Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemeulpq Structured version   Visualization version   GIF version

Theorem cdlemeulpq 39823
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 5-Dec-2012.)
Hypotheses
Ref Expression
cdleme0.l = (le‘𝐾)
cdleme0.j = (join‘𝐾)
cdleme0.m = (meet‘𝐾)
cdleme0.a 𝐴 = (Atoms‘𝐾)
cdleme0.h 𝐻 = (LHyp‘𝐾)
cdleme0.u 𝑈 = ((𝑃 𝑄) 𝑊)
Assertion
Ref Expression
cdlemeulpq (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴)) → 𝑈 (𝑃 𝑄))

Proof of Theorem cdlemeulpq
StepHypRef Expression
1 cdleme0.u . 2 𝑈 = ((𝑃 𝑄) 𝑊)
2 simpll 765 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴)) → 𝐾 ∈ HL)
32hllatd 38966 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴)) → 𝐾 ∈ Lat)
4 simprl 769 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴)) → 𝑃𝐴)
5 simprr 771 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴)) → 𝑄𝐴)
6 eqid 2725 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
7 cdleme0.j . . . . 5 = (join‘𝐾)
8 cdleme0.a . . . . 5 𝐴 = (Atoms‘𝐾)
96, 7, 8hlatjcl 38969 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
102, 4, 5, 9syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴)) → (𝑃 𝑄) ∈ (Base‘𝐾))
11 cdleme0.h . . . . 5 𝐻 = (LHyp‘𝐾)
126, 11lhpbase 39601 . . . 4 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1312ad2antlr 725 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴)) → 𝑊 ∈ (Base‘𝐾))
14 cdleme0.l . . . 4 = (le‘𝐾)
15 cdleme0.m . . . 4 = (meet‘𝐾)
166, 14, 15latmle1 18459 . . 3 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) (𝑃 𝑄))
173, 10, 13, 16syl3anc 1368 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴)) → ((𝑃 𝑄) 𝑊) (𝑃 𝑄))
181, 17eqbrtrid 5184 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴)) → 𝑈 (𝑃 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098   class class class wbr 5149  cfv 6549  (class class class)co 7419  Basecbs 17183  lecple 17243  joincjn 18306  meetcmee 18307  Latclat 18426  Atomscatm 38865  HLchlt 38952  LHypclh 39587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-lub 18341  df-glb 18342  df-join 18343  df-meet 18344  df-lat 18427  df-ats 38869  df-atl 38900  df-cvlat 38924  df-hlat 38953  df-lhyp 39591
This theorem is referenced by:  cdleme01N  39824  cdleme0ex1N  39826  cdleme1  39830  cdlemednuN  39903  cdleme21c  39930  cdleme22e  39947  cdleme22eALTN  39948  cdleme35fnpq  40052
  Copyright terms: Public domain W3C validator