MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2split Structured version   Visualization version   GIF version

Theorem itg2split 25114
Description: The 2 integral splits under an almost disjoint union. The proof avoids the use of itg2add 25124, which requires countable choice. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itg2split.a (𝜑𝐴 ∈ dom vol)
itg2split.b (𝜑𝐵 ∈ dom vol)
itg2split.i (𝜑 → (vol*‘(𝐴𝐵)) = 0)
itg2split.u (𝜑𝑈 = (𝐴𝐵))
itg2split.c ((𝜑𝑥𝑈) → 𝐶 ∈ (0[,]+∞))
itg2split.f 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))
itg2split.g 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐵, 𝐶, 0))
itg2split.h 𝐻 = (𝑥 ∈ ℝ ↦ if(𝑥𝑈, 𝐶, 0))
itg2split.sf (𝜑 → (∫2𝐹) ∈ ℝ)
itg2split.sg (𝜑 → (∫2𝐺) ∈ ℝ)
Assertion
Ref Expression
itg2split (𝜑 → (∫2𝐻) = ((∫2𝐹) + (∫2𝐺)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝐵   𝑥,𝑈
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem itg2split
Dummy variables 𝑓 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2split.c . . . . . 6 ((𝜑𝑥𝑈) → 𝐶 ∈ (0[,]+∞))
21adantlr 713 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝑈) → 𝐶 ∈ (0[,]+∞))
3 0e0iccpnf 13376 . . . . . 6 0 ∈ (0[,]+∞)
43a1i 11 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝑈) → 0 ∈ (0[,]+∞))
52, 4ifclda 4521 . . . 4 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝑈, 𝐶, 0) ∈ (0[,]+∞))
6 itg2split.h . . . 4 𝐻 = (𝑥 ∈ ℝ ↦ if(𝑥𝑈, 𝐶, 0))
75, 6fmptd 7062 . . 3 (𝜑𝐻:ℝ⟶(0[,]+∞))
8 itg2cl 25097 . . 3 (𝐻:ℝ⟶(0[,]+∞) → (∫2𝐻) ∈ ℝ*)
97, 8syl 17 . 2 (𝜑 → (∫2𝐻) ∈ ℝ*)
10 itg2split.sf . . . 4 (𝜑 → (∫2𝐹) ∈ ℝ)
11 itg2split.sg . . . 4 (𝜑 → (∫2𝐺) ∈ ℝ)
1210, 11readdcld 11184 . . 3 (𝜑 → ((∫2𝐹) + (∫2𝐺)) ∈ ℝ)
1312rexrd 11205 . 2 (𝜑 → ((∫2𝐹) + (∫2𝐺)) ∈ ℝ*)
14 itg2split.a . . 3 (𝜑𝐴 ∈ dom vol)
15 itg2split.b . . 3 (𝜑𝐵 ∈ dom vol)
16 itg2split.i . . 3 (𝜑 → (vol*‘(𝐴𝐵)) = 0)
17 itg2split.u . . 3 (𝜑𝑈 = (𝐴𝐵))
18 itg2split.f . . 3 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))
19 itg2split.g . . 3 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐵, 𝐶, 0))
2014, 15, 16, 17, 1, 18, 19, 6, 10, 11itg2splitlem 25113 . 2 (𝜑 → (∫2𝐻) ≤ ((∫2𝐹) + (∫2𝐺)))
2111adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → (∫2𝐺) ∈ ℝ)
22 itg2lecl 25103 . . . . . . . . 9 ((𝐻:ℝ⟶(0[,]+∞) ∧ ((∫2𝐹) + (∫2𝐺)) ∈ ℝ ∧ (∫2𝐻) ≤ ((∫2𝐹) + (∫2𝐺))) → (∫2𝐻) ∈ ℝ)
237, 12, 20, 22syl3anc 1371 . . . . . . . 8 (𝜑 → (∫2𝐻) ∈ ℝ)
2423adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → (∫2𝐻) ∈ ℝ)
25 itg1cl 25049 . . . . . . . 8 (𝑓 ∈ dom ∫1 → (∫1𝑓) ∈ ℝ)
2625ad2antrl 726 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → (∫1𝑓) ∈ ℝ)
27 simprll 777 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → 𝑓 ∈ dom ∫1)
28 simprrl 779 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → 𝑔 ∈ dom ∫1)
2927, 28itg1add 25066 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (∫1‘(𝑓f + 𝑔)) = ((∫1𝑓) + (∫1𝑔)))
307adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → 𝐻:ℝ⟶(0[,]+∞))
3127, 28i1fadd 25059 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (𝑓f + 𝑔) ∈ dom ∫1)
32 inss1 4188 . . . . . . . . . . . . . . . 16 (𝐴𝐵) ⊆ 𝐴
33 mblss 24895 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
3414, 33syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ⊆ ℝ)
3532, 34sstrid 3955 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝐵) ⊆ ℝ)
3635adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (𝐴𝐵) ⊆ ℝ)
3716adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (vol*‘(𝐴𝐵)) = 0)
38 nfv 1917 . . . . . . . . . . . . . . . . . 18 𝑥𝜑
39 nfv 1917 . . . . . . . . . . . . . . . . . . . 20 𝑥 𝑓 ∈ dom ∫1
40 nfcv 2907 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝑓
