![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > atexchltN | Structured version Visualization version GIF version |
Description: Atom exchange property. Version of hlatexch2 38780 with less-than ordering. (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
atexchlt.s | β’ < = (ltβπΎ) |
atexchlt.j | β’ β¨ = (joinβπΎ) |
atexchlt.a | β’ π΄ = (AtomsβπΎ) |
Ref | Expression |
---|---|
atexchltN | β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π ) β (π < (π β¨ π ) β π < (π β¨ π ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atexchlt.j | . . 3 β’ β¨ = (joinβπΎ) | |
2 | atexchlt.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
3 | eqid 2726 | . . 3 β’ ( β βπΎ) = ( β βπΎ) | |
4 | 1, 2, 3 | atexchcvrN 38824 | . 2 β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π ) β (π( β βπΎ)(π β¨ π ) β π( β βπΎ)(π β¨ π ))) |
5 | atexchlt.s | . . . 4 β’ < = (ltβπΎ) | |
6 | 5, 1, 2, 3 | atltcvr 38819 | . . 3 β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β (π < (π β¨ π ) β π( β βπΎ)(π β¨ π ))) |
7 | 6 | 3adant3 1129 | . 2 β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π ) β (π < (π β¨ π ) β π( β βπΎ)(π β¨ π ))) |
8 | simpl 482 | . . . 4 β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β πΎ β HL) | |
9 | simpr2 1192 | . . . 4 β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β π β π΄) | |
10 | simpr1 1191 | . . . 4 β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β π β π΄) | |
11 | simpr3 1193 | . . . 4 β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β π β π΄) | |
12 | 5, 1, 2, 3 | atltcvr 38819 | . . . 4 β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β (π < (π β¨ π ) β π( β βπΎ)(π β¨ π ))) |
13 | 8, 9, 10, 11, 12 | syl13anc 1369 | . . 3 β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β (π < (π β¨ π ) β π( β βπΎ)(π β¨ π ))) |
14 | 13 | 3adant3 1129 | . 2 β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π ) β (π < (π β¨ π ) β π( β βπΎ)(π β¨ π ))) |
15 | 4, 7, 14 | 3imtr4d 294 | 1 β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π ) β (π < (π β¨ π ) β π < (π β¨ π ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 β wne 2934 class class class wbr 5141 βcfv 6537 (class class class)co 7405 ltcplt 18273 joincjn 18276 β ccvr 38645 Atomscatm 38646 HLchlt 38733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-proset 18260 df-poset 18278 df-plt 18295 df-lub 18311 df-glb 18312 df-join 18313 df-meet 18314 df-p0 18390 df-lat 18397 df-clat 18464 df-oposet 38559 df-ol 38561 df-oml 38562 df-covers 38649 df-ats 38650 df-atl 38681 df-cvlat 38705 df-hlat 38734 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |