![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elii1 | Structured version Visualization version GIF version |
Description: Divide the unit interval into two pieces. (Contributed by Mario Carneiro, 7-Jun-2014.) |
Ref | Expression |
---|---|
elii1 | ⊢ (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11262 | . . . . . 6 ⊢ 0 ∈ ℝ | |
2 | halfre 12473 | . . . . . 6 ⊢ (1 / 2) ∈ ℝ | |
3 | 1, 2 | elicc2i 13439 | . . . . 5 ⊢ (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ (1 / 2))) |
4 | 3 | simp1bi 1142 | . . . 4 ⊢ (𝑋 ∈ (0[,](1 / 2)) → 𝑋 ∈ ℝ) |
5 | 2 | a1i 11 | . . . 4 ⊢ (𝑋 ∈ (0[,](1 / 2)) → (1 / 2) ∈ ℝ) |
6 | 1re 11260 | . . . . 5 ⊢ 1 ∈ ℝ | |
7 | 6 | a1i 11 | . . . 4 ⊢ (𝑋 ∈ (0[,](1 / 2)) → 1 ∈ ℝ) |
8 | 3 | simp3bi 1144 | . . . 4 ⊢ (𝑋 ∈ (0[,](1 / 2)) → 𝑋 ≤ (1 / 2)) |
9 | halflt1 12477 | . . . . . 6 ⊢ (1 / 2) < 1 | |
10 | 2, 6, 9 | ltleii 11383 | . . . . 5 ⊢ (1 / 2) ≤ 1 |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝑋 ∈ (0[,](1 / 2)) → (1 / 2) ≤ 1) |
12 | 4, 5, 7, 8, 11 | letrd 11417 | . . 3 ⊢ (𝑋 ∈ (0[,](1 / 2)) → 𝑋 ≤ 1) |
13 | 12 | pm4.71ri 559 | . 2 ⊢ (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ≤ 1 ∧ 𝑋 ∈ (0[,](1 / 2)))) |
14 | ancom 459 | . . 3 ⊢ ((𝑋 ≤ 1 ∧ 𝑋 ∈ (0[,](1 / 2))) ↔ (𝑋 ∈ (0[,](1 / 2)) ∧ 𝑋 ≤ 1)) | |
15 | an32 644 | . . . 4 ⊢ ((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ (1 / 2)) ∧ 𝑋 ≤ 1) ↔ (((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ 1) ∧ 𝑋 ≤ (1 / 2))) | |
16 | df-3an 1086 | . . . . . 6 ⊢ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ (1 / 2)) ↔ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ (1 / 2))) | |
17 | 3, 16 | bitri 274 | . . . . 5 ⊢ (𝑋 ∈ (0[,](1 / 2)) ↔ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ (1 / 2))) |
18 | 17 | anbi1i 622 | . . . 4 ⊢ ((𝑋 ∈ (0[,](1 / 2)) ∧ 𝑋 ≤ 1) ↔ (((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ (1 / 2)) ∧ 𝑋 ≤ 1)) |
19 | 1, 6 | elicc2i 13439 | . . . . . 6 ⊢ (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1)) |
20 | df-3an 1086 | . . . . . 6 ⊢ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1) ↔ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ 1)) | |
21 | 19, 20 | bitri 274 | . . . . 5 ⊢ (𝑋 ∈ (0[,]1) ↔ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ 1)) |
22 | 21 | anbi1i 622 | . . . 4 ⊢ ((𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2)) ↔ (((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ 1) ∧ 𝑋 ≤ (1 / 2))) |
23 | 15, 18, 22 | 3bitr4i 302 | . . 3 ⊢ ((𝑋 ∈ (0[,](1 / 2)) ∧ 𝑋 ≤ 1) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2))) |
24 | 14, 23 | bitri 274 | . 2 ⊢ ((𝑋 ≤ 1 ∧ 𝑋 ∈ (0[,](1 / 2))) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2))) |
25 | 13, 24 | bitri 274 | 1 ⊢ (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∧ w3a 1084 ∈ wcel 2098 class class class wbr 5152 (class class class)co 7423 ℝcr 11153 0cc0 11154 1c1 11155 ≤ cle 11295 / cdiv 11917 2c2 12314 [,]cicc 13376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5303 ax-nul 5310 ax-pow 5368 ax-pr 5432 ax-un 7745 ax-cnex 11210 ax-resscn 11211 ax-1cn 11212 ax-icn 11213 ax-addcl 11214 ax-addrcl 11215 ax-mulcl 11216 ax-mulrcl 11217 ax-mulcom 11218 ax-addass 11219 ax-mulass 11220 ax-distr 11221 ax-i2m1 11222 ax-1ne0 11223 ax-1rid 11224 ax-rnegex 11225 ax-rrecex 11226 ax-cnre 11227 ax-pre-lttri 11228 ax-pre-lttrn 11229 ax-pre-ltadd 11230 ax-pre-mulgt0 11231 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5579 df-po 5593 df-so 5594 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7379 df-ov 7426 df-oprab 7427 df-mpo 7428 df-er 8733 df-en 8974 df-dom 8975 df-sdom 8976 df-pnf 11296 df-mnf 11297 df-xr 11298 df-ltxr 11299 df-le 11300 df-sub 11492 df-neg 11493 df-div 11918 df-2 12322 df-icc 13380 |
This theorem is referenced by: phtpycc 25000 pcoval1 25023 copco 25028 pcohtpylem 25029 pcopt 25032 pcopt2 25033 pcorevlem 25036 |
Copyright terms: Public domain | W3C validator |