41 nfcv 2907 . . . . . . . . . . . . . . . . . . . . 21 𝑥r
42 nfmpt1 5213 . . . . . . . . . . . . . . . . . . . . . 22 𝑥(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))
4318, 42nfcxfr 2905 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝐹
4440, 41, 43nfbr 5152 . . . . . . . . . . . . . . . . . . . 20 𝑥 𝑓r𝐹
4539, 44nfan 1902 . . . . . . . . . . . . . . . . . . 19 𝑥(𝑓 ∈ dom ∫1𝑓r𝐹)
46 nfv 1917 . . . . . . . . . . . . . . . . . . . 20 𝑥 𝑔 ∈ dom ∫1
47 nfcv 2907 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝑔
48 nfmpt1 5213 . . . . . . . . . . . . . . . . . . . . . 22 𝑥(𝑥 ∈ ℝ ↦ if(𝑥𝐵, 𝐶, 0))
4919, 48nfcxfr 2905 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝐺
5047, 41, 49nfbr 5152 . . . . . . . . . . . . . . . . . . . 20 𝑥 𝑔r𝐺
5146, 50nfan 1902 . . . . . . . . . . . . . . . . . . 19 𝑥(𝑔 ∈ dom ∫1𝑔r𝐺)
5245, 51nfan 1902 . . . . . . . . . . . . . . . . . 18 𝑥((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))
5338, 52nfan 1902 . . . . . . . . . . . . . . . . 17 𝑥(𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺)))
54 eldifi 4086 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (ℝ ∖ (𝐴𝐵)) → 𝑥 ∈ ℝ)
55 i1ff 25040 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 ∈ dom ∫1𝑓:ℝ⟶ℝ)
5627, 55syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → 𝑓:ℝ⟶ℝ)
5756ffnd 6669 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → 𝑓 Fn ℝ)
58 i1ff 25040 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔 ∈ dom ∫1𝑔:ℝ⟶ℝ)
5928, 58syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → 𝑔:ℝ⟶ℝ)
6059ffnd 6669 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → 𝑔 Fn ℝ)
61 reex 11142 . . . . . . . . . . . . . . . . . . . . . 22 ℝ ∈ V
6261a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → ℝ ∈ V)
63 inidm 4178 . . . . . . . . . . . . . . . . . . . . 21 (ℝ ∩ ℝ) = ℝ
64 eqidd 2737 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) = (𝑓𝑥))
65 eqidd 2737 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ ℝ) → (𝑔𝑥) = (𝑔𝑥))
6657, 60, 62, 62, 63, 64, 65ofval 7628 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ ℝ) → ((𝑓f + 𝑔)‘𝑥) = ((𝑓𝑥) + (𝑔𝑥)))
6754, 66sylan2 593 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓f + 𝑔)‘𝑥) = ((𝑓𝑥) + (𝑔𝑥)))
68 ffvelcdm 7032 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) ∈ ℝ)
6956, 54, 68syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑓𝑥) ∈ ℝ)
70 ffvelcdm 7032 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑔:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝑔𝑥) ∈ ℝ)
7159, 54, 70syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑔𝑥) ∈ ℝ)
7269, 71readdcld 11184 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓𝑥) + (𝑔𝑥)) ∈ ℝ)
7372rexrd 11205 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓𝑥) + (𝑔𝑥)) ∈ ℝ*)
7473adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ∈ ℝ*)
7569adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑓𝑥) ∈ ℝ)
7675rexrd 11205 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑓𝑥) ∈ ℝ*)
77 iccssxr 13347 . . . . . . . . . . . . . . . . . . . . . . 23 (0[,]+∞) ⊆ ℝ*
78 ffvelcdm 7032 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐻:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (𝐻𝑥) ∈ (0[,]+∞))
7930, 54, 78syl2an 596 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝐻𝑥) ∈ (0[,]+∞))
8077, 79sselid 3942 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝐻𝑥) ∈ ℝ*)
8180adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝐻𝑥) ∈ ℝ*)
8271adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑔𝑥) ∈ ℝ)
83 0red 11158 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → 0 ∈ ℝ)
84 simprrr 780 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → 𝑔r𝐺)
8561a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑔 Fn ℝ) → ℝ ∈ V)
86 fvexd 6857 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑔 Fn ℝ) ∧ 𝑥 ∈ ℝ) → (𝑔𝑥) ∈ V)
87 ssun2 4133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 𝐵 ⊆ (𝐴𝐵)
8887, 17sseqtrrid 3997 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑𝐵𝑈)
8988sselda 3944 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑥𝐵) → 𝑥𝑈)
9089adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐵) → 𝑥𝑈)
9190, 2syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐵) → 𝐶 ∈ (0[,]+∞))
923a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐵) → 0 ∈ (0[,]+∞))
9391, 92ifclda 4521 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐵, 𝐶, 0) ∈ (0[,]+∞))
9493adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑔 Fn ℝ) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐵, 𝐶, 0) ∈ (0[,]+∞))
95 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑔 Fn ℝ) → 𝑔 Fn ℝ)
96 dffn5 6901 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑔 Fn ℝ ↔ 𝑔 = (𝑥 ∈ ℝ ↦ (𝑔𝑥)))
9795, 96sylib 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑔 Fn ℝ) → 𝑔 = (𝑥 ∈ ℝ ↦ (𝑔𝑥)))
9819a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑔 Fn ℝ) → 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐵, 𝐶, 0)))
9985, 86, 94, 97, 98ofrfval2 7638 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑔 Fn ℝ) → (𝑔r𝐺 ↔ ∀𝑥 ∈ ℝ (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0)))
10060, 99syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (𝑔r𝐺 ↔ ∀𝑥 ∈ ℝ (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0)))
10184, 100mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → ∀𝑥 ∈ ℝ (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0))
102101r19.21bi 3234 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ ℝ) → (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0))
10354, 102sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0))
104103adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0))
105 eldifn 4087 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ (ℝ ∖ (𝐴𝐵)) → ¬ 𝑥 ∈ (𝐴𝐵))
106105adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ¬ 𝑥 ∈ (𝐴𝐵))
107 elin 3926 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
108106, 107sylnib 327 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ¬ (𝑥𝐴𝑥𝐵))
109 imnan 400 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ ¬ (𝑥𝐴𝑥𝐵))
110108, 109sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑥𝐴 → ¬ 𝑥𝐵))
111110imp 407 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ¬ 𝑥𝐵)
112111iffalsed 4497 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → if(𝑥𝐵, 𝐶, 0) = 0)
113104, 112breqtrd 5131 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑔𝑥) ≤ 0)
11482, 83, 75, 113leadd2dd 11770 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ ((𝑓𝑥) + 0))
11575recnd 11183 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑓𝑥) ∈ ℂ)
116115addid1d 11355 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ((𝑓𝑥) + 0) = (𝑓𝑥))
117114, 116breqtrd 5131 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (𝑓𝑥))
118 simprlr 778 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → 𝑓r𝐹)
11961a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑓 Fn ℝ) → ℝ ∈ V)
120 fvexd 6857 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑓 Fn ℝ) ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) ∈ V)
121 ssun1 4132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 𝐴 ⊆ (𝐴𝐵)
