| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpmat | Structured version Visualization version GIF version | ||
| Description: An element covered by the lattice unity, when conjoined with an atom not under it, equals the lattice zero. (Contributed by NM, 6-Jun-2012.) |
| Ref | Expression |
|---|---|
| lhpmat.l | ⊢ ≤ = (le‘𝐾) |
| lhpmat.m | ⊢ ∧ = (meet‘𝐾) |
| lhpmat.z | ⊢ 0 = (0.‘𝐾) |
| lhpmat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| lhpmat.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| Ref | Expression |
|---|---|
| lhpmat | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∧ 𝑊) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ¬ 𝑃 ≤ 𝑊) | |
| 2 | hlatl 39338 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
| 3 | 2 | ad2antrr 726 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐾 ∈ AtLat) |
| 4 | simprl 770 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ∈ 𝐴) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 6 | lhpmat.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 7 | 5, 6 | lhpbase 39977 | . . . 4 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
| 8 | 7 | ad2antlr 727 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊 ∈ (Base‘𝐾)) |
| 9 | lhpmat.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 10 | lhpmat.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 11 | lhpmat.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
| 12 | lhpmat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 13 | 5, 9, 10, 11, 12 | atnle 39295 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑊 ∈ (Base‘𝐾)) → (¬ 𝑃 ≤ 𝑊 ↔ (𝑃 ∧ 𝑊) = 0 )) |
| 14 | 3, 4, 8, 13 | syl3anc 1373 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (¬ 𝑃 ≤ 𝑊 ↔ (𝑃 ∧ 𝑊) = 0 )) |
| 15 | 1, 14 | mpbid 232 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∧ 𝑊) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 lecple 17186 meetcmee 18236 0.cp0 18345 Atomscatm 39241 AtLatcal 39242 HLchlt 39328 LHypclh 39963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-proset 18218 df-poset 18237 df-plt 18252 df-lub 18268 df-glb 18269 df-join 18270 df-meet 18271 df-p0 18347 df-lat 18356 df-covers 39244 df-ats 39245 df-atl 39276 df-cvlat 39300 df-hlat 39329 df-lhyp 39967 |
| This theorem is referenced by: lhpmatb 40010 lhp2at0 40011 lhpelim 40016 lhple 40021 idltrn 40129 ltrnmw 40130 trl0 40149 cdleme0e 40196 cdleme2 40207 cdleme7c 40224 cdleme22d 40322 cdlemefrs29pre00 40374 cdlemefrs29bpre0 40375 cdlemefrs29cpre1 40377 cdleme32fva 40416 cdleme35d 40431 cdleme42ke 40464 cdlemeg46frv 40504 cdleme50trn3 40532 cdlemg2fv2 40579 cdlemg8a 40606 cdlemg10bALTN 40615 cdlemh2 40795 cdlemk9 40818 cdlemk9bN 40819 dia2dimlem1 41043 dihvalcqat 41218 dihjatc1 41290 |
| Copyright terms: Public domain | W3C validator |