 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  carden Structured version   Visualization version   GIF version

Theorem carden 9763
 Description: Two sets are equinumerous iff their cardinal numbers are equal. This important theorem expresses the essential concept behind "cardinality" or "size." This theorem appears as Proposition 10.10 of [TakeutiZaring] p. 85, Theorem 7P of [Enderton] p. 197, and Theorem 9 of [Suppes] p. 242 (among others). The Axiom of Choice is required for its proof. Related theorems are hasheni 13516 and the finite-set-only hashen 13515. This theorem is also known as Hume's Principle. Gottlob Frege's two-volume Grundgesetze der Arithmetik used his Basic Law V to prove this theorem. Unfortunately Basic Law V caused Frege's system to be inconsistent because it was subject to Russell's paradox (see ru 3676). Later scholars have found that Frege primarily used Basic Law V to Hume's Principle. If Basic Law V is replaced by Hume's Principle in Frege's system, much of Frege's work is restored. Grundgesetze der Arithmetik, once Basic Law V is replaced, proves "Frege's theorem" (the Peano axioms of arithmetic can be derived in second-order logic from Hume's principle). See https://plato.stanford.edu/entries/frege-theorem . We take a different approach, using first-order logic and ZFC, to prove the Peano axioms of arithmetic. The theory of cardinality can also be developed without AC by introducing "card" as a primitive notion and stating this theorem as an axiom, as is done with the axiom for cardinal numbers in [Suppes] p. 111. Finally, if we allow the Axiom of Regularity, we can avoid AC by defining the cardinal number of a set as the set of all sets equinumerous to it and having the least possible rank (see karden 9110). (Contributed by NM, 22-Oct-2003.)
Assertion
Ref Expression
carden ((𝐴𝐶𝐵𝐷) → ((card‘𝐴) = (card‘𝐵) ↔ 𝐴𝐵))

Proof of Theorem carden
StepHypRef Expression
1 numth3 9682 . . . . . 6 (𝐴𝐶𝐴 ∈ dom card)
21ad2antrr 713 . . . . 5 (((𝐴𝐶𝐵𝐷) ∧ (card‘𝐴) = (card‘𝐵)) → 𝐴 ∈ dom card)
3 cardid2 9168 . . . . 5 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
4 ensym 8347 . . . . 5 ((card‘𝐴) ≈ 𝐴𝐴 ≈ (card‘𝐴))
52, 3, 43syl 18 . . . 4 (((𝐴𝐶𝐵𝐷) ∧ (card‘𝐴) = (card‘𝐵)) → 𝐴 ≈ (card‘𝐴))
6 simpr 477 . . . . 5 (((𝐴𝐶𝐵𝐷) ∧ (card‘𝐴) = (card‘𝐵)) → (card‘𝐴) = (card‘𝐵))
7 numth3 9682 . . . . . . 7 (𝐵𝐷𝐵 ∈ dom card)
87ad2antlr 714 . . . . . 6 (((𝐴𝐶𝐵𝐷) ∧ (card‘𝐴) = (card‘𝐵)) → 𝐵 ∈ dom card)
98cardidd 9761 . . . . 5 (((𝐴𝐶𝐵𝐷) ∧ (card‘𝐴) = (card‘𝐵)) → (card‘𝐵) ≈ 𝐵)
106, 9eqbrtrd 4945 . . . 4 (((𝐴𝐶𝐵𝐷) ∧ (card‘𝐴) = (card‘𝐵)) → (card‘𝐴) ≈ 𝐵)
11 entr 8350 . . . 4 ((𝐴 ≈ (card‘𝐴) ∧ (card‘𝐴) ≈ 𝐵) → 𝐴𝐵)
125, 10, 11syl2anc 576 . . 3 (((𝐴𝐶𝐵𝐷) ∧ (card‘𝐴) = (card‘𝐵)) → 𝐴𝐵)
1312ex 405 . 2 ((𝐴𝐶𝐵𝐷) → ((card‘𝐴) = (card‘𝐵) → 𝐴𝐵))
14 carden2b 9182 . 2 (𝐴𝐵 → (card‘𝐴) = (card‘𝐵))
1513, 14impbid1 217 1 ((𝐴𝐶𝐵𝐷) → ((card‘𝐴) = (card‘𝐵) ↔ 𝐴𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 387   = wceq 1507   ∈ wcel 2048   class class class wbr 4923  dom cdm 5400  ‘cfv 6182   ≈ cen 8295  cardccrd 9150 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-ac2 9675 This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-se 5360  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-isom 6191  df-riota 6931  df-wrecs 7743  df-recs 7805  df-er 8081  df-en 8299  df-card 9154  df-ac 9328 This theorem is referenced by:  cardeq0  9764  ficard  9777
 Copyright terms: Public domain W3C validator