122121, 17sseqtrrid 3997 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑𝐴𝑈)
123122sselda 3944 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑥𝐴) → 𝑥𝑈)
124123adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐴) → 𝑥𝑈)
125124, 2syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐴) → 𝐶 ∈ (0[,]+∞))
1263a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,]+∞))
127125, 126ifclda 4521 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐶, 0) ∈ (0[,]+∞))
128127adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑓 Fn ℝ) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐶, 0) ∈ (0[,]+∞))
129 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑓 Fn ℝ) → 𝑓 Fn ℝ)
130 dffn5 6901 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓 Fn ℝ ↔ 𝑓 = (𝑥 ∈ ℝ ↦ (𝑓𝑥)))
131129, 130sylib 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑓 Fn ℝ) → 𝑓 = (𝑥 ∈ ℝ ↦ (𝑓𝑥)))
13218a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑓 Fn ℝ) → 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)))
133119, 120, 128, 131, 132ofrfval2 7638 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑓 Fn ℝ) → (𝑓r𝐹 ↔ ∀𝑥 ∈ ℝ (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0)))
13457, 133syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (𝑓r𝐹 ↔ ∀𝑥 ∈ ℝ (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0)))
135118, 134mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → ∀𝑥 ∈ ℝ (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0))
136135r19.21bi 3234 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0))
13754, 136sylan2 593 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0))
138137adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0))
139122ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → 𝐴𝑈)
140139sselda 3944 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → 𝑥𝑈)
141140iftrued 4494 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → if(𝑥𝑈, 𝐶, 0) = 𝐶)
142 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
1435adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ ℝ) → if(𝑥𝑈, 𝐶, 0) ∈ (0[,]+∞))
1446fvmpt2 6959 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ ℝ ∧ if(𝑥𝑈, 𝐶, 0) ∈ (0[,]+∞)) → (𝐻𝑥) = if(𝑥𝑈, 𝐶, 0))
145142, 143, 144syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ ℝ) → (𝐻𝑥) = if(𝑥𝑈, 𝐶, 0))
14654, 145sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝐻𝑥) = if(𝑥𝑈, 𝐶, 0))
147146adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝐻𝑥) = if(𝑥𝑈, 𝐶, 0))
148 iftrue 4492 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥𝐴 → if(𝑥𝐴, 𝐶, 0) = 𝐶)
149148adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → if(𝑥𝐴, 𝐶, 0) = 𝐶)
150141, 147, 1493eqtr4d 2786 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝐻𝑥) = if(𝑥𝐴, 𝐶, 0))
151138, 150breqtrrd 5133 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑓𝑥) ≤ (𝐻𝑥))
15274, 76, 81, 117, 151xrletrd 13081 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (𝐻𝑥))
15373adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ∈ ℝ*)
15471adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑔𝑥) ∈ ℝ)
155154rexrd 11205 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑔𝑥) ∈ ℝ*)
15680adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝐻𝑥) ∈ ℝ*)
15769adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑓𝑥) ∈ ℝ)
158 0red 11158 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → 0 ∈ ℝ)
159137adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0))
160 iffalse 4495 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑥𝐴 → if(𝑥𝐴, 𝐶, 0) = 0)
161160adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → if(𝑥𝐴, 𝐶, 0) = 0)
162159, 161breqtrd 5131 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑓𝑥) ≤ 0)
163157, 158, 154, 162leadd1dd 11769 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (0 + (𝑔𝑥)))
164154recnd 11183 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑔𝑥) ∈ ℂ)
165164addid2d 11356 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (0 + (𝑔𝑥)) = (𝑔𝑥))
166163, 165breqtrd 5131 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (𝑔𝑥))
167103adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0))
168146adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝐻𝑥) = if(𝑥𝑈, 𝐶, 0))
16917ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → 𝑈 = (𝐴𝐵))
170169eleq2d 2823 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑥𝑈𝑥 ∈ (𝐴𝐵)))
171 elun 4108 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
172 biorf 935 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑥𝐴 → (𝑥𝐵 ↔ (𝑥𝐴𝑥𝐵)))
173171, 172bitr4id 289 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑥𝐴 → (𝑥 ∈ (𝐴𝐵) ↔ 𝑥𝐵))
174173adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑥 ∈ (𝐴𝐵) ↔ 𝑥𝐵))
175170, 174bitrd 278 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑥𝑈𝑥𝐵))
176175ifbid 4509 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → if(𝑥𝑈, 𝐶, 0) = if(𝑥𝐵, 𝐶, 0))
177168, 176eqtrd 2776 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝐻𝑥) = if(𝑥𝐵, 𝐶, 0))
178167, 177breqtrrd 5133 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑔𝑥) ≤ (𝐻𝑥))
179153, 155, 156, 166, 178xrletrd 13081 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (𝐻𝑥))
180152, 179pm2.61dan 811 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (𝐻𝑥))
18167, 180eqbrtrd 5127 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓f + 𝑔)‘𝑥) ≤ (𝐻𝑥))
182181ex 413 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (𝑥 ∈ (ℝ ∖ (𝐴𝐵)) → ((𝑓f + 𝑔)‘𝑥) ≤ (𝐻𝑥)))
18353, 182ralrimi 3240 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → ∀𝑥 ∈ (ℝ ∖ (𝐴𝐵))((𝑓f + 𝑔)‘𝑥) ≤ (𝐻𝑥))
184 nfv 1917 . . . . . . . . . . . . . . . . 17 𝑦((𝑓f + 𝑔)‘𝑥) ≤ (𝐻𝑥)
185 nfcv 2907 . . . . . . . . . . . . . . . . . 18 𝑥((𝑓f + 𝑔)‘𝑦)
186 nfcv 2907 . . . . . . . . . . . . . . . . . 18 𝑥
187 nfmpt1 5213 . . . . . . . . . . . . . . . . . . . 20 𝑥(𝑥 ∈ ℝ ↦ if(𝑥𝑈, 𝐶, 0))
1886, 187nfcxfr 2905 . . . . . . . . . . . . . . . . . . 19 𝑥𝐻
189 nfcv 2907 . . . . . . . . . . . . . . . . . . 19 𝑥𝑦
190188, 189nffv 6852 . . . . . . . . . . . . . . . . . 18 𝑥(𝐻𝑦)
191185, 186, 190nfbr 5152 . . . . . . . . . . . . . . . . 17 𝑥((𝑓f + 𝑔)‘𝑦) ≤ (𝐻𝑦)
192 fveq2 6842 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ((𝑓f + 𝑔)‘𝑥) = ((𝑓f + 𝑔)‘𝑦))
193 fveq2 6842 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝐻𝑥) = (𝐻𝑦))
194192, 193breq12d 5118 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (((𝑓f + 𝑔)‘𝑥) ≤ (𝐻𝑥) ↔ ((𝑓f + 𝑔)‘𝑦) ≤ (𝐻𝑦)))
195184, 191, 194cbvralw 3289 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ (ℝ ∖ (𝐴𝐵))((𝑓f + 𝑔)‘𝑥) ≤ (𝐻𝑥) ↔ ∀𝑦 ∈ (ℝ ∖ (𝐴𝐵))((𝑓f + 𝑔)‘𝑦) ≤ (𝐻𝑦))
196183, 195sylib 217 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → ∀𝑦 ∈ (ℝ ∖ (𝐴𝐵))((𝑓f + 𝑔)‘𝑦) ≤ (𝐻𝑦))
197196r19.21bi 3234 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓f + 𝑔)‘𝑦) ≤ (𝐻𝑦))
19830, 31, 36, 37, 197itg2uba 25108 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (∫1‘(𝑓f + 𝑔)) ≤ (∫2𝐻))
19929, 198eqbrtrrd 5129 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → ((∫1𝑓) + (∫1𝑔)) ≤ (∫2𝐻))
20026adantrr 715 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (∫1𝑓) ∈ ℝ)
201 itg1cl 25049 . . . . . . . . . . . . . 14 (𝑔 ∈ dom ∫1 → (∫1𝑔) ∈ ℝ)
20228, 201syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (∫1𝑔) ∈ ℝ)
