MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardnn Structured version   Visualization version   GIF version

Theorem cardnn 10003
Description: The cardinality of a natural number is the number. Corollary 10.23 of [TakeutiZaring] p. 90. (Contributed by Mario Carneiro, 7-Jan-2013.)
Assertion
Ref Expression
cardnn (𝐴 ∈ ω → (card‘𝐴) = 𝐴)

Proof of Theorem cardnn
StepHypRef Expression
1 nnon 7893 . . 3 (𝐴 ∈ ω → 𝐴 ∈ On)
2 onenon 9989 . . 3 (𝐴 ∈ On → 𝐴 ∈ dom card)
3 cardid2 9993 . . 3 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
41, 2, 33syl 18 . 2 (𝐴 ∈ ω → (card‘𝐴) ≈ 𝐴)
5 nnfi 9207 . . . 4 (𝐴 ∈ ω → 𝐴 ∈ Fin)
6 ficardom 10001 . . . 4 (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)
75, 6syl 17 . . 3 (𝐴 ∈ ω → (card‘𝐴) ∈ ω)
8 nneneq 9246 . . 3 (((card‘𝐴) ∈ ω ∧ 𝐴 ∈ ω) → ((card‘𝐴) ≈ 𝐴 ↔ (card‘𝐴) = 𝐴))
97, 8mpancom 688 . 2 (𝐴 ∈ ω → ((card‘𝐴) ≈ 𝐴 ↔ (card‘𝐴) = 𝐴))
104, 9mpbid 232 1 (𝐴 ∈ ω → (card‘𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108   class class class wbr 5143  dom cdm 5685  Oncon0 6384  cfv 6561  ωcom 7887  cen 8982  Fincfn 8985  cardccrd 9975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-om 7888  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979
This theorem is referenced by:  card1  10008  cardennn  10023  cardsucnn  10025  nnsdomel  10030  pm54.43lem  10040  iscard3  10133  nnadju  10238  nnadjuALT  10239  ficardun  10241  ficardun2  10242  pwsdompw  10243  ackbij2  10282  sdom2en01  10342  fin23lem22  10367  fin1a2lem9  10448  ficard  10605  cfpwsdom  10624  cardfz  14011  hashgval2  14417  hashdom  14418
  Copyright terms: Public domain W3C validator