![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cardnn | Structured version Visualization version GIF version |
Description: The cardinality of a natural number is the number. Corollary 10.23 of [TakeutiZaring] p. 90. (Contributed by Mario Carneiro, 7-Jan-2013.) |
Ref | Expression |
---|---|
cardnn | β’ (π΄ β Ο β (cardβπ΄) = π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 7857 | . . 3 β’ (π΄ β Ο β π΄ β On) | |
2 | onenon 9940 | . . 3 β’ (π΄ β On β π΄ β dom card) | |
3 | cardid2 9944 | . . 3 β’ (π΄ β dom card β (cardβπ΄) β π΄) | |
4 | 1, 2, 3 | 3syl 18 | . 2 β’ (π΄ β Ο β (cardβπ΄) β π΄) |
5 | nnfi 9163 | . . . 4 β’ (π΄ β Ο β π΄ β Fin) | |
6 | ficardom 9952 | . . . 4 β’ (π΄ β Fin β (cardβπ΄) β Ο) | |
7 | 5, 6 | syl 17 | . . 3 β’ (π΄ β Ο β (cardβπ΄) β Ο) |
8 | nneneq 9205 | . . 3 β’ (((cardβπ΄) β Ο β§ π΄ β Ο) β ((cardβπ΄) β π΄ β (cardβπ΄) = π΄)) | |
9 | 7, 8 | mpancom 686 | . 2 β’ (π΄ β Ο β ((cardβπ΄) β π΄ β (cardβπ΄) = π΄)) |
10 | 4, 9 | mpbid 231 | 1 β’ (π΄ β Ο β (cardβπ΄) = π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1541 β wcel 2106 class class class wbr 5147 dom cdm 5675 Oncon0 6361 βcfv 6540 Οcom 7851 β cen 8932 Fincfn 8935 cardccrd 9926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-om 7852 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-card 9930 |
This theorem is referenced by: card1 9959 cardennn 9974 cardsucnn 9976 nnsdomel 9981 pm54.43lem 9991 iscard3 10084 nnadju 10188 nnadjuALT 10189 ficardun 10191 ficardunOLD 10192 ficardun2 10193 ficardun2OLD 10194 pwsdompw 10195 ackbij2 10234 sdom2en01 10293 fin23lem22 10318 fin1a2lem9 10399 ficard 10556 cfpwsdom 10575 cardfz 13931 hashgval2 14334 hashdom 14335 |
Copyright terms: Public domain | W3C validator |