20323adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (∫2𝐻) ∈ ℝ)
204200, 202, 203leaddsub2d 11757 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (((∫1𝑓) + (∫1𝑔)) ≤ (∫2𝐻) ↔ (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓))))
205199, 204mpbid 231 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓)))
206205anassrs 468 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺)) → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓)))
207206expr 457 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) ∧ 𝑔 ∈ dom ∫1) → (𝑔r𝐺 → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓))))
208207ralrimiva 3143 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → ∀𝑔 ∈ dom ∫1(𝑔r𝐺 → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓))))
20993, 19fmptd 7062 . . . . . . . . . 10 (𝜑𝐺:ℝ⟶(0[,]+∞))
210209adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → 𝐺:ℝ⟶(0[,]+∞))
21124, 26resubcld 11583 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → ((∫2𝐻) − (∫1𝑓)) ∈ ℝ)
212211rexrd 11205 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → ((∫2𝐻) − (∫1𝑓)) ∈ ℝ*)
213 itg2leub 25099 . . . . . . . . 9 ((𝐺:ℝ⟶(0[,]+∞) ∧ ((∫2𝐻) − (∫1𝑓)) ∈ ℝ*) → ((∫2𝐺) ≤ ((∫2𝐻) − (∫1𝑓)) ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐺 → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓)))))
214210, 212, 213syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → ((∫2𝐺) ≤ ((∫2𝐻) − (∫1𝑓)) ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐺 → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓)))))
215208, 214mpbird 256 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → (∫2𝐺) ≤ ((∫2𝐻) − (∫1𝑓)))
21621, 24, 26, 215lesubd 11759 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → (∫1𝑓) ≤ ((∫2𝐻) − (∫2𝐺)))
217216expr 457 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → (𝑓r𝐹 → (∫1𝑓) ≤ ((∫2𝐻) − (∫2𝐺))))
218217ralrimiva 3143 . . . 4 (𝜑 → ∀𝑓 ∈ dom ∫1(𝑓r𝐹 → (∫1𝑓) ≤ ((∫2𝐻) − (∫2𝐺))))
219127, 18fmptd 7062 . . . . 5 (𝜑𝐹:ℝ⟶(0[,]+∞))
22023, 11resubcld 11583 . . . . . 6 (𝜑 → ((∫2𝐻) − (∫2𝐺)) ∈ ℝ)
221220rexrd 11205 . . . . 5 (𝜑 → ((∫2𝐻) − (∫2𝐺)) ∈ ℝ*)
222 itg2leub 25099 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ ((∫2𝐻) − (∫2𝐺)) ∈ ℝ*) → ((∫2𝐹) ≤ ((∫2𝐻) − (∫2𝐺)) ↔ ∀𝑓 ∈ dom ∫1(𝑓r𝐹 → (∫1𝑓) ≤ ((∫2𝐻) − (∫2𝐺)))))
223219, 221, 222syl2anc 584 . . . 4 (𝜑 → ((∫2𝐹) ≤ ((∫2𝐻) − (∫2𝐺)) ↔ ∀𝑓 ∈ dom ∫1(𝑓r𝐹 → (∫1𝑓) ≤ ((∫2𝐻) − (∫2𝐺)))))
224218, 223mpbird 256 . . 3 (𝜑 → (∫2𝐹) ≤ ((∫2𝐻) − (∫2𝐺)))
225 leaddsub 11631 . . . 4 (((∫2𝐹) ∈ ℝ ∧ (∫2𝐺) ∈ ℝ ∧ (∫2𝐻) ∈ ℝ) → (((∫2𝐹) + (∫2𝐺)) ≤ (∫2𝐻) ↔ (∫2𝐹) ≤ ((∫2𝐻) − (∫2𝐺))))
22610, 11, 23, 225syl3anc 1371 . . 3 (𝜑 → (((∫2𝐹) + (∫2𝐺)) ≤ (∫2𝐻) ↔ (∫2𝐹) ≤ ((∫2𝐻) − (∫2𝐺))))
227224, 226mpbird 256 . 2 (𝜑 → ((∫2𝐹) + (∫2𝐺)) ≤ (∫2𝐻))
2289, 13, 20, 227xrletrid 13074 1 (𝜑 → (∫2𝐻) = ((∫2𝐹) + (∫2𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wral 3064  Vcvv 3445  cdif 3907  cun 3908  cin 3909  wss 3910  ifcif 4486   class class class wbr 5105  cmpt 5188  dom cdm 5633   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  f cof 7615  r cofr 7616  cr 11050  0cc0 11051   + caddc 11054  +∞cpnf 11186  *cxr 11188  cle 11190  cmin 11385  [,]cicc 13267  vol*covol 24826  volcvol 24827  1citg1 24979  2citg2 24980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-rest 17304  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-top 22243  df-topon 22260  df-bases 22296  df-cmp 22738  df-ovol 24828  df-vol 24829  df-mbf 24983  df-itg1 24984  df-itg2 24985
This theorem is referenced by:  itg2cnlem2  25127  itgsplit  25200  iblsplit  44197
  Copyright terms: Public domain W3C validator