![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > carden | Structured version Visualization version GIF version |
Description: Two sets are equinumerous
iff their cardinal numbers are equal. This
important theorem expresses the essential concept behind
"cardinality" or
"size". This theorem appears as Proposition 10.10 of [TakeutiZaring]
p. 85, Theorem 7P of [Enderton] p. 197,
and Theorem 9 of [Suppes] p. 242
(among others). The Axiom of Choice is required for its proof. Related
theorems are hasheni 14304 and the finite-set-only hashen 14303.
This theorem is also known as Hume's Principle. Gottlob Frege's two-volume Grundgesetze der Arithmetik used his Basic Law V to prove this theorem. Unfortunately Basic Law V caused Frege's system to be inconsistent because it was subject to Russell's paradox (see ru 3775). Later scholars have found that Frege primarily used Basic Law V to Hume's Principle. If Basic Law V is replaced by Hume's Principle in Frege's system, much of Frege's work is restored. Grundgesetze der Arithmetik, once Basic Law V is replaced, proves "Frege's theorem" (the Peano axioms of arithmetic can be derived in second-order logic from Hume's principle). See https://plato.stanford.edu/entries/frege-theorem . We take a different approach, using first-order logic and ZFC, to prove the Peano axioms of arithmetic. The theory of cardinality can also be developed without AC by introducing "card" as a primitive notion and stating this theorem as an axiom, as is done with the axiom for cardinal numbers in [Suppes] p. 111. Finally, if we allow the Axiom of Regularity, we can avoid AC by defining the cardinal number of a set as the set of all sets equinumerous to it and having the least possible rank (see karden 9886). (Contributed by NM, 22-Oct-2003.) |
Ref | Expression |
---|---|
carden | β’ ((π΄ β πΆ β§ π΅ β π·) β ((cardβπ΄) = (cardβπ΅) β π΄ β π΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numth3 10461 | . . . . . 6 β’ (π΄ β πΆ β π΄ β dom card) | |
2 | 1 | ad2antrr 724 | . . . . 5 β’ (((π΄ β πΆ β§ π΅ β π·) β§ (cardβπ΄) = (cardβπ΅)) β π΄ β dom card) |
3 | cardid2 9944 | . . . . 5 β’ (π΄ β dom card β (cardβπ΄) β π΄) | |
4 | ensym 8995 | . . . . 5 β’ ((cardβπ΄) β π΄ β π΄ β (cardβπ΄)) | |
5 | 2, 3, 4 | 3syl 18 | . . . 4 β’ (((π΄ β πΆ β§ π΅ β π·) β§ (cardβπ΄) = (cardβπ΅)) β π΄ β (cardβπ΄)) |
6 | simpr 485 | . . . . 5 β’ (((π΄ β πΆ β§ π΅ β π·) β§ (cardβπ΄) = (cardβπ΅)) β (cardβπ΄) = (cardβπ΅)) | |
7 | numth3 10461 | . . . . . . 7 β’ (π΅ β π· β π΅ β dom card) | |
8 | 7 | ad2antlr 725 | . . . . . 6 β’ (((π΄ β πΆ β§ π΅ β π·) β§ (cardβπ΄) = (cardβπ΅)) β π΅ β dom card) |
9 | 8 | cardidd 10540 | . . . . 5 β’ (((π΄ β πΆ β§ π΅ β π·) β§ (cardβπ΄) = (cardβπ΅)) β (cardβπ΅) β π΅) |
10 | 6, 9 | eqbrtrd 5169 | . . . 4 β’ (((π΄ β πΆ β§ π΅ β π·) β§ (cardβπ΄) = (cardβπ΅)) β (cardβπ΄) β π΅) |
11 | entr 8998 | . . . 4 β’ ((π΄ β (cardβπ΄) β§ (cardβπ΄) β π΅) β π΄ β π΅) | |
12 | 5, 10, 11 | syl2anc 584 | . . 3 β’ (((π΄ β πΆ β§ π΅ β π·) β§ (cardβπ΄) = (cardβπ΅)) β π΄ β π΅) |
13 | 12 | ex 413 | . 2 β’ ((π΄ β πΆ β§ π΅ β π·) β ((cardβπ΄) = (cardβπ΅) β π΄ β π΅)) |
14 | carden2b 9958 | . 2 β’ (π΄ β π΅ β (cardβπ΄) = (cardβπ΅)) | |
15 | 13, 14 | impbid1 224 | 1 β’ ((π΄ β πΆ β§ π΅ β π·) β ((cardβπ΄) = (cardβπ΅) β π΄ β π΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 class class class wbr 5147 dom cdm 5675 βcfv 6540 β cen 8932 cardccrd 9926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-ac2 10454 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-er 8699 df-en 8936 df-card 9930 df-ac 10107 |
This theorem is referenced by: cardeq0 10543 ficard 10556 |
Copyright terms: Public domain | W3C validator |