MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elii1 Structured version   Visualization version   GIF version

Theorem elii1 23531
Description: Divide the unit interval into two pieces. (Contributed by Mario Carneiro, 7-Jun-2014.)
Assertion
Ref Expression
elii1 (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2)))

Proof of Theorem elii1
StepHypRef Expression
1 0re 10635 . . . . . 6 0 ∈ ℝ
2 halfre 11843 . . . . . 6 (1 / 2) ∈ ℝ
31, 2elicc2i 12794 . . . . 5 (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ (1 / 2)))
43simp1bi 1140 . . . 4 (𝑋 ∈ (0[,](1 / 2)) → 𝑋 ∈ ℝ)
52a1i 11 . . . 4 (𝑋 ∈ (0[,](1 / 2)) → (1 / 2) ∈ ℝ)
6 1re 10633 . . . . 5 1 ∈ ℝ
76a1i 11 . . . 4 (𝑋 ∈ (0[,](1 / 2)) → 1 ∈ ℝ)
83simp3bi 1142 . . . 4 (𝑋 ∈ (0[,](1 / 2)) → 𝑋 ≤ (1 / 2))
9 halflt1 11847 . . . . . 6 (1 / 2) < 1
102, 6, 9ltleii 10755 . . . . 5 (1 / 2) ≤ 1
1110a1i 11 . . . 4 (𝑋 ∈ (0[,](1 / 2)) → (1 / 2) ≤ 1)
124, 5, 7, 8, 11letrd 10789 . . 3 (𝑋 ∈ (0[,](1 / 2)) → 𝑋 ≤ 1)
1312pm4.71ri 563 . 2 (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ≤ 1 ∧ 𝑋 ∈ (0[,](1 / 2))))
14 ancom 463 . . 3 ((𝑋 ≤ 1 ∧ 𝑋 ∈ (0[,](1 / 2))) ↔ (𝑋 ∈ (0[,](1 / 2)) ∧ 𝑋 ≤ 1))
15 an32 644 . . . 4 ((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ (1 / 2)) ∧ 𝑋 ≤ 1) ↔ (((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ 1) ∧ 𝑋 ≤ (1 / 2)))
16 df-3an 1084 . . . . . 6 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ (1 / 2)) ↔ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ (1 / 2)))
173, 16bitri 277 . . . . 5 (𝑋 ∈ (0[,](1 / 2)) ↔ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ (1 / 2)))
1817anbi1i 625 . . . 4 ((𝑋 ∈ (0[,](1 / 2)) ∧ 𝑋 ≤ 1) ↔ (((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ (1 / 2)) ∧ 𝑋 ≤ 1))
191, 6elicc2i 12794 . . . . . 6 (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1))
20 df-3an 1084 . . . . . 6 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1) ↔ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ 1))
2119, 20bitri 277 . . . . 5 (𝑋 ∈ (0[,]1) ↔ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ 1))
2221anbi1i 625 . . . 4 ((𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2)) ↔ (((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ 1) ∧ 𝑋 ≤ (1 / 2)))
2315, 18, 223bitr4i 305 . . 3 ((𝑋 ∈ (0[,](1 / 2)) ∧ 𝑋 ≤ 1) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2)))
2414, 23bitri 277 . 2 ((𝑋 ≤ 1 ∧ 𝑋 ∈ (0[,](1 / 2))) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2)))
2513, 24bitri 277 1 (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2)))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3a 1082  wcel 2108   class class class wbr 5057  (class class class)co 7148  cr 10528  0cc0 10529  1c1 10530  cle 10668   / cdiv 11289  2c2 11684  [,]cicc 12733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-2 11692  df-icc 12737
This theorem is referenced by:  phtpycc  23587  pcoval1  23609  copco  23614  pcohtpylem  23615  pcopt  23618  pcopt2  23619  pcorevlem  23622
  Copyright terms: Public domain W3C validator