![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpmat | Structured version Visualization version GIF version |
Description: An element covered by the lattice unit, when conjoined with an atom not under it, equals the lattice zero. (Contributed by NM, 6-Jun-2012.) |
Ref | Expression |
---|---|
lhpmat.l | ⊢ ≤ = (le‘𝐾) |
lhpmat.m | ⊢ ∧ = (meet‘𝐾) |
lhpmat.z | ⊢ 0 = (0.‘𝐾) |
lhpmat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
lhpmat.h | ⊢ 𝐻 = (LHyp‘𝐾) |
Ref | Expression |
---|---|
lhpmat | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∧ 𝑊) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 763 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ¬ 𝑃 ≤ 𝑊) | |
2 | hlatl 35514 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
3 | 2 | ad2antrr 716 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐾 ∈ AtLat) |
4 | simprl 761 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ∈ 𝐴) | |
5 | eqid 2778 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
6 | lhpmat.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | 5, 6 | lhpbase 36152 | . . . 4 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
8 | 7 | ad2antlr 717 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊 ∈ (Base‘𝐾)) |
9 | lhpmat.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
10 | lhpmat.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
11 | lhpmat.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
12 | lhpmat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
13 | 5, 9, 10, 11, 12 | atnle 35471 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑊 ∈ (Base‘𝐾)) → (¬ 𝑃 ≤ 𝑊 ↔ (𝑃 ∧ 𝑊) = 0 )) |
14 | 3, 4, 8, 13 | syl3anc 1439 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (¬ 𝑃 ≤ 𝑊 ↔ (𝑃 ∧ 𝑊) = 0 )) |
15 | 1, 14 | mpbid 224 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∧ 𝑊) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 class class class wbr 4886 ‘cfv 6135 (class class class)co 6922 Basecbs 16255 lecple 16345 meetcmee 17331 0.cp0 17423 Atomscatm 35417 AtLatcal 35418 HLchlt 35504 LHypclh 36138 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-proset 17314 df-poset 17332 df-plt 17344 df-lub 17360 df-glb 17361 df-join 17362 df-meet 17363 df-p0 17425 df-lat 17432 df-covers 35420 df-ats 35421 df-atl 35452 df-cvlat 35476 df-hlat 35505 df-lhyp 36142 |
This theorem is referenced by: lhpmatb 36185 lhp2at0 36186 lhpelim 36191 lhple 36196 idltrn 36304 ltrnmw 36305 trl0 36324 cdleme0e 36371 cdleme2 36382 cdleme7c 36399 cdleme22d 36497 cdlemefrs29pre00 36549 cdlemefrs29bpre0 36550 cdlemefrs29cpre1 36552 cdleme32fva 36591 cdleme35d 36606 cdleme42ke 36639 cdlemeg46frv 36679 cdleme50trn3 36707 cdlemg2fv2 36754 cdlemg8a 36781 cdlemg10bALTN 36790 cdlemh2 36970 cdlemk9 36993 cdlemk9bN 36994 dia2dimlem1 37218 dihvalcqat 37393 dihjatc1 37465 |
Copyright terms: Public domain | W3C validator |