| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpmat | Structured version Visualization version GIF version | ||
| Description: An element covered by the lattice unity, when conjoined with an atom not under it, equals the lattice zero. (Contributed by NM, 6-Jun-2012.) |
| Ref | Expression |
|---|---|
| lhpmat.l | ⊢ ≤ = (le‘𝐾) |
| lhpmat.m | ⊢ ∧ = (meet‘𝐾) |
| lhpmat.z | ⊢ 0 = (0.‘𝐾) |
| lhpmat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| lhpmat.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| Ref | Expression |
|---|---|
| lhpmat | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∧ 𝑊) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ¬ 𝑃 ≤ 𝑊) | |
| 2 | hlatl 39324 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
| 3 | 2 | ad2antrr 726 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐾 ∈ AtLat) |
| 4 | simprl 770 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ∈ 𝐴) | |
| 5 | eqid 2735 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 6 | lhpmat.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 7 | 5, 6 | lhpbase 39963 | . . . 4 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
| 8 | 7 | ad2antlr 727 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊 ∈ (Base‘𝐾)) |
| 9 | lhpmat.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 10 | lhpmat.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 11 | lhpmat.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
| 12 | lhpmat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 13 | 5, 9, 10, 11, 12 | atnle 39281 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑊 ∈ (Base‘𝐾)) → (¬ 𝑃 ≤ 𝑊 ↔ (𝑃 ∧ 𝑊) = 0 )) |
| 14 | 3, 4, 8, 13 | syl3anc 1373 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (¬ 𝑃 ≤ 𝑊 ↔ (𝑃 ∧ 𝑊) = 0 )) |
| 15 | 1, 14 | mpbid 232 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∧ 𝑊) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 lecple 17276 meetcmee 18322 0.cp0 18431 Atomscatm 39227 AtLatcal 39228 HLchlt 39314 LHypclh 39949 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-proset 18304 df-poset 18323 df-plt 18338 df-lub 18354 df-glb 18355 df-join 18356 df-meet 18357 df-p0 18433 df-lat 18440 df-covers 39230 df-ats 39231 df-atl 39262 df-cvlat 39286 df-hlat 39315 df-lhyp 39953 |
| This theorem is referenced by: lhpmatb 39996 lhp2at0 39997 lhpelim 40002 lhple 40007 idltrn 40115 ltrnmw 40116 trl0 40135 cdleme0e 40182 cdleme2 40193 cdleme7c 40210 cdleme22d 40308 cdlemefrs29pre00 40360 cdlemefrs29bpre0 40361 cdlemefrs29cpre1 40363 cdleme32fva 40402 cdleme35d 40417 cdleme42ke 40450 cdlemeg46frv 40490 cdleme50trn3 40518 cdlemg2fv2 40565 cdlemg8a 40592 cdlemg10bALTN 40601 cdlemh2 40781 cdlemk9 40804 cdlemk9bN 40805 dia2dimlem1 41029 dihvalcqat 41204 dihjatc1 41276 |
| Copyright terms: Public domain | W3C validator |