![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpmat | Structured version Visualization version GIF version |
Description: An element covered by the lattice unity, when conjoined with an atom not under it, equals the lattice zero. (Contributed by NM, 6-Jun-2012.) |
Ref | Expression |
---|---|
lhpmat.l | β’ β€ = (leβπΎ) |
lhpmat.m | β’ β§ = (meetβπΎ) |
lhpmat.z | β’ 0 = (0.βπΎ) |
lhpmat.a | β’ π΄ = (AtomsβπΎ) |
lhpmat.h | β’ π» = (LHypβπΎ) |
Ref | Expression |
---|---|
lhpmat | β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (π β§ π) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 772 | . 2 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β Β¬ π β€ π) | |
2 | hlatl 38278 | . . . 4 β’ (πΎ β HL β πΎ β AtLat) | |
3 | 2 | ad2antrr 725 | . . 3 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β πΎ β AtLat) |
4 | simprl 770 | . . 3 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β π β π΄) | |
5 | eqid 2733 | . . . . 5 β’ (BaseβπΎ) = (BaseβπΎ) | |
6 | lhpmat.h | . . . . 5 β’ π» = (LHypβπΎ) | |
7 | 5, 6 | lhpbase 38917 | . . . 4 β’ (π β π» β π β (BaseβπΎ)) |
8 | 7 | ad2antlr 726 | . . 3 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β π β (BaseβπΎ)) |
9 | lhpmat.l | . . . 4 β’ β€ = (leβπΎ) | |
10 | lhpmat.m | . . . 4 β’ β§ = (meetβπΎ) | |
11 | lhpmat.z | . . . 4 β’ 0 = (0.βπΎ) | |
12 | lhpmat.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
13 | 5, 9, 10, 11, 12 | atnle 38235 | . . 3 β’ ((πΎ β AtLat β§ π β π΄ β§ π β (BaseβπΎ)) β (Β¬ π β€ π β (π β§ π) = 0 )) |
14 | 3, 4, 8, 13 | syl3anc 1372 | . 2 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (Β¬ π β€ π β (π β§ π) = 0 )) |
15 | 1, 14 | mpbid 231 | 1 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (π β§ π) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 397 = wceq 1542 β wcel 2107 class class class wbr 5149 βcfv 6544 (class class class)co 7409 Basecbs 17144 lecple 17204 meetcmee 18265 0.cp0 18376 Atomscatm 38181 AtLatcal 38182 HLchlt 38268 LHypclh 38903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-proset 18248 df-poset 18266 df-plt 18283 df-lub 18299 df-glb 18300 df-join 18301 df-meet 18302 df-p0 18378 df-lat 18385 df-covers 38184 df-ats 38185 df-atl 38216 df-cvlat 38240 df-hlat 38269 df-lhyp 38907 |
This theorem is referenced by: lhpmatb 38950 lhp2at0 38951 lhpelim 38956 lhple 38961 idltrn 39069 ltrnmw 39070 trl0 39089 cdleme0e 39136 cdleme2 39147 cdleme7c 39164 cdleme22d 39262 cdlemefrs29pre00 39314 cdlemefrs29bpre0 39315 cdlemefrs29cpre1 39317 cdleme32fva 39356 cdleme35d 39371 cdleme42ke 39404 cdlemeg46frv 39444 cdleme50trn3 39472 cdlemg2fv2 39519 cdlemg8a 39546 cdlemg10bALTN 39555 cdlemh2 39735 cdlemk9 39758 cdlemk9bN 39759 dia2dimlem1 39983 dihvalcqat 40158 dihjatc1 40230 |
Copyright terms: Public domain | W3C validator |