![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elii1 | Structured version Visualization version GIF version |
Description: Divide the unit interval into two pieces. (Contributed by Mario Carneiro, 7-Jun-2014.) |
Ref | Expression |
---|---|
elii1 | ⊢ (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11220 | . . . . . 6 ⊢ 0 ∈ ℝ | |
2 | halfre 12430 | . . . . . 6 ⊢ (1 / 2) ∈ ℝ | |
3 | 1, 2 | elicc2i 13394 | . . . . 5 ⊢ (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ (1 / 2))) |
4 | 3 | simp1bi 1145 | . . . 4 ⊢ (𝑋 ∈ (0[,](1 / 2)) → 𝑋 ∈ ℝ) |
5 | 2 | a1i 11 | . . . 4 ⊢ (𝑋 ∈ (0[,](1 / 2)) → (1 / 2) ∈ ℝ) |
6 | 1re 11218 | . . . . 5 ⊢ 1 ∈ ℝ | |
7 | 6 | a1i 11 | . . . 4 ⊢ (𝑋 ∈ (0[,](1 / 2)) → 1 ∈ ℝ) |
8 | 3 | simp3bi 1147 | . . . 4 ⊢ (𝑋 ∈ (0[,](1 / 2)) → 𝑋 ≤ (1 / 2)) |
9 | halflt1 12434 | . . . . . 6 ⊢ (1 / 2) < 1 | |
10 | 2, 6, 9 | ltleii 11341 | . . . . 5 ⊢ (1 / 2) ≤ 1 |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝑋 ∈ (0[,](1 / 2)) → (1 / 2) ≤ 1) |
12 | 4, 5, 7, 8, 11 | letrd 11375 | . . 3 ⊢ (𝑋 ∈ (0[,](1 / 2)) → 𝑋 ≤ 1) |
13 | 12 | pm4.71ri 561 | . 2 ⊢ (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ≤ 1 ∧ 𝑋 ∈ (0[,](1 / 2)))) |
14 | ancom 461 | . . 3 ⊢ ((𝑋 ≤ 1 ∧ 𝑋 ∈ (0[,](1 / 2))) ↔ (𝑋 ∈ (0[,](1 / 2)) ∧ 𝑋 ≤ 1)) | |
15 | an32 644 | . . . 4 ⊢ ((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ (1 / 2)) ∧ 𝑋 ≤ 1) ↔ (((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ 1) ∧ 𝑋 ≤ (1 / 2))) | |
16 | df-3an 1089 | . . . . . 6 ⊢ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ (1 / 2)) ↔ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ (1 / 2))) | |
17 | 3, 16 | bitri 274 | . . . . 5 ⊢ (𝑋 ∈ (0[,](1 / 2)) ↔ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ (1 / 2))) |
18 | 17 | anbi1i 624 | . . . 4 ⊢ ((𝑋 ∈ (0[,](1 / 2)) ∧ 𝑋 ≤ 1) ↔ (((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ (1 / 2)) ∧ 𝑋 ≤ 1)) |
19 | 1, 6 | elicc2i 13394 | . . . . . 6 ⊢ (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1)) |
20 | df-3an 1089 | . . . . . 6 ⊢ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1) ↔ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ 1)) | |
21 | 19, 20 | bitri 274 | . . . . 5 ⊢ (𝑋 ∈ (0[,]1) ↔ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ 1)) |
22 | 21 | anbi1i 624 | . . . 4 ⊢ ((𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2)) ↔ (((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ 1) ∧ 𝑋 ≤ (1 / 2))) |
23 | 15, 18, 22 | 3bitr4i 302 | . . 3 ⊢ ((𝑋 ∈ (0[,](1 / 2)) ∧ 𝑋 ≤ 1) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2))) |
24 | 14, 23 | bitri 274 | . 2 ⊢ ((𝑋 ≤ 1 ∧ 𝑋 ∈ (0[,](1 / 2))) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2))) |
25 | 13, 24 | bitri 274 | 1 ⊢ (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1087 ∈ wcel 2106 class class class wbr 5148 (class class class)co 7411 ℝcr 11111 0cc0 11112 1c1 11113 ≤ cle 11253 / cdiv 11875 2c2 12271 [,]cicc 13331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-2 12279 df-icc 13335 |
This theorem is referenced by: phtpycc 24731 pcoval1 24753 copco 24758 pcohtpylem 24759 pcopt 24762 pcopt2 24763 pcorevlem 24766 |
Copyright terms: Public domain | W3C validator |