MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardnn Structured version   Visualization version   GIF version

Theorem cardnn 9122
Description: The cardinality of a natural number is the number. Corollary 10.23 of [TakeutiZaring] p. 90. (Contributed by Mario Carneiro, 7-Jan-2013.)
Assertion
Ref Expression
cardnn (𝐴 ∈ ω → (card‘𝐴) = 𝐴)

Proof of Theorem cardnn
StepHypRef Expression
1 nnon 7349 . . 3 (𝐴 ∈ ω → 𝐴 ∈ On)
2 onenon 9108 . . 3 (𝐴 ∈ On → 𝐴 ∈ dom card)
3 cardid2 9112 . . 3 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
41, 2, 33syl 18 . 2 (𝐴 ∈ ω → (card‘𝐴) ≈ 𝐴)
5 nnfi 8441 . . . 4 (𝐴 ∈ ω → 𝐴 ∈ Fin)
6 ficardom 9120 . . . 4 (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)
75, 6syl 17 . . 3 (𝐴 ∈ ω → (card‘𝐴) ∈ ω)
8 nneneq 8431 . . 3 (((card‘𝐴) ∈ ω ∧ 𝐴 ∈ ω) → ((card‘𝐴) ≈ 𝐴 ↔ (card‘𝐴) = 𝐴))
97, 8mpancom 678 . 2 (𝐴 ∈ ω → ((card‘𝐴) ≈ 𝐴 ↔ (card‘𝐴) = 𝐴))
104, 9mpbid 224 1 (𝐴 ∈ ω → (card‘𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1601  wcel 2107   class class class wbr 4886  dom cdm 5355  Oncon0 5976  cfv 6135  ωcom 7343  cen 8238  Fincfn 8241  cardccrd 9094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-om 7344  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-card 9098
This theorem is referenced by:  card1  9127  cardennn  9142  cardsucnn  9144  nnsdomel  9149  pm54.43lem  9158  iscard3  9249  nnacda  9358  ficardun  9359  ficardun2  9360  pwsdompw  9361  ackbij2  9400  sdom2en01  9459  fin23lem22  9484  fin1a2lem9  9565  ficard  9722  cfpwsdom  9741  cardfz  13088  hashgval2  13482  hashdom  13483
  Copyright terms: Public domain W3C validator