| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cardnn | Structured version Visualization version GIF version | ||
| Description: The cardinality of a natural number is the number. Corollary 10.23 of [TakeutiZaring] p. 90. (Contributed by Mario Carneiro, 7-Jan-2013.) |
| Ref | Expression |
|---|---|
| cardnn | ⊢ (𝐴 ∈ ω → (card‘𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon 7867 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
| 2 | onenon 9963 | . . 3 ⊢ (𝐴 ∈ On → 𝐴 ∈ dom card) | |
| 3 | cardid2 9967 | . . 3 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
| 4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝐴 ∈ ω → (card‘𝐴) ≈ 𝐴) |
| 5 | nnfi 9181 | . . . 4 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | |
| 6 | ficardom 9975 | . . . 4 ⊢ (𝐴 ∈ Fin → (card‘𝐴) ∈ ω) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐴 ∈ ω → (card‘𝐴) ∈ ω) |
| 8 | nneneq 9220 | . . 3 ⊢ (((card‘𝐴) ∈ ω ∧ 𝐴 ∈ ω) → ((card‘𝐴) ≈ 𝐴 ↔ (card‘𝐴) = 𝐴)) | |
| 9 | 7, 8 | mpancom 688 | . 2 ⊢ (𝐴 ∈ ω → ((card‘𝐴) ≈ 𝐴 ↔ (card‘𝐴) = 𝐴)) |
| 10 | 4, 9 | mpbid 232 | 1 ⊢ (𝐴 ∈ ω → (card‘𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 dom cdm 5654 Oncon0 6352 ‘cfv 6531 ωcom 7861 ≈ cen 8956 Fincfn 8959 cardccrd 9949 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-om 7862 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-card 9953 |
| This theorem is referenced by: card1 9982 cardennn 9997 cardsucnn 9999 nnsdomel 10004 pm54.43lem 10014 iscard3 10107 nnadju 10212 nnadjuALT 10213 ficardun 10215 ficardun2 10216 pwsdompw 10217 ackbij2 10256 sdom2en01 10316 fin23lem22 10341 fin1a2lem9 10422 ficard 10579 cfpwsdom 10598 cardfz 13988 hashgval2 14396 hashdom 14397 |
| Copyright terms: Public domain | W3C validator |