MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardnn Structured version   Visualization version   GIF version

Theorem cardnn 8989
Description: The cardinality of a natural number is the number. Corollary 10.23 of [TakeutiZaring] p. 90. (Contributed by Mario Carneiro, 7-Jan-2013.)
Assertion
Ref Expression
cardnn (𝐴 ∈ ω → (card‘𝐴) = 𝐴)

Proof of Theorem cardnn
StepHypRef Expression
1 nnon 7218 . . 3 (𝐴 ∈ ω → 𝐴 ∈ On)
2 onenon 8975 . . 3 (𝐴 ∈ On → 𝐴 ∈ dom card)
3 cardid2 8979 . . 3 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
41, 2, 33syl 18 . 2 (𝐴 ∈ ω → (card‘𝐴) ≈ 𝐴)
5 nnfi 8309 . . . 4 (𝐴 ∈ ω → 𝐴 ∈ Fin)
6 ficardom 8987 . . . 4 (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)
75, 6syl 17 . . 3 (𝐴 ∈ ω → (card‘𝐴) ∈ ω)
8 nneneq 8299 . . 3 (((card‘𝐴) ∈ ω ∧ 𝐴 ∈ ω) → ((card‘𝐴) ≈ 𝐴 ↔ (card‘𝐴) = 𝐴))
97, 8mpancom 668 . 2 (𝐴 ∈ ω → ((card‘𝐴) ≈ 𝐴 ↔ (card‘𝐴) = 𝐴))
104, 9mpbid 222 1 (𝐴 ∈ ω → (card‘𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1631  wcel 2145   class class class wbr 4786  dom cdm 5249  Oncon0 5866  cfv 6031  ωcom 7212  cen 8106  Fincfn 8109  cardccrd 8961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-om 7213  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-card 8965
This theorem is referenced by:  card1  8994  cardennn  9009  cardsucnn  9011  nnsdomel  9016  pm54.43lem  9025  iscard3  9116  nnacda  9225  ficardun  9226  ficardun2  9227  pwsdompw  9228  ackbij2  9267  sdom2en01  9326  fin23lem22  9351  fin1a2lem9  9432  ficard  9589  cfpwsdom  9608  cardfz  12977  hashgval2  13369  hashdom  13370
  Copyright terms: Public domain W3C validator