MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elii1 Structured version   Visualization version   GIF version

Theorem elii1 24941
Description: Divide the unit interval into two pieces. (Contributed by Mario Carneiro, 7-Jun-2014.)
Assertion
Ref Expression
elii1 (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2)))

Proof of Theorem elii1
StepHypRef Expression
1 0re 11262 . . . . . 6 0 ∈ ℝ
2 halfre 12473 . . . . . 6 (1 / 2) ∈ ℝ
31, 2elicc2i 13439 . . . . 5 (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ (1 / 2)))
43simp1bi 1142 . . . 4 (𝑋 ∈ (0[,](1 / 2)) → 𝑋 ∈ ℝ)
52a1i 11 . . . 4 (𝑋 ∈ (0[,](1 / 2)) → (1 / 2) ∈ ℝ)
6 1re 11260 . . . . 5 1 ∈ ℝ
76a1i 11 . . . 4 (𝑋 ∈ (0[,](1 / 2)) → 1 ∈ ℝ)
83simp3bi 1144 . . . 4 (𝑋 ∈ (0[,](1 / 2)) → 𝑋 ≤ (1 / 2))
9 halflt1 12477 . . . . . 6 (1 / 2) < 1
102, 6, 9ltleii 11383 . . . . 5 (1 / 2) ≤ 1
1110a1i 11 . . . 4 (𝑋 ∈ (0[,](1 / 2)) → (1 / 2) ≤ 1)
124, 5, 7, 8, 11letrd 11417 . . 3 (𝑋 ∈ (0[,](1 / 2)) → 𝑋 ≤ 1)
1312pm4.71ri 559 . 2 (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ≤ 1 ∧ 𝑋 ∈ (0[,](1 / 2))))
14 ancom 459 . . 3 ((𝑋 ≤ 1 ∧ 𝑋 ∈ (0[,](1 / 2))) ↔ (𝑋 ∈ (0[,](1 / 2)) ∧ 𝑋 ≤ 1))
15 an32 644 . . . 4 ((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ (1 / 2)) ∧ 𝑋 ≤ 1) ↔ (((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ 1) ∧ 𝑋 ≤ (1 / 2)))
16 df-3an 1086 . . . . . 6 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ (1 / 2)) ↔ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ (1 / 2)))
173, 16bitri 274 . . . . 5 (𝑋 ∈ (0[,](1 / 2)) ↔ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ (1 / 2)))
1817anbi1i 622 . . . 4 ((𝑋 ∈ (0[,](1 / 2)) ∧ 𝑋 ≤ 1) ↔ (((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ (1 / 2)) ∧ 𝑋 ≤ 1))
191, 6elicc2i 13439 . . . . . 6 (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1))
20 df-3an 1086 . . . . . 6 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1) ↔ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ 1))
2119, 20bitri 274 . . . . 5 (𝑋 ∈ (0[,]1) ↔ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ 1))
2221anbi1i 622 . . . 4 ((𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2)) ↔ (((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ 1) ∧ 𝑋 ≤ (1 / 2)))
2315, 18, 223bitr4i 302 . . 3 ((𝑋 ∈ (0[,](1 / 2)) ∧ 𝑋 ≤ 1) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2)))
2414, 23bitri 274 . 2 ((𝑋 ≤ 1 ∧ 𝑋 ∈ (0[,](1 / 2))) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2)))
2513, 24bitri 274 1 (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394  w3a 1084  wcel 2098   class class class wbr 5152  (class class class)co 7423  cr 11153  0cc0 11154  1c1 11155  cle 11295   / cdiv 11917  2c2 12314  [,]cicc 13376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745  ax-cnex 11210  ax-resscn 11211  ax-1cn 11212  ax-icn 11213  ax-addcl 11214  ax-addrcl 11215  ax-mulcl 11216  ax-mulrcl 11217  ax-mulcom 11218  ax-addass 11219  ax-mulass 11220  ax-distr 11221  ax-i2m1 11222  ax-1ne0 11223  ax-1rid 11224  ax-rnegex 11225  ax-rrecex 11226  ax-cnre 11227  ax-pre-lttri 11228  ax-pre-lttrn 11229  ax-pre-ltadd 11230  ax-pre-mulgt0 11231
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5579  df-po 5593  df-so 5594  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7379  df-ov 7426  df-oprab 7427  df-mpo 7428  df-er 8733  df-en 8974  df-dom 8975  df-sdom 8976  df-pnf 11296  df-mnf 11297  df-xr 11298  df-ltxr 11299  df-le 11300  df-sub 11492  df-neg 11493  df-div 11918  df-2 12322  df-icc 13380
This theorem is referenced by:  phtpycc  25000  pcoval1  25023  copco  25028  pcohtpylem  25029  pcopt  25032  pcopt2  25033  pcorevlem  25036
  Copyright terms: Public domain W3C validator