MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  carden Structured version   Visualization version   GIF version

Theorem carden 10542
Description: Two sets are equinumerous iff their cardinal numbers are equal. This important theorem expresses the essential concept behind "cardinality" or "size". This theorem appears as Proposition 10.10 of [TakeutiZaring] p. 85, Theorem 7P of [Enderton] p. 197, and Theorem 9 of [Suppes] p. 242 (among others). The Axiom of Choice is required for its proof. Related theorems are hasheni 14304 and the finite-set-only hashen 14303.

This theorem is also known as Hume's Principle. Gottlob Frege's two-volume Grundgesetze der Arithmetik used his Basic Law V to prove this theorem. Unfortunately Basic Law V caused Frege's system to be inconsistent because it was subject to Russell's paradox (see ru 3775). Later scholars have found that Frege primarily used Basic Law V to Hume's Principle. If Basic Law V is replaced by Hume's Principle in Frege's system, much of Frege's work is restored. Grundgesetze der Arithmetik, once Basic Law V is replaced, proves "Frege's theorem" (the Peano axioms of arithmetic can be derived in second-order logic from Hume's principle). See https://plato.stanford.edu/entries/frege-theorem . We take a different approach, using first-order logic and ZFC, to prove the Peano axioms of arithmetic.

The theory of cardinality can also be developed without AC by introducing "card" as a primitive notion and stating this theorem as an axiom, as is done with the axiom for cardinal numbers in [Suppes] p. 111. Finally, if we allow the Axiom of Regularity, we can avoid AC by defining the cardinal number of a set as the set of all sets equinumerous to it and having the least possible rank (see karden 9886). (Contributed by NM, 22-Oct-2003.)

Assertion
Ref Expression
carden ((𝐴 ∈ 𝐢 ∧ 𝐡 ∈ 𝐷) β†’ ((cardβ€˜π΄) = (cardβ€˜π΅) ↔ 𝐴 β‰ˆ 𝐡))

Proof of Theorem carden
StepHypRef Expression
1 numth3 10461 . . . . . 6 (𝐴 ∈ 𝐢 β†’ 𝐴 ∈ dom card)
21ad2antrr 724 . . . . 5 (((𝐴 ∈ 𝐢 ∧ 𝐡 ∈ 𝐷) ∧ (cardβ€˜π΄) = (cardβ€˜π΅)) β†’ 𝐴 ∈ dom card)
3 cardid2 9944 . . . . 5 (𝐴 ∈ dom card β†’ (cardβ€˜π΄) β‰ˆ 𝐴)
4 ensym 8995 . . . . 5 ((cardβ€˜π΄) β‰ˆ 𝐴 β†’ 𝐴 β‰ˆ (cardβ€˜π΄))
52, 3, 43syl 18 . . . 4 (((𝐴 ∈ 𝐢 ∧ 𝐡 ∈ 𝐷) ∧ (cardβ€˜π΄) = (cardβ€˜π΅)) β†’ 𝐴 β‰ˆ (cardβ€˜π΄))
6 simpr 485 . . . . 5 (((𝐴 ∈ 𝐢 ∧ 𝐡 ∈ 𝐷) ∧ (cardβ€˜π΄) = (cardβ€˜π΅)) β†’ (cardβ€˜π΄) = (cardβ€˜π΅))
7 numth3 10461 . . . . . . 7 (𝐡 ∈ 𝐷 β†’ 𝐡 ∈ dom card)
87ad2antlr 725 . . . . . 6 (((𝐴 ∈ 𝐢 ∧ 𝐡 ∈ 𝐷) ∧ (cardβ€˜π΄) = (cardβ€˜π΅)) β†’ 𝐡 ∈ dom card)
98cardidd 10540 . . . . 5 (((𝐴 ∈ 𝐢 ∧ 𝐡 ∈ 𝐷) ∧ (cardβ€˜π΄) = (cardβ€˜π΅)) β†’ (cardβ€˜π΅) β‰ˆ 𝐡)
106, 9eqbrtrd 5169 . . . 4 (((𝐴 ∈ 𝐢 ∧ 𝐡 ∈ 𝐷) ∧ (cardβ€˜π΄) = (cardβ€˜π΅)) β†’ (cardβ€˜π΄) β‰ˆ 𝐡)
11 entr 8998 . . . 4 ((𝐴 β‰ˆ (cardβ€˜π΄) ∧ (cardβ€˜π΄) β‰ˆ 𝐡) β†’ 𝐴 β‰ˆ 𝐡)
125, 10, 11syl2anc 584 . . 3 (((𝐴 ∈ 𝐢 ∧ 𝐡 ∈ 𝐷) ∧ (cardβ€˜π΄) = (cardβ€˜π΅)) β†’ 𝐴 β‰ˆ 𝐡)
1312ex 413 . 2 ((𝐴 ∈ 𝐢 ∧ 𝐡 ∈ 𝐷) β†’ ((cardβ€˜π΄) = (cardβ€˜π΅) β†’ 𝐴 β‰ˆ 𝐡))
14 carden2b 9958 . 2 (𝐴 β‰ˆ 𝐡 β†’ (cardβ€˜π΄) = (cardβ€˜π΅))
1513, 14impbid1 224 1 ((𝐴 ∈ 𝐢 ∧ 𝐡 ∈ 𝐷) β†’ ((cardβ€˜π΄) = (cardβ€˜π΅) ↔ 𝐴 β‰ˆ 𝐡))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106   class class class wbr 5147  dom cdm 5675  β€˜cfv 6540   β‰ˆ cen 8932  cardccrd 9926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-ac2 10454
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-er 8699  df-en 8936  df-card 9930  df-ac 10107
This theorem is referenced by:  cardeq0  10543  ficard  10556
  Copyright terms: Public domain W3C validator