Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cardnn | Structured version Visualization version GIF version |
Description: The cardinality of a natural number is the number. Corollary 10.23 of [TakeutiZaring] p. 90. (Contributed by Mario Carneiro, 7-Jan-2013.) |
Ref | Expression |
---|---|
cardnn | ⊢ (𝐴 ∈ ω → (card‘𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 7706 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
2 | onenon 9691 | . . 3 ⊢ (𝐴 ∈ On → 𝐴 ∈ dom card) | |
3 | cardid2 9695 | . . 3 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝐴 ∈ ω → (card‘𝐴) ≈ 𝐴) |
5 | nnfi 8915 | . . . 4 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | |
6 | ficardom 9703 | . . . 4 ⊢ (𝐴 ∈ Fin → (card‘𝐴) ∈ ω) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐴 ∈ ω → (card‘𝐴) ∈ ω) |
8 | nneneq 8956 | . . 3 ⊢ (((card‘𝐴) ∈ ω ∧ 𝐴 ∈ ω) → ((card‘𝐴) ≈ 𝐴 ↔ (card‘𝐴) = 𝐴)) | |
9 | 7, 8 | mpancom 684 | . 2 ⊢ (𝐴 ∈ ω → ((card‘𝐴) ≈ 𝐴 ↔ (card‘𝐴) = 𝐴)) |
10 | 4, 9 | mpbid 231 | 1 ⊢ (𝐴 ∈ ω → (card‘𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2109 class class class wbr 5078 dom cdm 5588 Oncon0 6263 ‘cfv 6430 ωcom 7700 ≈ cen 8704 Fincfn 8707 cardccrd 9677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-om 7701 df-1o 8281 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-card 9681 |
This theorem is referenced by: card1 9710 cardennn 9725 cardsucnn 9727 nnsdomel 9732 pm54.43lem 9742 iscard3 9833 nnadju 9937 nnadjuALT 9938 ficardun 9940 ficardunOLD 9941 ficardun2 9942 ficardun2OLD 9943 pwsdompw 9944 ackbij2 9983 sdom2en01 10042 fin23lem22 10067 fin1a2lem9 10148 ficard 10305 cfpwsdom 10324 cardfz 13671 hashgval2 14074 hashdom 14075 |
Copyright terms: Public domain | W3C validator |