MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  carden Structured version   Visualization version   GIF version

Theorem carden 10504
Description: Two sets are equinumerous iff their cardinal numbers are equal. This important theorem expresses the essential concept behind "cardinality" or "size". This theorem appears as Proposition 10.10 of [TakeutiZaring] p. 85, Theorem 7P of [Enderton] p. 197, and Theorem 9 of [Suppes] p. 242 (among others). The Axiom of Choice is required for its proof. Related theorems are hasheni 14313 and the finite-set-only hashen 14312.

This theorem is also known as Hume's Principle. Gottlob Frege's two-volume Grundgesetze der Arithmetik used his Basic Law V to prove this theorem. Unfortunately Basic Law V caused Frege's system to be inconsistent because it was subject to Russell's paradox (see ru 3751). Later scholars have found that Frege primarily used Basic Law V to Hume's Principle. If Basic Law V is replaced by Hume's Principle in Frege's system, much of Frege's work is restored. Grundgesetze der Arithmetik, once Basic Law V is replaced, proves "Frege's theorem" (the Peano axioms of arithmetic can be derived in second-order logic from Hume's principle). See https://plato.stanford.edu/entries/frege-theorem 3751. We take a different approach, using first-order logic and ZFC, to prove the Peano axioms of arithmetic.

The theory of cardinality can also be developed without AC by introducing "card" as a primitive notion and stating this theorem as an axiom, as is done with the axiom for cardinal numbers in [Suppes] p. 111. Finally, if we allow the Axiom of Regularity, we can avoid AC by defining the cardinal number of a set as the set of all sets equinumerous to it and having the least possible rank (see karden 9848). (Contributed by NM, 22-Oct-2003.)

Assertion
Ref Expression
carden ((𝐴𝐶𝐵𝐷) → ((card‘𝐴) = (card‘𝐵) ↔ 𝐴𝐵))

Proof of Theorem carden
StepHypRef Expression
1 numth3 10423 . . . . . 6 (𝐴𝐶𝐴 ∈ dom card)
21ad2antrr 726 . . . . 5 (((𝐴𝐶𝐵𝐷) ∧ (card‘𝐴) = (card‘𝐵)) → 𝐴 ∈ dom card)
3 cardid2 9906 . . . . 5 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
4 ensym 8974 . . . . 5 ((card‘𝐴) ≈ 𝐴𝐴 ≈ (card‘𝐴))
52, 3, 43syl 18 . . . 4 (((𝐴𝐶𝐵𝐷) ∧ (card‘𝐴) = (card‘𝐵)) → 𝐴 ≈ (card‘𝐴))
6 simpr 484 . . . . 5 (((𝐴𝐶𝐵𝐷) ∧ (card‘𝐴) = (card‘𝐵)) → (card‘𝐴) = (card‘𝐵))
7 numth3 10423 . . . . . . 7 (𝐵𝐷𝐵 ∈ dom card)
87ad2antlr 727 . . . . . 6 (((𝐴𝐶𝐵𝐷) ∧ (card‘𝐴) = (card‘𝐵)) → 𝐵 ∈ dom card)
98cardidd 10502 . . . . 5 (((𝐴𝐶𝐵𝐷) ∧ (card‘𝐴) = (card‘𝐵)) → (card‘𝐵) ≈ 𝐵)
106, 9eqbrtrd 5129 . . . 4 (((𝐴𝐶𝐵𝐷) ∧ (card‘𝐴) = (card‘𝐵)) → (card‘𝐴) ≈ 𝐵)
11 entr 8977 . . . 4 ((𝐴 ≈ (card‘𝐴) ∧ (card‘𝐴) ≈ 𝐵) → 𝐴𝐵)
125, 10, 11syl2anc 584 . . 3 (((𝐴𝐶𝐵𝐷) ∧ (card‘𝐴) = (card‘𝐵)) → 𝐴𝐵)
1312ex 412 . 2 ((𝐴𝐶𝐵𝐷) → ((card‘𝐴) = (card‘𝐵) → 𝐴𝐵))
14 carden2b 9920 . 2 (𝐴𝐵 → (card‘𝐴) = (card‘𝐵))
1513, 14impbid1 225 1 ((𝐴𝐶𝐵𝐷) → ((card‘𝐴) = (card‘𝐵) ↔ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5107  dom cdm 5638  cfv 6511  cen 8915  cardccrd 9888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-ac2 10416
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-er 8671  df-en 8919  df-card 9892  df-ac 10069
This theorem is referenced by:  cardeq0  10505  ficard  10518
  Copyright terms: Public domain W3C validator