![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > indistgp | Structured version Visualization version GIF version |
Description: Any group equipped with the indiscrete topology is a topological group. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
distgp.1 | ⊢ 𝐵 = (Base‘𝐺) |
distgp.2 | ⊢ 𝐽 = (TopOpen‘𝐺) |
Ref | Expression |
---|---|
indistgp | ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → 𝐺 ∈ TopGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 476 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → 𝐺 ∈ Grp) | |
2 | simpr 479 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → 𝐽 = {∅, 𝐵}) | |
3 | distgp.1 | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
4 | 3 | fvexi 6462 | . . . . 5 ⊢ 𝐵 ∈ V |
5 | indistopon 21217 | . . . . 5 ⊢ (𝐵 ∈ V → {∅, 𝐵} ∈ (TopOn‘𝐵)) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ {∅, 𝐵} ∈ (TopOn‘𝐵) |
7 | 2, 6 | syl6eqel 2867 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → 𝐽 ∈ (TopOn‘𝐵)) |
8 | distgp.2 | . . . 4 ⊢ 𝐽 = (TopOpen‘𝐺) | |
9 | 3, 8 | istps 21150 | . . 3 ⊢ (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐵)) |
10 | 7, 9 | sylibr 226 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → 𝐺 ∈ TopSp) |
11 | eqid 2778 | . . . . . 6 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
12 | 3, 11 | grpsubf 17885 | . . . . 5 ⊢ (𝐺 ∈ Grp → (-g‘𝐺):(𝐵 × 𝐵)⟶𝐵) |
13 | 12 | adantr 474 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → (-g‘𝐺):(𝐵 × 𝐵)⟶𝐵) |
14 | 4, 4 | xpex 7242 | . . . . 5 ⊢ (𝐵 × 𝐵) ∈ V |
15 | 4, 14 | elmap 8171 | . . . 4 ⊢ ((-g‘𝐺) ∈ (𝐵 ↑𝑚 (𝐵 × 𝐵)) ↔ (-g‘𝐺):(𝐵 × 𝐵)⟶𝐵) |
16 | 13, 15 | sylibr 226 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → (-g‘𝐺) ∈ (𝐵 ↑𝑚 (𝐵 × 𝐵))) |
17 | 2 | oveq2d 6940 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → ((𝐽 ×t 𝐽) Cn 𝐽) = ((𝐽 ×t 𝐽) Cn {∅, 𝐵})) |
18 | txtopon 21807 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝐵) ∧ 𝐽 ∈ (TopOn‘𝐵)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(𝐵 × 𝐵))) | |
19 | 7, 7, 18 | syl2anc 579 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → (𝐽 ×t 𝐽) ∈ (TopOn‘(𝐵 × 𝐵))) |
20 | cnindis 21508 | . . . . 5 ⊢ (((𝐽 ×t 𝐽) ∈ (TopOn‘(𝐵 × 𝐵)) ∧ 𝐵 ∈ V) → ((𝐽 ×t 𝐽) Cn {∅, 𝐵}) = (𝐵 ↑𝑚 (𝐵 × 𝐵))) | |
21 | 19, 4, 20 | sylancl 580 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → ((𝐽 ×t 𝐽) Cn {∅, 𝐵}) = (𝐵 ↑𝑚 (𝐵 × 𝐵))) |
22 | 17, 21 | eqtrd 2814 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → ((𝐽 ×t 𝐽) Cn 𝐽) = (𝐵 ↑𝑚 (𝐵 × 𝐵))) |
23 | 16, 22 | eleqtrrd 2862 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → (-g‘𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
24 | 8, 11 | istgp2 22307 | . 2 ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ (-g‘𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) |
25 | 1, 10, 23, 24 | syl3anbrc 1400 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → 𝐺 ∈ TopGrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 Vcvv 3398 ∅c0 4141 {cpr 4400 × cxp 5355 ⟶wf 6133 ‘cfv 6137 (class class class)co 6924 ↑𝑚 cmap 8142 Basecbs 16259 TopOpenctopn 16472 Grpcgrp 17813 -gcsg 17815 TopOnctopon 21126 TopSpctps 21148 Cn ccn 21440 ×t ctx 21776 TopGrpctgp 22287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-1st 7447 df-2nd 7448 df-map 8144 df-0g 16492 df-topgen 16494 df-plusf 17631 df-mgm 17632 df-sgrp 17674 df-mnd 17685 df-grp 17816 df-minusg 17817 df-sbg 17818 df-top 21110 df-topon 21127 df-topsp 21149 df-bases 21162 df-cn 21443 df-cnp 21444 df-tx 21778 df-tmd 22288 df-tgp 22289 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |