Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemeulpq | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 5-Dec-2012.) |
Ref | Expression |
---|---|
cdleme0.l | ⊢ ≤ = (le‘𝐾) |
cdleme0.j | ⊢ ∨ = (join‘𝐾) |
cdleme0.m | ⊢ ∧ = (meet‘𝐾) |
cdleme0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdleme0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdleme0.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
Ref | Expression |
---|---|
cdlemeulpq | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑈 ≤ (𝑃 ∨ 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme0.u | . 2 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
2 | simpll 767 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝐾 ∈ HL) | |
3 | 2 | hllatd 36930 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝐾 ∈ Lat) |
4 | simprl 771 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑃 ∈ 𝐴) | |
5 | simprr 773 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑄 ∈ 𝐴) | |
6 | eqid 2759 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
7 | cdleme0.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
8 | cdleme0.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
9 | 6, 7, 8 | hlatjcl 36933 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
10 | 2, 4, 5, 9 | syl3anc 1369 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
11 | cdleme0.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
12 | 6, 11 | lhpbase 37564 | . . . 4 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
13 | 12 | ad2antlr 727 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑊 ∈ (Base‘𝐾)) |
14 | cdleme0.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
15 | cdleme0.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
16 | 6, 14, 15 | latmle1 17742 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ (𝑃 ∨ 𝑄)) |
17 | 3, 10, 13, 16 | syl3anc 1369 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ (𝑃 ∨ 𝑄)) |
18 | 1, 17 | eqbrtrid 5065 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑈 ≤ (𝑃 ∨ 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 class class class wbr 5030 ‘cfv 6333 (class class class)co 7148 Basecbs 16531 lecple 16620 joincjn 17610 meetcmee 17611 Latclat 17711 Atomscatm 36829 HLchlt 36916 LHypclh 37550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7457 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4419 df-pw 4494 df-sn 4521 df-pr 4523 df-op 4527 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5428 df-xp 5528 df-rel 5529 df-cnv 5530 df-co 5531 df-dm 5532 df-rn 5533 df-res 5534 df-ima 5535 df-iota 6292 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7106 df-ov 7151 df-oprab 7152 df-lub 17640 df-glb 17641 df-join 17642 df-meet 17643 df-lat 17712 df-ats 36833 df-atl 36864 df-cvlat 36888 df-hlat 36917 df-lhyp 37554 |
This theorem is referenced by: cdleme01N 37787 cdleme0ex1N 37789 cdleme1 37793 cdlemednuN 37866 cdleme21c 37893 cdleme22e 37910 cdleme22eALTN 37911 cdleme35fnpq 38015 |
Copyright terms: Public domain | W3C validator |