MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elii1 Structured version   Visualization version   GIF version

Theorem elii1 24004
Description: Divide the unit interval into two pieces. (Contributed by Mario Carneiro, 7-Jun-2014.)
Assertion
Ref Expression
elii1 (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2)))

Proof of Theorem elii1
StepHypRef Expression
1 0re 10908 . . . . . 6 0 ∈ ℝ
2 halfre 12117 . . . . . 6 (1 / 2) ∈ ℝ
31, 2elicc2i 13074 . . . . 5 (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ (1 / 2)))
43simp1bi 1143 . . . 4 (𝑋 ∈ (0[,](1 / 2)) → 𝑋 ∈ ℝ)
52a1i 11 . . . 4 (𝑋 ∈ (0[,](1 / 2)) → (1 / 2) ∈ ℝ)
6 1re 10906 . . . . 5 1 ∈ ℝ
76a1i 11 . . . 4 (𝑋 ∈ (0[,](1 / 2)) → 1 ∈ ℝ)
83simp3bi 1145 . . . 4 (𝑋 ∈ (0[,](1 / 2)) → 𝑋 ≤ (1 / 2))
9 halflt1 12121 . . . . . 6 (1 / 2) < 1
102, 6, 9ltleii 11028 . . . . 5 (1 / 2) ≤ 1
1110a1i 11 . . . 4 (𝑋 ∈ (0[,](1 / 2)) → (1 / 2) ≤ 1)
124, 5, 7, 8, 11letrd 11062 . . 3 (𝑋 ∈ (0[,](1 / 2)) → 𝑋 ≤ 1)
1312pm4.71ri 560 . 2 (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ≤ 1 ∧ 𝑋 ∈ (0[,](1 / 2))))
14 ancom 460 . . 3 ((𝑋 ≤ 1 ∧ 𝑋 ∈ (0[,](1 / 2))) ↔ (𝑋 ∈ (0[,](1 / 2)) ∧ 𝑋 ≤ 1))
15 an32 642 . . . 4 ((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ (1 / 2)) ∧ 𝑋 ≤ 1) ↔ (((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ 1) ∧ 𝑋 ≤ (1 / 2)))
16 df-3an 1087 . . . . . 6 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ (1 / 2)) ↔ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ (1 / 2)))
173, 16bitri 274 . . . . 5 (𝑋 ∈ (0[,](1 / 2)) ↔ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ (1 / 2)))
1817anbi1i 623 . . . 4 ((𝑋 ∈ (0[,](1 / 2)) ∧ 𝑋 ≤ 1) ↔ (((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ (1 / 2)) ∧ 𝑋 ≤ 1))
191, 6elicc2i 13074 . . . . . 6 (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1))
20 df-3an 1087 . . . . . 6 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1) ↔ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ 1))
2119, 20bitri 274 . . . . 5 (𝑋 ∈ (0[,]1) ↔ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ 1))
2221anbi1i 623 . . . 4 ((𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2)) ↔ (((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ 1) ∧ 𝑋 ≤ (1 / 2)))
2315, 18, 223bitr4i 302 . . 3 ((𝑋 ∈ (0[,](1 / 2)) ∧ 𝑋 ≤ 1) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2)))
2414, 23bitri 274 . 2 ((𝑋 ≤ 1 ∧ 𝑋 ∈ (0[,](1 / 2))) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2)))
2513, 24bitri 274 1 (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085  wcel 2108   class class class wbr 5070  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803  cle 10941   / cdiv 11562  2c2 11958  [,]cicc 13011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-2 11966  df-icc 13015
This theorem is referenced by:  phtpycc  24060  pcoval1  24082  copco  24087  pcohtpylem  24088  pcopt  24091  pcopt2  24092  pcorevlem  24095
  Copyright terms: Public domain W3C validator