Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemeulpq Structured version   Visualization version   GIF version

Theorem cdlemeulpq 39177
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 5-Dec-2012.)
Hypotheses
Ref Expression
cdleme0.l ≀ = (leβ€˜πΎ)
cdleme0.j ∨ = (joinβ€˜πΎ)
cdleme0.m ∧ = (meetβ€˜πΎ)
cdleme0.a 𝐴 = (Atomsβ€˜πΎ)
cdleme0.h 𝐻 = (LHypβ€˜πΎ)
cdleme0.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
Assertion
Ref Expression
cdlemeulpq (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ π‘ˆ ≀ (𝑃 ∨ 𝑄))

Proof of Theorem cdlemeulpq
StepHypRef Expression
1 cdleme0.u . 2 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
2 simpll 765 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ 𝐾 ∈ HL)
32hllatd 38320 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ 𝐾 ∈ Lat)
4 simprl 769 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ 𝑃 ∈ 𝐴)
5 simprr 771 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ 𝑄 ∈ 𝐴)
6 eqid 2732 . . . . 5 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
7 cdleme0.j . . . . 5 ∨ = (joinβ€˜πΎ)
8 cdleme0.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
96, 7, 8hlatjcl 38323 . . . 4 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
102, 4, 5, 9syl3anc 1371 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
11 cdleme0.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
126, 11lhpbase 38955 . . . 4 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ (Baseβ€˜πΎ))
1312ad2antlr 725 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ π‘Š ∈ (Baseβ€˜πΎ))
14 cdleme0.l . . . 4 ≀ = (leβ€˜πΎ)
15 cdleme0.m . . . 4 ∧ = (meetβ€˜πΎ)
166, 14, 15latmle1 18419 . . 3 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑄) ∧ π‘Š) ≀ (𝑃 ∨ 𝑄))
173, 10, 13, 16syl3anc 1371 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑄) ∧ π‘Š) ≀ (𝑃 ∨ 𝑄))
181, 17eqbrtrid 5183 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ π‘ˆ ≀ (𝑃 ∨ 𝑄))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7411  Basecbs 17146  lecple 17206  joincjn 18266  meetcmee 18267  Latclat 18386  Atomscatm 38219  HLchlt 38306  LHypclh 38941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-lub 18301  df-glb 18302  df-join 18303  df-meet 18304  df-lat 18387  df-ats 38223  df-atl 38254  df-cvlat 38278  df-hlat 38307  df-lhyp 38945
This theorem is referenced by:  cdleme01N  39178  cdleme0ex1N  39180  cdleme1  39184  cdlemednuN  39257  cdleme21c  39284  cdleme22e  39301  cdleme22eALTN  39302  cdleme35fnpq  39406
  Copyright terms: Public domain W3C validator