Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpmat Structured version   Visualization version   GIF version

Theorem lhpmat 40031
Description: An element covered by the lattice unity, when conjoined with an atom not under it, equals the lattice zero. (Contributed by NM, 6-Jun-2012.)
Hypotheses
Ref Expression
lhpmat.l = (le‘𝐾)
lhpmat.m = (meet‘𝐾)
lhpmat.z 0 = (0.‘𝐾)
lhpmat.a 𝐴 = (Atoms‘𝐾)
lhpmat.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpmat (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = 0 )

Proof of Theorem lhpmat
StepHypRef Expression
1 simprr 772 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ¬ 𝑃 𝑊)
2 hlatl 39360 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
32ad2antrr 726 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ AtLat)
4 simprl 770 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
5 eqid 2730 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
6 lhpmat.h . . . . 5 𝐻 = (LHyp‘𝐾)
75, 6lhpbase 39999 . . . 4 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
87ad2antlr 727 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊 ∈ (Base‘𝐾))
9 lhpmat.l . . . 4 = (le‘𝐾)
10 lhpmat.m . . . 4 = (meet‘𝐾)
11 lhpmat.z . . . 4 0 = (0.‘𝐾)
12 lhpmat.a . . . 4 𝐴 = (Atoms‘𝐾)
135, 9, 10, 11, 12atnle 39317 . . 3 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑊 ∈ (Base‘𝐾)) → (¬ 𝑃 𝑊 ↔ (𝑃 𝑊) = 0 ))
143, 4, 8, 13syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (¬ 𝑃 𝑊 ↔ (𝑃 𝑊) = 0 ))
151, 14mpbid 232 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5110  cfv 6514  (class class class)co 7390  Basecbs 17186  lecple 17234  meetcmee 18280  0.cp0 18389  Atomscatm 39263  AtLatcal 39264  HLchlt 39350  LHypclh 39985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-lat 18398  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-lhyp 39989
This theorem is referenced by:  lhpmatb  40032  lhp2at0  40033  lhpelim  40038  lhple  40043  idltrn  40151  ltrnmw  40152  trl0  40171  cdleme0e  40218  cdleme2  40229  cdleme7c  40246  cdleme22d  40344  cdlemefrs29pre00  40396  cdlemefrs29bpre0  40397  cdlemefrs29cpre1  40399  cdleme32fva  40438  cdleme35d  40453  cdleme42ke  40486  cdlemeg46frv  40526  cdleme50trn3  40554  cdlemg2fv2  40601  cdlemg8a  40628  cdlemg10bALTN  40637  cdlemh2  40817  cdlemk9  40840  cdlemk9bN  40841  dia2dimlem1  41065  dihvalcqat  41240  dihjatc1  41312
  Copyright terms: Public domain W3C validator