![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemeulpq | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 5-Dec-2012.) |
Ref | Expression |
---|---|
cdleme0.l | ⊢ ≤ = (le‘𝐾) |
cdleme0.j | ⊢ ∨ = (join‘𝐾) |
cdleme0.m | ⊢ ∧ = (meet‘𝐾) |
cdleme0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdleme0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdleme0.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
Ref | Expression |
---|---|
cdlemeulpq | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑈 ≤ (𝑃 ∨ 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme0.u | . 2 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
2 | simpll 767 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝐾 ∈ HL) | |
3 | 2 | hllatd 39346 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝐾 ∈ Lat) |
4 | simprl 771 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑃 ∈ 𝐴) | |
5 | simprr 773 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑄 ∈ 𝐴) | |
6 | eqid 2735 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
7 | cdleme0.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
8 | cdleme0.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
9 | 6, 7, 8 | hlatjcl 39349 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
10 | 2, 4, 5, 9 | syl3anc 1370 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
11 | cdleme0.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
12 | 6, 11 | lhpbase 39981 | . . . 4 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
13 | 12 | ad2antlr 727 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑊 ∈ (Base‘𝐾)) |
14 | cdleme0.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
15 | cdleme0.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
16 | 6, 14, 15 | latmle1 18522 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ (𝑃 ∨ 𝑄)) |
17 | 3, 10, 13, 16 | syl3anc 1370 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ (𝑃 ∨ 𝑄)) |
18 | 1, 17 | eqbrtrid 5183 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑈 ≤ (𝑃 ∨ 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 lecple 17305 joincjn 18369 meetcmee 18370 Latclat 18489 Atomscatm 39245 HLchlt 39332 LHypclh 39967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-lub 18404 df-glb 18405 df-join 18406 df-meet 18407 df-lat 18490 df-ats 39249 df-atl 39280 df-cvlat 39304 df-hlat 39333 df-lhyp 39971 |
This theorem is referenced by: cdleme01N 40204 cdleme0ex1N 40206 cdleme1 40210 cdlemednuN 40283 cdleme21c 40310 cdleme22e 40327 cdleme22eALTN 40328 cdleme35fnpq 40432 |
Copyright terms: Public domain | W3C validator |