MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climshftlem Structured version   Visualization version   GIF version

Theorem climshftlem 15135
Description: A shifted function converges if the original function converges. (Contributed by Mario Carneiro, 5-Nov-2013.)
Hypothesis
Ref Expression
climshft.1 𝐹 ∈ V
Assertion
Ref Expression
climshftlem (𝑀 ∈ ℤ → (𝐹𝐴 → (𝐹 shift 𝑀) ⇝ 𝐴))

Proof of Theorem climshftlem
Dummy variables 𝑘 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zaddcl 12217 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑘 + 𝑀) ∈ ℤ)
21ancoms 462 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 + 𝑀) ∈ ℤ)
3 eluzsub 12470 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → (𝑛𝑀) ∈ (ℤ𝑘))
433com12 1125 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → (𝑛𝑀) ∈ (ℤ𝑘))
543expa 1120 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → (𝑛𝑀) ∈ (ℤ𝑘))
6 fveq2 6717 . . . . . . . . . . . 12 (𝑚 = (𝑛𝑀) → (𝐹𝑚) = (𝐹‘(𝑛𝑀)))
76eleq1d 2822 . . . . . . . . . . 11 (𝑚 = (𝑛𝑀) → ((𝐹𝑚) ∈ ℂ ↔ (𝐹‘(𝑛𝑀)) ∈ ℂ))
86fvoveq1d 7235 . . . . . . . . . . . 12 (𝑚 = (𝑛𝑀) → (abs‘((𝐹𝑚) − 𝐴)) = (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)))
98breq1d 5063 . . . . . . . . . . 11 (𝑚 = (𝑛𝑀) → ((abs‘((𝐹𝑚) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥))
107, 9anbi12d 634 . . . . . . . . . 10 (𝑚 = (𝑛𝑀) → (((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) ↔ ((𝐹‘(𝑛𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥)))
1110rspcv 3532 . . . . . . . . 9 ((𝑛𝑀) ∈ (ℤ𝑘) → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) → ((𝐹‘(𝑛𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥)))
125, 11syl 17 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) → ((𝐹‘(𝑛𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥)))
13 zcn 12181 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
14 eluzelcn 12450 . . . . . . . . . 10 (𝑛 ∈ (ℤ‘(𝑘 + 𝑀)) → 𝑛 ∈ ℂ)
15 climshft.1 . . . . . . . . . . . . 13 𝐹 ∈ V
1615shftval 14637 . . . . . . . . . . . 12 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝐹 shift 𝑀)‘𝑛) = (𝐹‘(𝑛𝑀)))
1716eleq1d 2822 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ↔ (𝐹‘(𝑛𝑀)) ∈ ℂ))
1816fvoveq1d 7235 . . . . . . . . . . . 12 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) = (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)))
1918breq1d 5063 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥))
2017, 19anbi12d 634 . . . . . . . . . 10 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥) ↔ ((𝐹‘(𝑛𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥)))
2113, 14, 20syl2an 599 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → ((((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥) ↔ ((𝐹‘(𝑛𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥)))
2221adantlr 715 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → ((((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥) ↔ ((𝐹‘(𝑛𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥)))
2312, 22sylibrd 262 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) → (((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)))
2423ralrimdva 3110 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) → ∀𝑛 ∈ (ℤ‘(𝑘 + 𝑀))(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)))
25 fveq2 6717 . . . . . . . 8 (𝑚 = (𝑘 + 𝑀) → (ℤ𝑚) = (ℤ‘(𝑘 + 𝑀)))
2625raleqdv 3325 . . . . . . 7 (𝑚 = (𝑘 + 𝑀) → (∀𝑛 ∈ (ℤ𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥) ↔ ∀𝑛 ∈ (ℤ‘(𝑘 + 𝑀))(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)))
2726rspcev 3537 . . . . . 6 (((𝑘 + 𝑀) ∈ ℤ ∧ ∀𝑛 ∈ (ℤ‘(𝑘 + 𝑀))(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)) → ∃𝑚 ∈ ℤ ∀𝑛 ∈ (ℤ𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥))
282, 24, 27syl6an 684 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) → ∃𝑚 ∈ ℤ ∀𝑛 ∈ (ℤ𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)))
2928rexlimdva 3203 . . . 4 (𝑀 ∈ ℤ → (∃𝑘 ∈ ℤ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) → ∃𝑚 ∈ ℤ ∀𝑛 ∈ (ℤ𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)))
3029ralimdv 3101 . . 3 (𝑀 ∈ ℤ → (∀𝑥 ∈ ℝ+𝑘 ∈ ℤ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) → ∀𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀𝑛 ∈ (ℤ𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)))
3130anim2d 615 . 2 (𝑀 ∈ ℤ → ((𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥)) → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀𝑛 ∈ (ℤ𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥))))
3215a1i 11 . . 3 (𝑀 ∈ ℤ → 𝐹 ∈ V)
33 eqidd 2738 . . 3 ((𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝐹𝑚) = (𝐹𝑚))
3432, 33clim 15055 . 2 (𝑀 ∈ ℤ → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥))))
35 ovexd 7248 . . 3 (𝑀 ∈ ℤ → (𝐹 shift 𝑀) ∈ V)
36 eqidd 2738 . . 3 ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝐹 shift 𝑀)‘𝑛) = ((𝐹 shift 𝑀)‘𝑛))
3735, 36clim 15055 . 2 (𝑀 ∈ ℤ → ((𝐹 shift 𝑀) ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀𝑛 ∈ (ℤ𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥))))
3831, 34, 373imtr4d 297 1 (𝑀 ∈ ℤ → (𝐹𝐴 → (𝐹 shift 𝑀) ⇝ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3061  wrex 3062  Vcvv 3408   class class class wbr 5053  cfv 6380  (class class class)co 7213  cc 10727   + caddc 10732   < clt 10867  cmin 11062  cz 12176  cuz 12438  +crp 12586   shift cshi 14629  abscabs 14797  cli 15045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-n0 12091  df-z 12177  df-uz 12439  df-shft 14630  df-clim 15049
This theorem is referenced by:  climshft  15137
  Copyright terms: Public domain W3C validator