Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elii1 | Structured version Visualization version GIF version |
Description: Divide the unit interval into two pieces. (Contributed by Mario Carneiro, 7-Jun-2014.) |
Ref | Expression |
---|---|
elii1 | ⊢ (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11082 | . . . . . 6 ⊢ 0 ∈ ℝ | |
2 | halfre 12292 | . . . . . 6 ⊢ (1 / 2) ∈ ℝ | |
3 | 1, 2 | elicc2i 13250 | . . . . 5 ⊢ (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ (1 / 2))) |
4 | 3 | simp1bi 1145 | . . . 4 ⊢ (𝑋 ∈ (0[,](1 / 2)) → 𝑋 ∈ ℝ) |
5 | 2 | a1i 11 | . . . 4 ⊢ (𝑋 ∈ (0[,](1 / 2)) → (1 / 2) ∈ ℝ) |
6 | 1re 11080 | . . . . 5 ⊢ 1 ∈ ℝ | |
7 | 6 | a1i 11 | . . . 4 ⊢ (𝑋 ∈ (0[,](1 / 2)) → 1 ∈ ℝ) |
8 | 3 | simp3bi 1147 | . . . 4 ⊢ (𝑋 ∈ (0[,](1 / 2)) → 𝑋 ≤ (1 / 2)) |
9 | halflt1 12296 | . . . . . 6 ⊢ (1 / 2) < 1 | |
10 | 2, 6, 9 | ltleii 11203 | . . . . 5 ⊢ (1 / 2) ≤ 1 |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝑋 ∈ (0[,](1 / 2)) → (1 / 2) ≤ 1) |
12 | 4, 5, 7, 8, 11 | letrd 11237 | . . 3 ⊢ (𝑋 ∈ (0[,](1 / 2)) → 𝑋 ≤ 1) |
13 | 12 | pm4.71ri 562 | . 2 ⊢ (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ≤ 1 ∧ 𝑋 ∈ (0[,](1 / 2)))) |
14 | ancom 462 | . . 3 ⊢ ((𝑋 ≤ 1 ∧ 𝑋 ∈ (0[,](1 / 2))) ↔ (𝑋 ∈ (0[,](1 / 2)) ∧ 𝑋 ≤ 1)) | |
15 | an32 644 | . . . 4 ⊢ ((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ (1 / 2)) ∧ 𝑋 ≤ 1) ↔ (((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ 1) ∧ 𝑋 ≤ (1 / 2))) | |
16 | df-3an 1089 | . . . . . 6 ⊢ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ (1 / 2)) ↔ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ (1 / 2))) | |
17 | 3, 16 | bitri 275 | . . . . 5 ⊢ (𝑋 ∈ (0[,](1 / 2)) ↔ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ (1 / 2))) |
18 | 17 | anbi1i 625 | . . . 4 ⊢ ((𝑋 ∈ (0[,](1 / 2)) ∧ 𝑋 ≤ 1) ↔ (((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ (1 / 2)) ∧ 𝑋 ≤ 1)) |
19 | 1, 6 | elicc2i 13250 | . . . . . 6 ⊢ (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1)) |
20 | df-3an 1089 | . . . . . 6 ⊢ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1) ↔ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ 1)) | |
21 | 19, 20 | bitri 275 | . . . . 5 ⊢ (𝑋 ∈ (0[,]1) ↔ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ 1)) |
22 | 21 | anbi1i 625 | . . . 4 ⊢ ((𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2)) ↔ (((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ 1) ∧ 𝑋 ≤ (1 / 2))) |
23 | 15, 18, 22 | 3bitr4i 303 | . . 3 ⊢ ((𝑋 ∈ (0[,](1 / 2)) ∧ 𝑋 ≤ 1) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2))) |
24 | 14, 23 | bitri 275 | . 2 ⊢ ((𝑋 ≤ 1 ∧ 𝑋 ∈ (0[,](1 / 2))) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2))) |
25 | 13, 24 | bitri 275 | 1 ⊢ (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∧ w3a 1087 ∈ wcel 2106 class class class wbr 5096 (class class class)co 7341 ℝcr 10975 0cc0 10976 1c1 10977 ≤ cle 11115 / cdiv 11737 2c2 12133 [,]cicc 13187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-br 5097 df-opab 5159 df-mpt 5180 df-id 5522 df-po 5536 df-so 5537 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-er 8573 df-en 8809 df-dom 8810 df-sdom 8811 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-div 11738 df-2 12141 df-icc 13191 |
This theorem is referenced by: phtpycc 24259 pcoval1 24281 copco 24286 pcohtpylem 24287 pcopt 24290 pcopt2 24291 pcorevlem 24294 |
Copyright terms: Public domain | W3C validator |