MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climshftlem Structured version   Visualization version   GIF version

Theorem climshftlem 15588
Description: A shifted function converges if the original function converges. (Contributed by Mario Carneiro, 5-Nov-2013.)
Hypothesis
Ref Expression
climshft.1 𝐹 ∈ V
Assertion
Ref Expression
climshftlem (𝑀 ∈ ℤ → (𝐹𝐴 → (𝐹 shift 𝑀) ⇝ 𝐴))

Proof of Theorem climshftlem
Dummy variables 𝑘 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zaddcl 12630 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑘 + 𝑀) ∈ ℤ)
21ancoms 458 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 + 𝑀) ∈ ℤ)
3 eluzsub 12880 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → (𝑛𝑀) ∈ (ℤ𝑘))
433com12 1123 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → (𝑛𝑀) ∈ (ℤ𝑘))
543expa 1118 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → (𝑛𝑀) ∈ (ℤ𝑘))
6 fveq2 6875 . . . . . . . . . . . 12 (𝑚 = (𝑛𝑀) → (𝐹𝑚) = (𝐹‘(𝑛𝑀)))
76eleq1d 2819 . . . . . . . . . . 11 (𝑚 = (𝑛𝑀) → ((𝐹𝑚) ∈ ℂ ↔ (𝐹‘(𝑛𝑀)) ∈ ℂ))
86fvoveq1d 7425 . . . . . . . . . . . 12 (𝑚 = (𝑛𝑀) → (abs‘((𝐹𝑚) − 𝐴)) = (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)))
98breq1d 5129 . . . . . . . . . . 11 (𝑚 = (𝑛𝑀) → ((abs‘((𝐹𝑚) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥))
107, 9anbi12d 632 . . . . . . . . . 10 (𝑚 = (𝑛𝑀) → (((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) ↔ ((𝐹‘(𝑛𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥)))
1110rspcv 3597 . . . . . . . . 9 ((𝑛𝑀) ∈ (ℤ𝑘) → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) → ((𝐹‘(𝑛𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥)))
125, 11syl 17 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) → ((𝐹‘(𝑛𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥)))
13 zcn 12591 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
14 eluzelcn 12862 . . . . . . . . . 10 (𝑛 ∈ (ℤ‘(𝑘 + 𝑀)) → 𝑛 ∈ ℂ)
15 climshft.1 . . . . . . . . . . . . 13 𝐹 ∈ V
1615shftval 15091 . . . . . . . . . . . 12 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝐹 shift 𝑀)‘𝑛) = (𝐹‘(𝑛𝑀)))
1716eleq1d 2819 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ↔ (𝐹‘(𝑛𝑀)) ∈ ℂ))
1816fvoveq1d 7425 . . . . . . . . . . . 12 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) = (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)))
1918breq1d 5129 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥))
2017, 19anbi12d 632 . . . . . . . . . 10 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥) ↔ ((𝐹‘(𝑛𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥)))
2113, 14, 20syl2an 596 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → ((((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥) ↔ ((𝐹‘(𝑛𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥)))
2221adantlr 715 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → ((((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥) ↔ ((𝐹‘(𝑛𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥)))
2312, 22sylibrd 259 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) → (((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)))
2423ralrimdva 3140 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) → ∀𝑛 ∈ (ℤ‘(𝑘 + 𝑀))(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)))
25 fveq2 6875 . . . . . . . 8 (𝑚 = (𝑘 + 𝑀) → (ℤ𝑚) = (ℤ‘(𝑘 + 𝑀)))
2625raleqdv 3305 . . . . . . 7 (𝑚 = (𝑘 + 𝑀) → (∀𝑛 ∈ (ℤ𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥) ↔ ∀𝑛 ∈ (ℤ‘(𝑘 + 𝑀))(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)))
2726rspcev 3601 . . . . . 6 (((𝑘 + 𝑀) ∈ ℤ ∧ ∀𝑛 ∈ (ℤ‘(𝑘 + 𝑀))(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)) → ∃𝑚 ∈ ℤ ∀𝑛 ∈ (ℤ𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥))
282, 24, 27syl6an 684 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) → ∃𝑚 ∈ ℤ ∀𝑛 ∈ (ℤ𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)))
2928rexlimdva 3141 . . . 4 (𝑀 ∈ ℤ → (∃𝑘 ∈ ℤ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) → ∃𝑚 ∈ ℤ ∀𝑛 ∈ (ℤ𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)))
3029ralimdv 3154 . . 3 (𝑀 ∈ ℤ → (∀𝑥 ∈ ℝ+𝑘 ∈ ℤ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) → ∀𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀𝑛 ∈ (ℤ𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)))
3130anim2d 612 . 2 (𝑀 ∈ ℤ → ((𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥)) → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀𝑛 ∈ (ℤ𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥))))
3215a1i 11 . . 3 (𝑀 ∈ ℤ → 𝐹 ∈ V)
33 eqidd 2736 . . 3 ((𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝐹𝑚) = (𝐹𝑚))
3432, 33clim 15508 . 2 (𝑀 ∈ ℤ → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥))))
35 ovexd 7438 . . 3 (𝑀 ∈ ℤ → (𝐹 shift 𝑀) ∈ V)
36 eqidd 2736 . . 3 ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝐹 shift 𝑀)‘𝑛) = ((𝐹 shift 𝑀)‘𝑛))
3735, 36clim 15508 . 2 (𝑀 ∈ ℤ → ((𝐹 shift 𝑀) ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀𝑛 ∈ (ℤ𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥))))
3831, 34, 373imtr4d 294 1 (𝑀 ∈ ℤ → (𝐹𝐴 → (𝐹 shift 𝑀) ⇝ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  Vcvv 3459   class class class wbr 5119  cfv 6530  (class class class)co 7403  cc 11125   + caddc 11130   < clt 11267  cmin 11464  cz 12586  cuz 12850  +crp 13006   shift cshi 15083  abscabs 15251  cli 15498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-n0 12500  df-z 12587  df-uz 12851  df-shft 15084  df-clim 15502
This theorem is referenced by:  climshft  15590
  Copyright terms: Public domain W3C validator