MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsflsumcom Structured version   Visualization version   GIF version

Theorem dvdsflsumcom 27105
Description: A sum commutation from Σ𝑛𝐴, Σ𝑑𝑛, 𝐵(𝑛, 𝑑) to Σ𝑑𝐴, Σ𝑚𝐴 / 𝑑, 𝐵(𝑛, 𝑑𝑚). (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
dvdsflsumcom.1 (𝑛 = (𝑑 · 𝑚) → 𝐵 = 𝐶)
dvdsflsumcom.2 (𝜑𝐴 ∈ ℝ)
dvdsflsumcom.3 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
dvdsflsumcom (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}𝐵 = Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))𝐶)
Distinct variable groups:   𝑚,𝑑,𝑛,𝑥,𝐴   𝐵,𝑚   𝐶,𝑛   𝜑,𝑑,𝑚,𝑛
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥,𝑛,𝑑)   𝐶(𝑥,𝑚,𝑑)

Proof of Theorem dvdsflsumcom
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fzfid 13945 . . 3 (𝜑 → (1...(⌊‘𝐴)) ∈ Fin)
2 fzfid 13945 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (1...𝑛) ∈ Fin)
3 elfznn 13521 . . . . . 6 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℕ)
43adantl 481 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ)
5 dvdsssfz1 16295 . . . . 5 (𝑛 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑛} ⊆ (1...𝑛))
64, 5syl 17 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → {𝑥 ∈ ℕ ∣ 𝑥𝑛} ⊆ (1...𝑛))
72, 6ssfid 9219 . . 3 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → {𝑥 ∈ ℕ ∣ 𝑥𝑛} ∈ Fin)
8 nnre 12200 . . . . . . . . . . . 12 (𝑑 ∈ ℕ → 𝑑 ∈ ℝ)
98ad2antrl 728 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛)) → 𝑑 ∈ ℝ)
104adantr 480 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛)) → 𝑛 ∈ ℕ)
1110nnred 12208 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛)) → 𝑛 ∈ ℝ)
12 dvdsflsumcom.2 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ)
1312ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛)) → 𝐴 ∈ ℝ)
14 nnz 12557 . . . . . . . . . . . . 13 (𝑑 ∈ ℕ → 𝑑 ∈ ℤ)
15 dvdsle 16287 . . . . . . . . . . . . 13 ((𝑑 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑑𝑛𝑑𝑛))
1614, 4, 15syl2anr 597 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ ℕ) → (𝑑𝑛𝑑𝑛))
1716impr 454 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛)) → 𝑑𝑛)
18 fznnfl 13831 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → (𝑛 ∈ (1...(⌊‘𝐴)) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝐴)))
1912, 18syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑛 ∈ (1...(⌊‘𝐴)) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝐴)))
2019simplbda 499 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛𝐴)
2120adantr 480 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛)) → 𝑛𝐴)
229, 11, 13, 17, 21letrd 11338 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛)) → 𝑑𝐴)
2322ex 412 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑑 ∈ ℕ ∧ 𝑑𝑛) → 𝑑𝐴))
2423pm4.71rd 562 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑑 ∈ ℕ ∧ 𝑑𝑛) ↔ (𝑑𝐴 ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛))))
25 ancom 460 . . . . . . . . 9 ((𝑑𝐴 ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛)) ↔ ((𝑑 ∈ ℕ ∧ 𝑑𝑛) ∧ 𝑑𝐴))
26 an32 646 . . . . . . . . 9 (((𝑑 ∈ ℕ ∧ 𝑑𝑛) ∧ 𝑑𝐴) ↔ ((𝑑 ∈ ℕ ∧ 𝑑𝐴) ∧ 𝑑𝑛))
2725, 26bitri 275 . . . . . . . 8 ((𝑑𝐴 ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛)) ↔ ((𝑑 ∈ ℕ ∧ 𝑑𝐴) ∧ 𝑑𝑛))
2824, 27bitrdi 287 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑑 ∈ ℕ ∧ 𝑑𝑛) ↔ ((𝑑 ∈ ℕ ∧ 𝑑𝐴) ∧ 𝑑𝑛)))
29 fznnfl 13831 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝑑 ∈ (1...(⌊‘𝐴)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝐴)))
3012, 29syl 17 . . . . . . . . 9 (𝜑 → (𝑑 ∈ (1...(⌊‘𝐴)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝐴)))
3130adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (𝑑 ∈ (1...(⌊‘𝐴)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝐴)))
3231anbi1d 631 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑑 ∈ (1...(⌊‘𝐴)) ∧ 𝑑𝑛) ↔ ((𝑑 ∈ ℕ ∧ 𝑑𝐴) ∧ 𝑑𝑛)))
3328, 32bitr4d 282 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑑 ∈ ℕ ∧ 𝑑𝑛) ↔ (𝑑 ∈ (1...(⌊‘𝐴)) ∧ 𝑑𝑛)))
3433pm5.32da 579 . . . . 5 (𝜑 → ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛)) ↔ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (𝑑 ∈ (1...(⌊‘𝐴)) ∧ 𝑑𝑛))))
35 an12 645 . . . . 5 ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ (𝑑 ∈ (1...(⌊‘𝐴)) ∧ 𝑑𝑛)) ↔ (𝑑 ∈ (1...(⌊‘𝐴)) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑𝑛)))
3634, 35bitrdi 287 . . . 4 (𝜑 → ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛)) ↔ (𝑑 ∈ (1...(⌊‘𝐴)) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑𝑛))))
37 breq1 5113 . . . . . 6 (𝑥 = 𝑑 → (𝑥𝑛𝑑𝑛))
3837elrab 3662 . . . . 5 (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ↔ (𝑑 ∈ ℕ ∧ 𝑑𝑛))
3938anbi2i 623 . . . 4 ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) ↔ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (𝑑 ∈ ℕ ∧ 𝑑𝑛)))
40 breq2 5114 . . . . . 6 (𝑥 = 𝑛 → (𝑑𝑥𝑑𝑛))
4140elrab 3662 . . . . 5 (𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑𝑥} ↔ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑𝑛))
4241anbi2i 623 . . . 4 ((𝑑 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑𝑥}) ↔ (𝑑 ∈ (1...(⌊‘𝐴)) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑𝑛)))
4336, 39, 423bitr4g 314 . . 3 (𝜑 → ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) ↔ (𝑑 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑𝑥})))
44 dvdsflsumcom.3 . . 3 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → 𝐵 ∈ ℂ)
451, 1, 7, 43, 44fsumcom2 15747 . 2 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}𝐵 = Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑𝑥}𝐵)
46 dvdsflsumcom.1 . . . 4 (𝑛 = (𝑑 · 𝑚) → 𝐵 = 𝐶)
47 fzfid 13945 . . . 4 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (1...(⌊‘(𝐴 / 𝑑))) ∈ Fin)
4812adantr 480 . . . . 5 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝐴 ∈ ℝ)
4930simprbda 498 . . . . 5 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℕ)
50 eqid 2730 . . . . 5 (𝑦 ∈ (1...(⌊‘(𝐴 / 𝑑))) ↦ (𝑑 · 𝑦)) = (𝑦 ∈ (1...(⌊‘(𝐴 / 𝑑))) ↦ (𝑑 · 𝑦))
5148, 49, 50dvdsflf1o 27104 . . . 4 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (𝑦 ∈ (1...(⌊‘(𝐴 / 𝑑))) ↦ (𝑑 · 𝑦)):(1...(⌊‘(𝐴 / 𝑑)))–1-1-onto→{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑𝑥})
52 oveq2 7398 . . . . . 6 (𝑦 = 𝑚 → (𝑑 · 𝑦) = (𝑑 · 𝑚))
53 ovex 7423 . . . . . 6 (𝑑 · 𝑚) ∈ V
5452, 50, 53fvmpt 6971 . . . . 5 (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑))) → ((𝑦 ∈ (1...(⌊‘(𝐴 / 𝑑))) ↦ (𝑑 · 𝑦))‘𝑚) = (𝑑 · 𝑚))
5554adantl 481 . . . 4 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑦 ∈ (1...(⌊‘(𝐴 / 𝑑))) ↦ (𝑑 · 𝑦))‘𝑚) = (𝑑 · 𝑚))
5643biimpar 477 . . . . . 6 ((𝜑 ∧ (𝑑 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑𝑥})) → (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}))
5756, 44syldan 591 . . . . 5 ((𝜑 ∧ (𝑑 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑𝑥})) → 𝐵 ∈ ℂ)
5857anassrs 467 . . . 4 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑𝑥}) → 𝐵 ∈ ℂ)
5946, 47, 51, 55, 58fsumf1o 15696 . . 3 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑𝑥}𝐵 = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))𝐶)
6059sumeq2dv 15675 . 2 (𝜑 → Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑑𝑥}𝐵 = Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))𝐶)
6145, 60eqtrd 2765 1 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}𝐵 = Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3408  wss 3917   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  1c1 11076   · cmul 11080  cle 11216   / cdiv 11842  cn 12193  cz 12536  ...cfz 13475  cfl 13759  Σcsu 15659  cdvds 16229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-dvds 16230
This theorem is referenced by:  dchrmusum2  27412  dchrvmasumlem1  27413  dchrvmasum2lem  27414  dchrisum0  27438  mudivsum  27448  mulogsum  27450  mulog2sumlem2  27453  vmalogdivsum2  27456  selberglem3  27465  selberg  27466  selberg34r  27489  pntsval2  27494
  Copyright terms: Public domain W3C validator