Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > indistgp | Structured version Visualization version GIF version |
Description: Any group equipped with the indiscrete topology is a topological group. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
distgp.1 | ⊢ 𝐵 = (Base‘𝐺) |
distgp.2 | ⊢ 𝐽 = (TopOpen‘𝐺) |
Ref | Expression |
---|---|
indistgp | ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → 𝐺 ∈ TopGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → 𝐺 ∈ Grp) | |
2 | simpr 484 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → 𝐽 = {∅, 𝐵}) | |
3 | distgp.1 | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
4 | 3 | fvexi 6770 | . . . . 5 ⊢ 𝐵 ∈ V |
5 | indistopon 22059 | . . . . 5 ⊢ (𝐵 ∈ V → {∅, 𝐵} ∈ (TopOn‘𝐵)) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ {∅, 𝐵} ∈ (TopOn‘𝐵) |
7 | 2, 6 | eqeltrdi 2847 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → 𝐽 ∈ (TopOn‘𝐵)) |
8 | distgp.2 | . . . 4 ⊢ 𝐽 = (TopOpen‘𝐺) | |
9 | 3, 8 | istps 21991 | . . 3 ⊢ (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐵)) |
10 | 7, 9 | sylibr 233 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → 𝐺 ∈ TopSp) |
11 | eqid 2738 | . . . . . 6 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
12 | 3, 11 | grpsubf 18569 | . . . . 5 ⊢ (𝐺 ∈ Grp → (-g‘𝐺):(𝐵 × 𝐵)⟶𝐵) |
13 | 12 | adantr 480 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → (-g‘𝐺):(𝐵 × 𝐵)⟶𝐵) |
14 | 4, 4 | xpex 7581 | . . . . 5 ⊢ (𝐵 × 𝐵) ∈ V |
15 | 4, 14 | elmap 8617 | . . . 4 ⊢ ((-g‘𝐺) ∈ (𝐵 ↑m (𝐵 × 𝐵)) ↔ (-g‘𝐺):(𝐵 × 𝐵)⟶𝐵) |
16 | 13, 15 | sylibr 233 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → (-g‘𝐺) ∈ (𝐵 ↑m (𝐵 × 𝐵))) |
17 | 2 | oveq2d 7271 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → ((𝐽 ×t 𝐽) Cn 𝐽) = ((𝐽 ×t 𝐽) Cn {∅, 𝐵})) |
18 | txtopon 22650 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝐵) ∧ 𝐽 ∈ (TopOn‘𝐵)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(𝐵 × 𝐵))) | |
19 | 7, 7, 18 | syl2anc 583 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → (𝐽 ×t 𝐽) ∈ (TopOn‘(𝐵 × 𝐵))) |
20 | cnindis 22351 | . . . . 5 ⊢ (((𝐽 ×t 𝐽) ∈ (TopOn‘(𝐵 × 𝐵)) ