MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2split Structured version   Visualization version   GIF version

Theorem itg2split 25656
Description: The 2 integral splits under an almost disjoint union. The proof avoids the use of itg2add 25666, which requires countable choice. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itg2split.a (𝜑𝐴 ∈ dom vol)
itg2split.b (𝜑𝐵 ∈ dom vol)
itg2split.i (𝜑 → (vol*‘(𝐴𝐵)) = 0)
itg2split.u (𝜑𝑈 = (𝐴𝐵))
itg2split.c ((𝜑𝑥𝑈) → 𝐶 ∈ (0[,]+∞))
itg2split.f 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))
itg2split.g 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐵, 𝐶, 0))
itg2split.h 𝐻 = (𝑥 ∈ ℝ ↦ if(𝑥𝑈, 𝐶, 0))
itg2split.sf (𝜑 → (∫2𝐹) ∈ ℝ)
itg2split.sg (𝜑 → (∫2𝐺) ∈ ℝ)
Assertion
Ref Expression
itg2split (𝜑 → (∫2𝐻) = ((∫2𝐹) + (∫2𝐺)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝐵   𝑥,𝑈
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem itg2split
Dummy variables 𝑓 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2split.c . . . . . 6 ((𝜑𝑥𝑈) → 𝐶 ∈ (0[,]+∞))
21adantlr 715 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝑈) → 𝐶 ∈ (0[,]+∞))
3 0e0iccpnf 13426 . . . . . 6 0 ∈ (0[,]+∞)
43a1i 11 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝑈) → 0 ∈ (0[,]+∞))
52, 4ifclda 4526 . . . 4 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝑈, 𝐶, 0) ∈ (0[,]+∞))
6 itg2split.h . . . 4 𝐻 = (𝑥 ∈ ℝ ↦ if(𝑥𝑈, 𝐶, 0))
75, 6fmptd 7088 . . 3 (𝜑𝐻:ℝ⟶(0[,]+∞))
8 itg2cl 25639 . . 3 (𝐻:ℝ⟶(0[,]+∞) → (∫2𝐻) ∈ ℝ*)
97, 8syl 17 . 2 (𝜑 → (∫2𝐻) ∈ ℝ*)
10 itg2split.sf . . . 4 (𝜑 → (∫2𝐹) ∈ ℝ)
11 itg2split.sg . . . 4 (𝜑 → (∫2𝐺) ∈ ℝ)
1210, 11readdcld 11209 . . 3 (𝜑 → ((∫2𝐹) + (∫2𝐺)) ∈ ℝ)
1312rexrd 11230 . 2 (𝜑 → ((∫2𝐹) + (∫2𝐺)) ∈ ℝ*)
14 itg2split.a . . 3 (𝜑𝐴 ∈ dom vol)
15 itg2split.b . . 3 (𝜑𝐵 ∈ dom vol)
16 itg2split.i . . 3 (𝜑 → (vol*‘(𝐴𝐵)) = 0)
17 itg2split.u . . 3 (𝜑𝑈 = (𝐴𝐵))
18 itg2split.f . . 3 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))
19 itg2split.g . . 3 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐵, 𝐶, 0))
2014, 15, 16, 17, 1, 18, 19, 6, 10, 11itg2splitlem 25655 . 2 (𝜑 → (∫2𝐻) ≤ ((∫2𝐹) + (∫2𝐺)))
2111adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → (∫2𝐺) ∈ ℝ)
22 itg2lecl 25645 . . . . . . . . 9 ((𝐻:ℝ⟶(0[,]+∞) ∧ ((∫2𝐹) + (∫2𝐺)) ∈ ℝ ∧ (∫2𝐻) ≤ ((∫2𝐹) + (∫2𝐺))) → (∫2𝐻) ∈ ℝ)
237, 12, 20, 22syl3anc 1373 . . . . . . . 8 (𝜑 → (∫2𝐻) ∈ ℝ)
2423adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → (∫2𝐻) ∈ ℝ)
25 itg1cl 25592 . . . . . . . 8 (𝑓 ∈ dom ∫1 → (∫1𝑓) ∈ ℝ)
2625ad2antrl 728 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → (∫1𝑓) ∈ ℝ)
27 simprll 778 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → 𝑓 ∈ dom ∫1)
28 simprrl 780 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → 𝑔 ∈ dom ∫1)
2927, 28itg1add 25608 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (∫1‘(𝑓f + 𝑔)) = ((∫1𝑓) + (∫1𝑔)))
307adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → 𝐻:ℝ⟶(0[,]+∞))
3127, 28i1fadd 25602 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (𝑓f + 𝑔) ∈ dom ∫1)
32 inss1 4202 . . . . . . . . . . . . . . . 16 (𝐴𝐵) ⊆ 𝐴
33 mblss 25438 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
3414, 33syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ⊆ ℝ)
3532, 34sstrid 3960 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝐵) ⊆ ℝ)
3635adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (𝐴𝐵) ⊆ ℝ)
3716adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (vol*‘(𝐴𝐵)) = 0)
38 nfv 1914 . . . . . . . . . . . . . . . . . 18 𝑥𝜑
39 nfv 1914 . . . . . . . . . . . . . . . . . . . 20 𝑥 𝑓 ∈ dom ∫1
40 nfcv 2892 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝑓
41 nfcv 2892 . . . . . . . . . . . . . . . . . . . . 21 𝑥r
42 nfmpt1 5208 . . . . . . . . . . . . . . . . . . . . . 22 𝑥(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))
4318, 42nfcxfr 2890 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝐹
4440, 41, 43nfbr 5156 . . . . . . . . . . . . . . . . . . . 20 𝑥 𝑓r𝐹
4539, 44nfan 1899 . . . . . . . . . . . . . . . . . . 19 𝑥(𝑓 ∈ dom ∫1𝑓r𝐹)
46 nfv 1914 . . . . . . . . . . . . . . . . . . . 20 𝑥 𝑔 ∈ dom ∫1
47 nfcv 2892 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝑔
48 nfmpt1 5208 . . . . . . . . . . . . . . . . . . . . . 22 𝑥(𝑥 ∈ ℝ ↦ if(𝑥𝐵, 𝐶, 0))
4919, 48nfcxfr 2890 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝐺
5047, 41, 49nfbr 5156 . . . . . . . . . . . . . . . . . . . 20 𝑥 𝑔r𝐺
5146, 50nfan 1899 . . . . . . . . . . . . . . . . . . 19 𝑥(𝑔 ∈ dom ∫1𝑔r𝐺)
5245, 51nfan 1899 . . . . . . . . . . . . . . . . . 18 𝑥((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))
5338, 52nfan 1899 . . . . . . . . . . . . . . . . 17 𝑥(𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺)))
54 eldifi 4096 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (ℝ ∖ (𝐴𝐵)) → 𝑥 ∈ ℝ)
55 i1ff 25583 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 ∈ dom ∫1𝑓:ℝ⟶ℝ)
5627, 55syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → 𝑓:ℝ⟶ℝ)
5756ffnd 6691 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → 𝑓 Fn ℝ)
58 i1ff 25583 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔 ∈ dom ∫1𝑔:ℝ⟶ℝ)
5928, 58syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → 𝑔:ℝ⟶ℝ)
6059ffnd 6691 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → 𝑔 Fn ℝ)
61 reex 11165 . . . . . . . . . . . . . . . . . . . . . 22 ℝ ∈ V
6261a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → ℝ ∈ V)
63 inidm 4192 . . . . . . . . . . . . . . . . . . . . 21 (ℝ ∩ ℝ) = ℝ
64 eqidd 2731 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) = (𝑓𝑥))
65 eqidd 2731 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ ℝ) → (𝑔𝑥) = (𝑔𝑥))
6657, 60, 62, 62, 63, 64, 65ofval 7666 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ ℝ) → ((𝑓f + 𝑔)‘𝑥) = ((𝑓𝑥) + (𝑔𝑥)))
6754, 66sylan2 593 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓f + 𝑔)‘𝑥) = ((𝑓𝑥) + (𝑔𝑥)))
68 ffvelcdm 7055 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) ∈ ℝ)
6956, 54, 68syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑓𝑥) ∈ ℝ)
70 ffvelcdm 7055 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑔:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝑔𝑥) ∈ ℝ)
7159, 54, 70syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑔𝑥) ∈ ℝ)
7269, 71readdcld 11209 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓𝑥) + (𝑔𝑥)) ∈ ℝ)
7372rexrd 11230 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓𝑥) + (𝑔𝑥)) ∈ ℝ*)
7473adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ∈ ℝ*)
7569adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑓𝑥) ∈ ℝ)
7675rexrd 11230 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑓𝑥) ∈ ℝ*)
77 iccssxr 13397 . . . . . . . . . . . . . . . . . . . . . . 23 (0[,]+∞) ⊆ ℝ*
78 ffvelcdm 7055 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐻:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (𝐻𝑥) ∈ (0[,]+∞))
7930, 54, 78syl2an 596 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝐻𝑥) ∈ (0[,]+∞))
8077, 79sselid 3946 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝐻𝑥) ∈ ℝ*)
8180adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝐻𝑥) ∈ ℝ*)
8271adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑔𝑥) ∈ ℝ)
83 0red 11183 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → 0 ∈ ℝ)
84 simprrr 781 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → 𝑔r𝐺)
8561a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑔 Fn ℝ) → ℝ ∈ V)
86 fvexd 6875 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑔 Fn ℝ) ∧ 𝑥 ∈ ℝ) → (𝑔𝑥) ∈ V)
87 ssun2 4144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 𝐵 ⊆ (𝐴𝐵)
8887, 17sseqtrrid 3992 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑𝐵𝑈)
8988sselda 3948 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑥𝐵) → 𝑥𝑈)
9089adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐵) → 𝑥𝑈)
9190, 2syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐵) → 𝐶 ∈ (0[,]+∞))
923a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐵) → 0 ∈ (0[,]+∞))
9391, 92ifclda 4526 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐵, 𝐶, 0) ∈ (0[,]+∞))
9493adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑔 Fn ℝ) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐵, 𝐶, 0) ∈ (0[,]+∞))
95 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑔 Fn ℝ) → 𝑔 Fn ℝ)
96 dffn5 6921 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑔 Fn ℝ ↔ 𝑔 = (𝑥 ∈ ℝ ↦ (𝑔𝑥)))
9795, 96sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑔 Fn ℝ) → 𝑔 = (𝑥 ∈ ℝ ↦ (𝑔𝑥)))
9819a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑔 Fn ℝ) → 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐵, 𝐶, 0)))
9985, 86, 94, 97, 98ofrfval2 7676 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑔 Fn ℝ) → (𝑔r𝐺 ↔ ∀𝑥 ∈ ℝ (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0)))
10060, 99syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (𝑔r𝐺 ↔ ∀𝑥 ∈ ℝ (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0)))
10184, 100mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → ∀𝑥 ∈ ℝ (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0))
102101r19.21bi 3230 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ ℝ) → (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0))
10354, 102sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0))
104103adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0))
105 eldifn 4097 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ (ℝ ∖ (𝐴𝐵)) → ¬ 𝑥 ∈ (𝐴𝐵))
106105adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ¬ 𝑥 ∈ (𝐴𝐵))
107 elin 3932 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
108106, 107sylnib 328 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ¬ (𝑥𝐴𝑥𝐵))
109 imnan 399 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ ¬ (𝑥𝐴𝑥𝐵))
110108, 109sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑥𝐴 → ¬ 𝑥𝐵))
111110imp 406 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ¬ 𝑥𝐵)
112111iffalsed 4501 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → if(𝑥𝐵, 𝐶, 0) = 0)
113104, 112breqtrd 5135 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑔𝑥) ≤ 0)
11482, 83, 75, 113leadd2dd 11799 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ ((𝑓𝑥) + 0))
11575recnd 11208 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑓𝑥) ∈ ℂ)
116115addridd 11380 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ((𝑓𝑥) + 0) = (𝑓𝑥))
117114, 116breqtrd 5135 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (𝑓𝑥))
118 simprlr 779 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → 𝑓r𝐹)
11961a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑓 Fn ℝ) → ℝ ∈ V)
120 fvexd 6875 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑓 Fn ℝ) ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) ∈ V)
121 ssun1 4143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 𝐴 ⊆ (𝐴𝐵)
122121, 17sseqtrrid 3992 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑𝐴𝑈)
123122sselda 3948 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑥𝐴) → 𝑥𝑈)
124123adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐴) → 𝑥𝑈)
125124, 2syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐴) → 𝐶 ∈ (0[,]+∞))
1263a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,]+∞))
127125, 126ifclda 4526 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐶, 0) ∈ (0[,]+∞))
128127adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑓 Fn ℝ) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐶, 0) ∈ (0[,]+∞))
129 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑓 Fn ℝ) → 𝑓 Fn ℝ)
130 dffn5 6921 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓 Fn ℝ ↔ 𝑓 = (𝑥 ∈ ℝ ↦ (𝑓𝑥)))
131129, 130sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑓 Fn ℝ) → 𝑓 = (𝑥 ∈ ℝ ↦ (𝑓𝑥)))
13218a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑓 Fn ℝ) → 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)))
133119, 120, 128, 131, 132ofrfval2 7676 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑓 Fn ℝ) → (𝑓r𝐹 ↔ ∀𝑥 ∈ ℝ (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0)))
13457, 133syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (𝑓r𝐹 ↔ ∀𝑥 ∈ ℝ (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0)))
135118, 134mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → ∀𝑥 ∈ ℝ (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0))
136135r19.21bi 3230 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0))
13754, 136sylan2 593 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0))
138137adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0))
139122ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → 𝐴𝑈)
140139sselda 3948 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → 𝑥𝑈)
141140iftrued 4498 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → if(𝑥𝑈, 𝐶, 0) = 𝐶)
142 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
1435adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ ℝ) → if(𝑥𝑈, 𝐶, 0) ∈ (0[,]+∞))
1446fvmpt2 6981 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ ℝ ∧ if(𝑥𝑈, 𝐶, 0) ∈ (0[,]+∞)) → (𝐻𝑥) = if(𝑥𝑈, 𝐶, 0))
145142, 143, 144syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ ℝ) → (𝐻𝑥) = if(𝑥𝑈, 𝐶, 0))
14654, 145sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝐻𝑥) = if(𝑥𝑈, 𝐶, 0))
147146adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝐻𝑥) = if(𝑥𝑈, 𝐶, 0))
148 iftrue 4496 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥𝐴 → if(𝑥𝐴, 𝐶, 0) = 𝐶)
149148adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → if(𝑥𝐴, 𝐶, 0) = 𝐶)
150141, 147, 1493eqtr4d 2775 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝐻𝑥) = if(𝑥𝐴, 𝐶, 0))
151138, 150breqtrrd 5137 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑓𝑥) ≤ (𝐻𝑥))
15274, 76, 81, 117, 151xrletrd 13128 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (𝐻𝑥))
15373adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ∈ ℝ*)
15471adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑔𝑥) ∈ ℝ)
155154rexrd 11230 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑔𝑥) ∈ ℝ*)
15680adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝐻𝑥) ∈ ℝ*)
15769adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑓𝑥) ∈ ℝ)
158 0red 11183 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → 0 ∈ ℝ)
159137adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0))
160 iffalse 4499 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑥𝐴 → if(𝑥𝐴, 𝐶, 0) = 0)
161160adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → if(𝑥𝐴, 𝐶, 0) = 0)
162159, 161breqtrd 5135 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑓𝑥) ≤ 0)
163157, 158, 154, 162leadd1dd 11798 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (0 + (𝑔𝑥)))
164154recnd 11208 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑔𝑥) ∈ ℂ)
165164addlidd 11381 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (0 + (𝑔𝑥)) = (𝑔𝑥))
166163, 165breqtrd 5135 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (𝑔𝑥))
167103adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0))
168146adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝐻𝑥) = if(𝑥𝑈, 𝐶, 0))
16917ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → 𝑈 = (𝐴𝐵))
170169eleq2d 2815 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑥𝑈𝑥 ∈ (𝐴𝐵)))
171 elun 4118 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
172 biorf 936 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑥𝐴 → (𝑥𝐵 ↔ (𝑥𝐴𝑥𝐵)))
173171, 172bitr4id 290 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑥𝐴 → (𝑥 ∈ (𝐴𝐵) ↔ 𝑥𝐵))
174173adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑥 ∈ (𝐴𝐵) ↔ 𝑥𝐵))
175170, 174bitrd 279 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑥𝑈𝑥𝐵))
176175ifbid 4514 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → if(𝑥𝑈, 𝐶, 0) = if(𝑥𝐵, 𝐶, 0))
177168, 176eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝐻𝑥) = if(𝑥𝐵, 𝐶, 0))
178167, 177breqtrrd 5137 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑔𝑥) ≤ (𝐻𝑥))
179153, 155, 156, 166, 178xrletrd 13128 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (𝐻𝑥))
180152, 179pm2.61dan 812 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (𝐻𝑥))
18167, 180eqbrtrd 5131 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓f + 𝑔)‘𝑥) ≤ (𝐻𝑥))
182181ex 412 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (𝑥 ∈ (ℝ ∖ (𝐴𝐵)) → ((𝑓f + 𝑔)‘𝑥) ≤ (𝐻𝑥)))
18353, 182ralrimi 3236 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → ∀𝑥 ∈ (ℝ ∖ (𝐴𝐵))((𝑓f + 𝑔)‘𝑥) ≤ (𝐻𝑥))
184 nfv 1914 . . . . . . . . . . . . . . . . 17 𝑦((𝑓f + 𝑔)‘𝑥) ≤ (𝐻𝑥)
185 nfcv 2892 . . . . . . . . . . . . . . . . . 18 𝑥((𝑓f + 𝑔)‘𝑦)
186 nfcv 2892 . . . . . . . . . . . . . . . . . 18 𝑥
187 nfmpt1 5208 . . . . . . . . . . . . . . . . . . . 20 𝑥(𝑥 ∈ ℝ ↦ if(𝑥𝑈, 𝐶, 0))
1886, 187nfcxfr 2890 . . . . . . . . . . . . . . . . . . 19 𝑥𝐻
189 nfcv 2892 . . . . . . . . . . . . . . . . . . 19 𝑥𝑦
190188, 189nffv 6870 . . . . . . . . . . . . . . . . . 18 𝑥(𝐻𝑦)
191185, 186, 190nfbr 5156 . . . . . . . . . . . . . . . . 17 𝑥((𝑓f + 𝑔)‘𝑦) ≤ (𝐻𝑦)
192 fveq2 6860 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ((𝑓f + 𝑔)‘𝑥) = ((𝑓f + 𝑔)‘𝑦))
193 fveq2 6860 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝐻𝑥) = (𝐻𝑦))
194192, 193breq12d 5122 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (((𝑓f + 𝑔)‘𝑥) ≤ (𝐻𝑥) ↔ ((𝑓f + 𝑔)‘𝑦) ≤ (𝐻𝑦)))
195184, 191, 194cbvralw 3282 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ (ℝ ∖ (𝐴𝐵))((𝑓f + 𝑔)‘𝑥) ≤ (𝐻𝑥) ↔ ∀𝑦 ∈ (ℝ ∖ (𝐴𝐵))((𝑓f + 𝑔)‘𝑦) ≤ (𝐻𝑦))
196183, 195sylib 218 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → ∀𝑦 ∈ (ℝ ∖ (𝐴𝐵))((𝑓f + 𝑔)‘𝑦) ≤ (𝐻𝑦))
197196r19.21bi 3230 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓f + 𝑔)‘𝑦) ≤ (𝐻𝑦))
19830, 31, 36, 37, 197itg2uba 25650 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (∫1‘(𝑓f + 𝑔)) ≤ (∫2𝐻))
19929, 198eqbrtrrd 5133 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → ((∫1𝑓) + (∫1𝑔)) ≤ (∫2𝐻))
20026adantrr 717 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (∫1𝑓) ∈ ℝ)
201 itg1cl 25592 . . . . . . . . . . . . . 14 (𝑔 ∈ dom ∫1 → (∫1𝑔) ∈ ℝ)
20228, 201syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (∫1𝑔) ∈ ℝ)
20323adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (∫2𝐻) ∈ ℝ)
204200, 202, 203leaddsub2d 11786 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (((∫1𝑓) + (∫1𝑔)) ≤ (∫2𝐻) ↔ (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓))))
205199, 204mpbid 232 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓)))
206205anassrs 467 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺)) → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓)))
207206expr 456 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) ∧ 𝑔 ∈ dom ∫1) → (𝑔r𝐺 → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓))))
