Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cardnn | Structured version Visualization version GIF version |
Description: The cardinality of a natural number is the number. Corollary 10.23 of [TakeutiZaring] p. 90. (Contributed by Mario Carneiro, 7-Jan-2013.) |
Ref | Expression |
---|---|
cardnn | ⊢ (𝐴 ∈ ω → (card‘𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 7690 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
2 | onenon 9613 | . . 3 ⊢ (𝐴 ∈ On → 𝐴 ∈ dom card) | |
3 | cardid2 9617 | . . 3 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝐴 ∈ ω → (card‘𝐴) ≈ 𝐴) |
5 | nnfi 8889 | . . . 4 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | |
6 | ficardom 9625 | . . . 4 ⊢ (𝐴 ∈ Fin → (card‘𝐴) ∈ ω) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐴 ∈ ω → (card‘𝐴) ∈ ω) |
8 | nneneq 8873 | . . 3 ⊢ (((card‘𝐴) ∈ ω ∧ 𝐴 ∈ ω) → ((card‘𝐴) ≈ 𝐴 ↔ (card‘𝐴) = 𝐴)) | |
9 | 7, 8 | mpancom 688 | . 2 ⊢ (𝐴 ∈ ω → ((card‘𝐴) ≈ 𝐴 ↔ (card‘𝐴) = 𝐴)) |
10 | 4, 9 | mpbid 235 | 1 ⊢ (𝐴 ∈ ω → (card‘𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1543 ∈ wcel 2112 class class class wbr 5070 dom cdm 5579 Oncon0 6248 ‘cfv 6415 ωcom 7684 ≈ cen 8665 Fincfn 8668 cardccrd 9599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-om 7685 df-er 8433 df-en 8669 df-dom 8670 df-sdom 8671 df-fin 8672 df-card 9603 |
This theorem is referenced by: card1 9632 cardennn 9647 cardsucnn 9649 nnsdomel 9654 pm54.43lem 9664 iscard3 9755 nnadju 9859 nnadjuALT 9860 ficardun 9862 ficardunOLD 9863 ficardun2 9864 ficardun2OLD 9865 pwsdompw 9866 ackbij2 9905 sdom2en01 9964 fin23lem22 9989 fin1a2lem9 10070 ficard 10227 cfpwsdom 10246 cardfz 13593 hashgval2 13996 hashdom 13997 |
Copyright terms: Public domain | W3C validator |