| Step | Hyp | Ref
| Expression |
| 1 | | simprl 770 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → 𝑁 ∈
ℚ) |
| 2 | | elq 12971 |
. . 3
⊢ (𝑁 ∈ ℚ ↔
∃𝑥 ∈ ℤ
∃𝑦 ∈ ℕ
𝑁 = (𝑥 / 𝑦)) |
| 3 | 1, 2 | sylib 218 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 / 𝑦)) |
| 4 | | nncn 12253 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℂ) |
| 5 | | nnne0 12279 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℕ → 𝑦 ≠ 0) |
| 6 | 4, 5 | div0d 12021 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℕ → (0 /
𝑦) = 0) |
| 7 | 6 | ad2antll 729 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (0 /
𝑦) = 0) |
| 8 | | oveq1 7417 |
. . . . . . . . . . 11
⊢ (𝑥 = 0 → (𝑥 / 𝑦) = (0 / 𝑦)) |
| 9 | 8 | eqeq1d 2738 |
. . . . . . . . . 10
⊢ (𝑥 = 0 → ((𝑥 / 𝑦) = 0 ↔ (0 / 𝑦) = 0)) |
| 10 | 7, 9 | syl5ibrcom 247 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑥 = 0 → (𝑥 / 𝑦) = 0)) |
| 11 | 10 | necon3d 2954 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → ((𝑥 / 𝑦) ≠ 0 → 𝑥 ≠ 0)) |
| 12 | | an32 646 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ↔ ((𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈
ℕ)) |
| 13 | | pcdiv 16877 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝑥 / 𝑦)) = ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦))) |
| 14 | | pczcl 16873 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑃 pCnt 𝑥) ∈
ℕ0) |
| 15 | 14 | nn0zd 12619 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑃 pCnt 𝑥) ∈ ℤ) |
| 16 | 15 | 3adant3 1132 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt 𝑥) ∈ ℤ) |
| 17 | | nnz 12614 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℤ) |
| 18 | 17, 5 | jca 511 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℕ → (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0)) |
| 19 | | pczcl 16873 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 ∈ ℙ ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0)) → (𝑃 pCnt 𝑦) ∈
ℕ0) |
| 20 | 19 | nn0zd 12619 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ∈ ℙ ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0)) → (𝑃 pCnt 𝑦) ∈ ℤ) |
| 21 | 18, 20 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ ℙ ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt 𝑦) ∈ ℤ) |
| 22 | 21 | 3adant2 1131 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt 𝑦) ∈ ℤ) |
| 23 | 16, 22 | zsubcld 12707 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)) ∈ ℤ) |
| 24 | 13, 23 | eqeltrd 2835 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝑥 / 𝑦)) ∈ ℤ) |
| 25 | 24 | 3expb 1120 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ ((𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ)) → (𝑃 pCnt (𝑥 / 𝑦)) ∈ ℤ) |
| 26 | 12, 25 | sylan2b 594 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0)) → (𝑃 pCnt (𝑥 / 𝑦)) ∈ ℤ) |
| 27 | 26 | expr 456 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑥 ≠ 0 → (𝑃 pCnt (𝑥 / 𝑦)) ∈ ℤ)) |
| 28 | 11, 27 | syld 47 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → ((𝑥 / 𝑦) ≠ 0 → (𝑃 pCnt (𝑥 / 𝑦)) ∈ ℤ)) |
| 29 | | neeq1 2995 |
. . . . . . . 8
⊢ (𝑁 = (𝑥 / 𝑦) → (𝑁 ≠ 0 ↔ (𝑥 / 𝑦) ≠ 0)) |
| 30 | | oveq2 7418 |
. . . . . . . . 9
⊢ (𝑁 = (𝑥 / 𝑦) → (𝑃 pCnt 𝑁) = (𝑃 pCnt (𝑥 / 𝑦))) |
| 31 | 30 | eleq1d 2820 |
. . . . . . . 8
⊢ (𝑁 = (𝑥 / 𝑦) → ((𝑃 pCnt 𝑁) ∈ ℤ ↔ (𝑃 pCnt (𝑥 / 𝑦)) ∈ ℤ)) |
| 32 | 29, 31 | imbi12d 344 |
. . . . . . 7
⊢ (𝑁 = (𝑥 / 𝑦) → ((𝑁 ≠ 0 → (𝑃 pCnt 𝑁) ∈ ℤ) ↔ ((𝑥 / 𝑦) ≠ 0 → (𝑃 pCnt (𝑥 / 𝑦)) ∈ ℤ))) |
| 33 | 28, 32 | syl5ibrcom 247 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑁 = (𝑥 / 𝑦) → (𝑁 ≠ 0 → (𝑃 pCnt 𝑁) ∈ ℤ))) |
| 34 | 33 | com23 86 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑁 ≠ 0 → (𝑁 = (𝑥 / 𝑦) → (𝑃 pCnt 𝑁) ∈ ℤ))) |
| 35 | 34 | impancom 451 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑁 = (𝑥 / 𝑦) → (𝑃 pCnt 𝑁) ∈ ℤ))) |
| 36 | 35 | adantrl 716 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑁 = (𝑥 / 𝑦) → (𝑃 pCnt 𝑁) ∈ ℤ))) |
| 37 | 36 | rexlimdvv 3201 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 / 𝑦) → (𝑃 pCnt 𝑁) ∈ ℤ)) |
| 38 | 3, 37 | mpd 15 |
1
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) ∈ ℤ) |