208207ralrimiva 3126 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → ∀𝑔 ∈ dom ∫1(𝑔r𝐺 → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓))))
20993, 19fmptd 7088 . . . . . . . . . 10 (𝜑𝐺:ℝ⟶(0[,]+∞))
210209adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → 𝐺:ℝ⟶(0[,]+∞))
21124, 26resubcld 11612 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → ((∫2𝐻) − (∫1𝑓)) ∈ ℝ)
212211rexrd 11230 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → ((∫2𝐻) − (∫1𝑓)) ∈ ℝ*)
213 itg2leub 25641 . . . . . . . . 9 ((𝐺:ℝ⟶(0[,]+∞) ∧ ((∫2𝐻) − (∫1𝑓)) ∈ ℝ*) → ((∫2𝐺) ≤ ((∫2𝐻) − (∫1𝑓)) ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐺 → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓)))))
214210, 212, 213syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → ((∫2𝐺) ≤ ((∫2𝐻) − (∫1𝑓)) ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐺 → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓)))))
215208, 214mpbird 257 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → (∫2𝐺) ≤ ((∫2𝐻) − (∫1𝑓)))
21621, 24, 26, 215lesubd 11788 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → (∫1𝑓) ≤ ((∫2𝐻) − (∫2𝐺)))
217216expr 456 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → (𝑓r𝐹 → (∫1𝑓) ≤ ((∫2𝐻) − (∫2𝐺))))
218217ralrimiva 3126 . . . 4 (𝜑 → ∀𝑓 ∈ dom ∫1(𝑓r𝐹 → (∫1𝑓) ≤ ((∫2𝐻) − (∫2𝐺))))
219127, 18fmptd 7088 . . . . 5 (𝜑𝐹:ℝ⟶(0[,]+∞))
22023, 11resubcld 11612 . . . . . 6 (𝜑 → ((∫2𝐻) − (∫2𝐺)) ∈ ℝ)
221220rexrd 11230 . . . . 5 (𝜑 → ((∫2𝐻) − (∫2𝐺)) ∈ ℝ*)
222 itg2leub 25641 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ ((∫2𝐻) − (∫2𝐺)) ∈ ℝ*) → ((∫2𝐹) ≤ ((∫2𝐻) − (∫2𝐺)) ↔ ∀𝑓 ∈ dom ∫1(𝑓r𝐹 → (∫1𝑓) ≤ ((∫2𝐻) − (∫2𝐺)))))
223219, 221, 222syl2anc 584 . . . 4 (𝜑 → ((∫2𝐹) ≤ ((∫2𝐻) − (∫2𝐺)) ↔ ∀𝑓 ∈ dom ∫1(𝑓r𝐹 → (∫1𝑓) ≤ ((∫2𝐻) − (∫2𝐺)))))
224218, 223mpbird 257 . . 3 (𝜑 → (∫2𝐹) ≤ ((∫2𝐻) − (∫2𝐺)))
225 leaddsub 11660 . . . 4 (((∫2𝐹) ∈ ℝ ∧ (∫2𝐺) ∈ ℝ ∧ (∫2𝐻) ∈ ℝ) → (((∫2𝐹) + (∫2𝐺)) ≤ (∫2𝐻) ↔ (∫2𝐹) ≤ ((∫2𝐻) − (∫2𝐺))))
22610, 11, 23, 225syl3anc 1373 . . 3 (𝜑 → (((∫2𝐹) + (∫2𝐺)) ≤ (∫2𝐻) ↔ (∫2𝐹) ≤ ((∫2𝐻) − (∫2𝐺))))
227224, 226mpbird 257 . 2 (𝜑 → ((∫2𝐹) + (∫2𝐺)) ≤ (∫2𝐻))
2289, 13, 20, 227xrletrid 13121 1 (𝜑 → (∫2𝐻) = ((∫2𝐹) + (∫2𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  cdif 3913  cun 3914  cin 3915  wss 3916  ifcif 4490   class class class wbr 5109  cmpt 5190  dom cdm 5640   Fn wfn 6508  wf 6509  cfv 6513  (class class class)co 7389  f cof 7653  r cofr 7654  cr 11073  0cc0 11074   + caddc 11077  +∞cpnf 11211  *cxr 11213  cle 11215  cmin 11411  [,]cicc 13315  vol*covol 25369  volcvol 25370  1citg1 25522  2citg2 25523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-inf2 9600  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152  ax-addf 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-disj 5077  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-ofr 7656  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-er 8673  df-map 8803  df-pm 8804  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-fi 9368  df-sup 9399  df-inf 9400  df-oi 9469  df-dju 9860  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-n0 12449  df-z 12536  df-uz 12800  df-q 12914  df-rp 12958  df-xneg 13078  df-xadd 13079  df-xmul 13080  df-ioo 13316  df-ico 13318  df-icc 13319  df-fz 13475  df-fzo 13622  df-fl 13760  df-seq 13973  df-exp 14033  df-hash 14302  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-abs 15208  df-clim 15460  df-sum 15659  df-rest 17391  df-topgen 17412  df-psmet 21262  df-xmet 21263  df-met 21264  df-bl 21265  df-mopn 21266  df-top 22787  df-topon 22804  df-bases 22839  df-cmp 23280  df-ovol 25371  df-vol 25372  df-mbf 25526  df-itg1 25527  df-itg2 25528
This theorem is referenced by:  itg2cnlem2  25669  itgsplit  25743  iblsplit  45957
  Copyright terms: Public domain W3C validator