| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpmat | Structured version Visualization version GIF version | ||
| Description: An element covered by the lattice unity, when conjoined with an atom not under it, equals the lattice zero. (Contributed by NM, 6-Jun-2012.) |
| Ref | Expression |
|---|---|
| lhpmat.l | ⊢ ≤ = (le‘𝐾) |
| lhpmat.m | ⊢ ∧ = (meet‘𝐾) |
| lhpmat.z | ⊢ 0 = (0.‘𝐾) |
| lhpmat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| lhpmat.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| Ref | Expression |
|---|---|
| lhpmat | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∧ 𝑊) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ¬ 𝑃 ≤ 𝑊) | |
| 2 | hlatl 39469 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
| 3 | 2 | ad2antrr 726 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐾 ∈ AtLat) |
| 4 | simprl 770 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ∈ 𝐴) | |
| 5 | eqid 2733 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 6 | lhpmat.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 7 | 5, 6 | lhpbase 40107 | . . . 4 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
| 8 | 7 | ad2antlr 727 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊 ∈ (Base‘𝐾)) |
| 9 | lhpmat.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 10 | lhpmat.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 11 | lhpmat.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
| 12 | lhpmat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 13 | 5, 9, 10, 11, 12 | atnle 39426 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑊 ∈ (Base‘𝐾)) → (¬ 𝑃 ≤ 𝑊 ↔ (𝑃 ∧ 𝑊) = 0 )) |
| 14 | 3, 4, 8, 13 | syl3anc 1373 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (¬ 𝑃 ≤ 𝑊 ↔ (𝑃 ∧ 𝑊) = 0 )) |
| 15 | 1, 14 | mpbid 232 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∧ 𝑊) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 Basecbs 17130 lecple 17178 meetcmee 18228 0.cp0 18337 Atomscatm 39372 AtLatcal 39373 HLchlt 39459 LHypclh 40093 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-proset 18210 df-poset 18229 df-plt 18244 df-lub 18260 df-glb 18261 df-join 18262 df-meet 18263 df-p0 18339 df-lat 18348 df-covers 39375 df-ats 39376 df-atl 39407 df-cvlat 39431 df-hlat 39460 df-lhyp 40097 |
| This theorem is referenced by: lhpmatb 40140 lhp2at0 40141 lhpelim 40146 lhple 40151 idltrn 40259 ltrnmw 40260 trl0 40279 cdleme0e 40326 cdleme2 40337 cdleme7c 40354 cdleme22d 40452 cdlemefrs29pre00 40504 cdlemefrs29bpre0 40505 cdlemefrs29cpre1 40507 cdleme32fva 40546 cdleme35d 40561 cdleme42ke 40594 cdlemeg46frv 40634 cdleme50trn3 40662 cdlemg2fv2 40709 cdlemg8a 40736 cdlemg10bALTN 40745 cdlemh2 40925 cdlemk9 40948 cdlemk9bN 40949 dia2dimlem1 41173 dihvalcqat 41348 dihjatc1 41420 |
| Copyright terms: Public domain | W3C validator |