| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > carden | Structured version Visualization version GIF version | ||
| Description: Two sets are equinumerous
iff their cardinal numbers are equal. This
important theorem expresses the essential concept behind
"cardinality" or
"size". This theorem appears as Proposition 10.10 of [TakeutiZaring]
p. 85, Theorem 7P of [Enderton] p. 197,
and Theorem 9 of [Suppes] p. 242
(among others). The Axiom of Choice is required for its proof. Related
theorems are hasheni 14320 and the finite-set-only hashen 14319.
This theorem is also known as Hume's Principle. Gottlob Frege's two-volume Grundgesetze der Arithmetik used his Basic Law V to prove this theorem. Unfortunately Basic Law V caused Frege's system to be inconsistent because it was subject to Russell's paradox (see ru 3754). Later scholars have found that Frege primarily used Basic Law V to Hume's Principle. If Basic Law V is replaced by Hume's Principle in Frege's system, much of Frege's work is restored. Grundgesetze der Arithmetik, once Basic Law V is replaced, proves "Frege's theorem" (the Peano axioms of arithmetic can be derived in second-order logic from Hume's principle). See https://plato.stanford.edu/entries/frege-theorem 3754. We take a different approach, using first-order logic and ZFC, to prove the Peano axioms of arithmetic. The theory of cardinality can also be developed without AC by introducing "card" as a primitive notion and stating this theorem as an axiom, as is done with the axiom for cardinal numbers in [Suppes] p. 111. Finally, if we allow the Axiom of Regularity, we can avoid AC by defining the cardinal number of a set as the set of all sets equinumerous to it and having the least possible rank (see karden 9855). (Contributed by NM, 22-Oct-2003.) |
| Ref | Expression |
|---|---|
| carden | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((card‘𝐴) = (card‘𝐵) ↔ 𝐴 ≈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numth3 10430 | . . . . . 6 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ dom card) | |
| 2 | 1 | ad2antrr 726 | . . . . 5 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ (card‘𝐴) = (card‘𝐵)) → 𝐴 ∈ dom card) |
| 3 | cardid2 9913 | . . . . 5 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
| 4 | ensym 8977 | . . . . 5 ⊢ ((card‘𝐴) ≈ 𝐴 → 𝐴 ≈ (card‘𝐴)) | |
| 5 | 2, 3, 4 | 3syl 18 | . . . 4 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ (card‘𝐴) = (card‘𝐵)) → 𝐴 ≈ (card‘𝐴)) |
| 6 | simpr 484 | . . . . 5 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ (card‘𝐴) = (card‘𝐵)) → (card‘𝐴) = (card‘𝐵)) | |
| 7 | numth3 10430 | . . . . . . 7 ⊢ (𝐵 ∈ 𝐷 → 𝐵 ∈ dom card) | |
| 8 | 7 | ad2antlr 727 | . . . . . 6 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ (card‘𝐴) = (card‘𝐵)) → 𝐵 ∈ dom card) |
| 9 | 8 | cardidd 10509 | . . . . 5 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ (card‘𝐴) = (card‘𝐵)) → (card‘𝐵) ≈ 𝐵) |
| 10 | 6, 9 | eqbrtrd 5132 | . . . 4 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ (card‘𝐴) = (card‘𝐵)) → (card‘𝐴) ≈ 𝐵) |
| 11 | entr 8980 | . . . 4 ⊢ ((𝐴 ≈ (card‘𝐴) ∧ (card‘𝐴) ≈ 𝐵) → 𝐴 ≈ 𝐵) | |
| 12 | 5, 10, 11 | syl2anc 584 | . . 3 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ (card‘𝐴) = (card‘𝐵)) → 𝐴 ≈ 𝐵) |
| 13 | 12 | ex 412 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((card‘𝐴) = (card‘𝐵) → 𝐴 ≈ 𝐵)) |
| 14 | carden2b 9927 | . 2 ⊢ (𝐴 ≈ 𝐵 → (card‘𝐴) = (card‘𝐵)) | |
| 15 | 13, 14 | impbid1 225 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((card‘𝐴) = (card‘𝐵) ↔ 𝐴 ≈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 dom cdm 5641 ‘cfv 6514 ≈ cen 8918 cardccrd 9895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-ac2 10423 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-er 8674 df-en 8922 df-card 9899 df-ac 10076 |
| This theorem is referenced by: cardeq0 10512 ficard 10525 |
| Copyright terms: Public domain | W3C validator |