Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpmat Structured version   Visualization version   GIF version

Theorem lhpmat 39987
Description: An element covered by the lattice unity, when conjoined with an atom not under it, equals the lattice zero. (Contributed by NM, 6-Jun-2012.)
Hypotheses
Ref Expression
lhpmat.l = (le‘𝐾)
lhpmat.m = (meet‘𝐾)
lhpmat.z 0 = (0.‘𝐾)
lhpmat.a 𝐴 = (Atoms‘𝐾)
lhpmat.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpmat (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = 0 )

Proof of Theorem lhpmat
StepHypRef Expression
1 simprr 772 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ¬ 𝑃 𝑊)
2 hlatl 39316 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
32ad2antrr 725 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ AtLat)
4 simprl 770 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
5 eqid 2740 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
6 lhpmat.h . . . . 5 𝐻 = (LHyp‘𝐾)
75, 6lhpbase 39955 . . . 4 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
87ad2antlr 726 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊 ∈ (Base‘𝐾))
9 lhpmat.l . . . 4 = (le‘𝐾)
10 lhpmat.m . . . 4 = (meet‘𝐾)
11 lhpmat.z . . . 4 0 = (0.‘𝐾)
12 lhpmat.a . . . 4 𝐴 = (Atoms‘𝐾)
135, 9, 10, 11, 12atnle 39273 . . 3 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑊 ∈ (Base‘𝐾)) → (¬ 𝑃 𝑊 ↔ (𝑃 𝑊) = 0 ))
143, 4, 8, 13syl3anc 1371 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (¬ 𝑃 𝑊 ↔ (𝑃 𝑊) = 0 ))
151, 14mpbid 232 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  meetcmee 18382  0.cp0 18493  Atomscatm 39219  AtLatcal 39220  HLchlt 39306  LHypclh 39941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-lat 18502  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-lhyp 39945
This theorem is referenced by:  lhpmatb  39988  lhp2at0  39989  lhpelim  39994  lhple  39999  idltrn  40107  ltrnmw  40108  trl0  40127  cdleme0e  40174  cdleme2  40185  cdleme7c  40202  cdleme22d  40300  cdlemefrs29pre00  40352  cdlemefrs29bpre0  40353  cdlemefrs29cpre1  40355  cdleme32fva  40394  cdleme35d  40409  cdleme42ke  40442  cdlemeg46frv  40482  cdleme50trn3  40510  cdlemg2fv2  40557  cdlemg8a  40584  cdlemg10bALTN  40593  cdlemh2  40773  cdlemk9  40796  cdlemk9bN  40797  dia2dimlem1  41021  dihvalcqat  41196  dihjatc1  41268
  Copyright terms: Public domain W3C validator