Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpmat Structured version   Visualization version   GIF version

Theorem lhpmat 40009
Description: An element covered by the lattice unity, when conjoined with an atom not under it, equals the lattice zero. (Contributed by NM, 6-Jun-2012.)
Hypotheses
Ref Expression
lhpmat.l = (le‘𝐾)
lhpmat.m = (meet‘𝐾)
lhpmat.z 0 = (0.‘𝐾)
lhpmat.a 𝐴 = (Atoms‘𝐾)
lhpmat.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpmat (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = 0 )

Proof of Theorem lhpmat
StepHypRef Expression
1 simprr 772 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ¬ 𝑃 𝑊)
2 hlatl 39338 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
32ad2antrr 726 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ AtLat)
4 simprl 770 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
5 eqid 2729 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
6 lhpmat.h . . . . 5 𝐻 = (LHyp‘𝐾)
75, 6lhpbase 39977 . . . 4 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
87ad2antlr 727 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊 ∈ (Base‘𝐾))
9 lhpmat.l . . . 4 = (le‘𝐾)
10 lhpmat.m . . . 4 = (meet‘𝐾)
11 lhpmat.z . . . 4 0 = (0.‘𝐾)
12 lhpmat.a . . . 4 𝐴 = (Atoms‘𝐾)
135, 9, 10, 11, 12atnle 39295 . . 3 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑊 ∈ (Base‘𝐾)) → (¬ 𝑃 𝑊 ↔ (𝑃 𝑊) = 0 ))
143, 4, 8, 13syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (¬ 𝑃 𝑊 ↔ (𝑃 𝑊) = 0 ))
151, 14mpbid 232 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5095  cfv 6486  (class class class)co 7353  Basecbs 17138  lecple 17186  meetcmee 18236  0.cp0 18345  Atomscatm 39241  AtLatcal 39242  HLchlt 39328  LHypclh 39963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-lat 18356  df-covers 39244  df-ats 39245  df-atl 39276  df-cvlat 39300  df-hlat 39329  df-lhyp 39967
This theorem is referenced by:  lhpmatb  40010  lhp2at0  40011  lhpelim  40016  lhple  40021  idltrn  40129  ltrnmw  40130  trl0  40149  cdleme0e  40196  cdleme2  40207  cdleme7c  40224  cdleme22d  40322  cdlemefrs29pre00  40374  cdlemefrs29bpre0  40375  cdlemefrs29cpre1  40377  cdleme32fva  40416  cdleme35d  40431  cdleme42ke  40464  cdlemeg46frv  40504  cdleme50trn3  40532  cdlemg2fv2  40579  cdlemg8a  40606  cdlemg10bALTN  40615  cdlemh2  40795  cdlemk9  40818  cdlemk9bN  40819  dia2dimlem1  41043  dihvalcqat  41218  dihjatc1  41290
  Copyright terms: Public domain W3C validator