↔ (𝑑 ∈ ℕ
∧ 𝑑 ≤ 𝐴))) |
30 | 12, 29 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑑 ∈ (1...(⌊‘𝐴)) ↔ (𝑑 ∈ ℕ ∧ 𝑑 ≤ 𝐴))) |
31 | 30 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (𝑑 ∈ (1...(⌊‘𝐴)) ↔ (𝑑 ∈ ℕ ∧ 𝑑 ≤ 𝐴))) |
32 | 31 | anbi1d 630 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑑 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∥ 𝑛) ↔ ((𝑑 ∈ ℕ ∧ 𝑑 ≤ 𝐴) ∧ 𝑑 ∥ 𝑛))) |
33 | 28, 32 | bitr4d 281 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛) ↔ (𝑑 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∥ 𝑛))) |
34 | 33 | pm5.32da 579 |
. . . . 5
⊢ (𝜑 → ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ (𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛)) ↔ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (𝑑 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∥ 𝑛)))) |
35 | | an12 642 |
. . . . 5
⊢ ((𝑛 ∈
(1...(⌊‘𝐴))
∧ (𝑑 ∈
(1...(⌊‘𝐴))
∧ 𝑑 ∥ 𝑛)) ↔ (𝑑 ∈ (1...(⌊‘𝐴)) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∥ 𝑛))) |
36 | 34, 35 | bitrdi 287 |
. . . 4
⊢ (𝜑 → ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ (𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛)) ↔ (𝑑 ∈ (1...(⌊‘𝐴)) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∥ 𝑛)))) |
37 | | breq1 5077 |
. . . . . 6
⊢ (𝑥 = 𝑑 → (𝑥 ∥ 𝑛 ↔ 𝑑 ∥ 𝑛)) |
38 | 37 | elrab 3624 |
. . . . 5
⊢ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ↔ (𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛)) |
39 | 38 | anbi2i 623 |
. . . 4
⊢ ((𝑛 ∈
(1...(⌊‘𝐴))
∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}) ↔ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛))) |
40 | | breq2 5078 |
. . . . . 6
⊢ (𝑥 = 𝑛 → (𝑑 ∥ 𝑥 ↔ 𝑑 ∥ 𝑛)) |
41 | 40 | elrab 3624 |
. . . . 5
⊢ (𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑 ∥ 𝑥} ↔ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∥ 𝑛)) |
42 | 41 | anbi2i 623 |
. . . 4
⊢ ((𝑑 ∈
(1...(⌊‘𝐴))
∧ 𝑛 ∈ {𝑥 ∈
(1...(⌊‘𝐴))
∣ 𝑑 ∥ 𝑥}) ↔ (𝑑 ∈ (1...(⌊‘𝐴)) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∥ 𝑛))) |
43 | 36, 39, 42 | 3bitr4g 314 |
. . 3
⊢ (𝜑 → ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}) ↔ (𝑑 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑 ∥ 𝑥}))) |
44 | | dvdsflsumcom.3 |
. . 3
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛})) → 𝐵 ∈ ℂ) |
45 | 1, 1, 7, 43, 44 | fsumcom2 15486 |
. 2
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}𝐵 = Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑 ∥ 𝑥}𝐵) |
46 | | dvdsflsumcom.1 |
. . . 4
⊢ (𝑛 = (𝑑 · 𝑚) → 𝐵 = 𝐶) |
47 | | fzfid 13693 |
. . . 4
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → (1...(⌊‘(𝐴 / 𝑑))) ∈ Fin) |
48 | 12 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → 𝐴 ∈ ℝ) |
49 | 30 | simprbda 499 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℕ) |
50 | | eqid 2738 |
. . . . 5
⊢ (𝑦 ∈
(1...(⌊‘(𝐴 /
𝑑))) ↦ (𝑑 · 𝑦)) = (𝑦 ∈ (1...(⌊‘(𝐴 / 𝑑))) ↦ (𝑑 · 𝑦)) |
51 | 48, 49, 50 | dvdsflf1o 26336 |
. . . 4
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → (𝑦 ∈ (1...(⌊‘(𝐴 / 𝑑))) ↦ (𝑑 · 𝑦)):(1...(⌊‘(𝐴 / 𝑑)))–1-1-onto→{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑 ∥ 𝑥}) |
52 | | oveq2 7283 |
. . . . . 6
⊢ (𝑦 = 𝑚 → (𝑑 · 𝑦) = (𝑑 · 𝑚)) |
53 | | ovex 7308 |
. . . . . 6
⊢ (𝑑 · 𝑚) ∈ V |
54 | 52, 50, 53 | fvmpt 6875 |
. . . . 5
⊢ (𝑚 ∈
(1...(⌊‘(𝐴 /
𝑑))) → ((𝑦 ∈
(1...(⌊‘(𝐴 /
𝑑))) ↦ (𝑑 · 𝑦))‘𝑚) = (𝑑 · 𝑚)) |
55 | 54 | adantl 482 |
. . . 4
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑦 ∈ (1...(⌊‘(𝐴 / 𝑑))) ↦ (𝑑 · 𝑦))‘𝑚) = (𝑑 · 𝑚)) |
56 | 43 | biimpar 478 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑑 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑 ∥ 𝑥})) → (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛})) |
57 | 56, 44 | syldan 591 |
. . . . 5
⊢ ((𝜑 ∧ (𝑑 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑 ∥ 𝑥})) → 𝐵 ∈ ℂ) |
58 | 57 | anassrs 468 |
. . . 4
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑 ∥ 𝑥}) → 𝐵 ∈ ℂ) |
59 | 46, 47, 51, 55, 58 | fsumf1o 15435 |
. . 3
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑 ∥ 𝑥}𝐵 = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))𝐶) |
60 | 59 | sumeq2dv 15415 |
. 2
⊢ (𝜑 → Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑 ∥ 𝑥}𝐵 = Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))𝐶) |
61 | 45, 60 | eqtrd 2778 |
1
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}𝐵 = Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))𝐶) |