Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > atexchltN | Structured version Visualization version GIF version |
Description: Atom exchange property. Version of hlatexch2 36972 with less-than ordering. (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
atexchlt.s | ⊢ < = (lt‘𝐾) |
atexchlt.j | ⊢ ∨ = (join‘𝐾) |
atexchlt.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atexchltN | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 < (𝑄 ∨ 𝑅) → 𝑄 < (𝑃 ∨ 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atexchlt.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
2 | atexchlt.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | eqid 2758 | . . 3 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
4 | 1, 2, 3 | atexchcvrN 37016 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃( ⋖ ‘𝐾)(𝑄 ∨ 𝑅) → 𝑄( ⋖ ‘𝐾)(𝑃 ∨ 𝑅))) |
5 | atexchlt.s | . . . 4 ⊢ < = (lt‘𝐾) | |
6 | 5, 1, 2, 3 | atltcvr 37011 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑃 < (𝑄 ∨ 𝑅) ↔ 𝑃( ⋖ ‘𝐾)(𝑄 ∨ 𝑅))) |
7 | 6 | 3adant3 1129 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 < (𝑄 ∨ 𝑅) ↔ 𝑃( ⋖ ‘𝐾)(𝑄 ∨ 𝑅))) |
8 | simpl 486 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝐾 ∈ HL) | |
9 | simpr2 1192 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑄 ∈ 𝐴) | |
10 | simpr1 1191 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑃 ∈ 𝐴) | |
11 | simpr3 1193 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑅 ∈ 𝐴) | |
12 | 5, 1, 2, 3 | atltcvr 37011 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑄 < (𝑃 ∨ 𝑅) ↔ 𝑄( ⋖ ‘𝐾)(𝑃 ∨ 𝑅))) |
13 | 8, 9, 10, 11, 12 | syl13anc 1369 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑄 < (𝑃 ∨ 𝑅) ↔ 𝑄( ⋖ ‘𝐾)(𝑃 ∨ 𝑅))) |
14 | 13 | 3adant3 1129 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑄 < (𝑃 ∨ 𝑅) ↔ 𝑄( ⋖ ‘𝐾)(𝑃 ∨ 𝑅))) |
15 | 4, 7, 14 | 3imtr4d 297 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 < (𝑄 ∨ 𝑅) → 𝑄 < (𝑃 ∨ 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 class class class wbr 5032 ‘cfv 6335 (class class class)co 7150 ltcplt 17617 joincjn 17620 ⋖ ccvr 36838 Atomscatm 36839 HLchlt 36926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-proset 17604 df-poset 17622 df-plt 17634 df-lub 17650 df-glb 17651 df-join 17652 df-meet 17653 df-p0 17715 df-lat 17722 df-clat 17784 df-oposet 36752 df-ol 36754 df-oml 36755 df-covers 36842 df-ats 36843 df-atl 36874 df-cvlat 36898 df-hlat 36927 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |