| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cardnn | Structured version Visualization version GIF version | ||
| Description: The cardinality of a natural number is the number. Corollary 10.23 of [TakeutiZaring] p. 90. (Contributed by Mario Carneiro, 7-Jan-2013.) |
| Ref | Expression |
|---|---|
| cardnn | ⊢ (𝐴 ∈ ω → (card‘𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon 7875 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
| 2 | onenon 9971 | . . 3 ⊢ (𝐴 ∈ On → 𝐴 ∈ dom card) | |
| 3 | cardid2 9975 | . . 3 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
| 4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝐴 ∈ ω → (card‘𝐴) ≈ 𝐴) |
| 5 | nnfi 9189 | . . . 4 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | |
| 6 | ficardom 9983 | . . . 4 ⊢ (𝐴 ∈ Fin → (card‘𝐴) ∈ ω) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐴 ∈ ω → (card‘𝐴) ∈ ω) |
| 8 | nneneq 9228 | . . 3 ⊢ (((card‘𝐴) ∈ ω ∧ 𝐴 ∈ ω) → ((card‘𝐴) ≈ 𝐴 ↔ (card‘𝐴) = 𝐴)) | |
| 9 | 7, 8 | mpancom 688 | . 2 ⊢ (𝐴 ∈ ω → ((card‘𝐴) ≈ 𝐴 ↔ (card‘𝐴) = 𝐴)) |
| 10 | 4, 9 | mpbid 232 | 1 ⊢ (𝐴 ∈ ω → (card‘𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 class class class wbr 5123 dom cdm 5665 Oncon0 6363 ‘cfv 6541 ωcom 7869 ≈ cen 8964 Fincfn 8967 cardccrd 9957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-om 7870 df-1o 8488 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-card 9961 |
| This theorem is referenced by: card1 9990 cardennn 10005 cardsucnn 10007 nnsdomel 10012 pm54.43lem 10022 iscard3 10115 nnadju 10220 nnadjuALT 10221 ficardun 10223 ficardun2 10224 pwsdompw 10225 ackbij2 10264 sdom2en01 10324 fin23lem22 10349 fin1a2lem9 10430 ficard 10587 cfpwsdom 10606 cardfz 13993 hashgval2 14400 hashdom 14401 |
| Copyright terms: Public domain | W3C validator |