![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemefs29pre00N | Structured version Visualization version GIF version |
Description: FIX COMMENT. TODO: see if this is the optimal utility theorem using lhpmat 39572. (Contributed by NM, 27-Mar-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cdlemefs29.b | β’ π΅ = (BaseβπΎ) |
cdlemefs29.l | β’ β€ = (leβπΎ) |
cdlemefs29.j | β’ β¨ = (joinβπΎ) |
cdlemefs29.m | β’ β§ = (meetβπΎ) |
cdlemefs29.a | β’ π΄ = (AtomsβπΎ) |
cdlemefs29.h | β’ π» = (LHypβπΎ) |
Ref | Expression |
---|---|
cdlemefs29pre00N | β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β€ (π β¨ π)) β§ π β π΄) β (((Β¬ π β€ π β§ π β€ (π β¨ π)) β§ (π β¨ (π β§ π)) = π ) β (Β¬ π β€ π β§ (π β¨ (π β§ π)) = π ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemefs29.b | . 2 β’ π΅ = (BaseβπΎ) | |
2 | cdlemefs29.l | . 2 β’ β€ = (leβπΎ) | |
3 | cdlemefs29.j | . 2 β’ β¨ = (joinβπΎ) | |
4 | cdlemefs29.m | . 2 β’ β§ = (meetβπΎ) | |
5 | cdlemefs29.a | . 2 β’ π΄ = (AtomsβπΎ) | |
6 | cdlemefs29.h | . 2 β’ π» = (LHypβπΎ) | |
7 | breq1 5151 | . 2 β’ (π = π β (π β€ (π β¨ π) β π β€ (π β¨ π))) | |
8 | 1, 2, 3, 4, 5, 6, 7 | cdlemefrs29pre00 39937 | 1 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β€ (π β¨ π)) β§ π β π΄) β (((Β¬ π β€ π β§ π β€ (π β¨ π)) β§ (π β¨ (π β§ π)) = π ) β (Β¬ π β€ π β§ (π β¨ (π β§ π)) = π ))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 394 β§ w3a 1084 = wceq 1533 β wcel 2098 class class class wbr 5148 βcfv 6547 (class class class)co 7417 Basecbs 17179 lecple 17239 joincjn 18302 meetcmee 18303 Atomscatm 38804 HLchlt 38891 LHypclh 39526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-proset 18286 df-poset 18304 df-plt 18321 df-lub 18337 df-glb 18338 df-join 18339 df-meet 18340 df-p0 18416 df-lat 18423 df-oposet 38717 df-ol 38719 df-oml 38720 df-covers 38807 df-ats 38808 df-atl 38839 df-cvlat 38863 df-hlat 38892 df-lhyp 39530 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |