MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  carden Structured version   Visualization version   GIF version

Theorem carden 10439
Description: Two sets are equinumerous iff their cardinal numbers are equal. This important theorem expresses the essential concept behind "cardinality" or "size". This theorem appears as Proposition 10.10 of [TakeutiZaring] p. 85, Theorem 7P of [Enderton] p. 197, and Theorem 9 of [Suppes] p. 242 (among others). The Axiom of Choice is required for its proof. Related theorems are hasheni 14252 and the finite-set-only hashen 14251.

This theorem is also known as Hume's Principle. Gottlob Frege's two-volume Grundgesetze der Arithmetik used his Basic Law V to prove this theorem. Unfortunately Basic Law V caused Frege's system to be inconsistent because it was subject to Russell's paradox (see ru 3739). Later scholars have found that Frege primarily used Basic Law V to Hume's Principle. If Basic Law V is replaced by Hume's Principle in Frege's system, much of Frege's work is restored. Grundgesetze der Arithmetik, once Basic Law V is replaced, proves "Frege's theorem" (the Peano axioms of arithmetic can be derived in second-order logic from Hume's principle). See https://plato.stanford.edu/entries/frege-theorem 3739. We take a different approach, using first-order logic and ZFC, to prove the Peano axioms of arithmetic.

The theory of cardinality can also be developed without AC by introducing "card" as a primitive notion and stating this theorem as an axiom, as is done with the axiom for cardinal numbers in [Suppes] p. 111. Finally, if we allow the Axiom of Regularity, we can avoid AC by defining the cardinal number of a set as the set of all sets equinumerous to it and having the least possible rank (see karden 9785). (Contributed by NM, 22-Oct-2003.)

Assertion
Ref Expression
carden ((𝐴𝐶𝐵𝐷) → ((card‘𝐴) = (card‘𝐵) ↔ 𝐴𝐵))

Proof of Theorem carden
StepHypRef Expression
1 numth3 10358 . . . . . 6 (𝐴𝐶𝐴 ∈ dom card)
21ad2antrr 726 . . . . 5 (((𝐴𝐶𝐵𝐷) ∧ (card‘𝐴) = (card‘𝐵)) → 𝐴 ∈ dom card)
3 cardid2 9843 . . . . 5 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
4 ensym 8925 . . . . 5 ((card‘𝐴) ≈ 𝐴𝐴 ≈ (card‘𝐴))
52, 3, 43syl 18 . . . 4 (((𝐴𝐶𝐵𝐷) ∧ (card‘𝐴) = (card‘𝐵)) → 𝐴 ≈ (card‘𝐴))
6 simpr 484 . . . . 5 (((𝐴𝐶𝐵𝐷) ∧ (card‘𝐴) = (card‘𝐵)) → (card‘𝐴) = (card‘𝐵))
7 numth3 10358 . . . . . . 7 (𝐵𝐷𝐵 ∈ dom card)
87ad2antlr 727 . . . . . 6 (((𝐴𝐶𝐵𝐷) ∧ (card‘𝐴) = (card‘𝐵)) → 𝐵 ∈ dom card)
98cardidd 10437 . . . . 5 (((𝐴𝐶𝐵𝐷) ∧ (card‘𝐴) = (card‘𝐵)) → (card‘𝐵) ≈ 𝐵)
106, 9eqbrtrd 5113 . . . 4 (((𝐴𝐶𝐵𝐷) ∧ (card‘𝐴) = (card‘𝐵)) → (card‘𝐴) ≈ 𝐵)
11 entr 8928 . . . 4 ((𝐴 ≈ (card‘𝐴) ∧ (card‘𝐴) ≈ 𝐵) → 𝐴𝐵)
125, 10, 11syl2anc 584 . . 3 (((𝐴𝐶𝐵𝐷) ∧ (card‘𝐴) = (card‘𝐵)) → 𝐴𝐵)
1312ex 412 . 2 ((𝐴𝐶𝐵𝐷) → ((card‘𝐴) = (card‘𝐵) → 𝐴𝐵))
14 carden2b 9857 . 2 (𝐴𝐵 → (card‘𝐴) = (card‘𝐵))
1513, 14impbid1 225 1 ((𝐴𝐶𝐵𝐷) → ((card‘𝐴) = (card‘𝐵) ↔ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111   class class class wbr 5091  dom cdm 5616  cfv 6481  cen 8866  cardccrd 9825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-ac2 10351
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-er 8622  df-en 8870  df-card 9829  df-ac 10004
This theorem is referenced by:  cardeq0  10440  ficard  10453
  Copyright terms: Public domain W3C validator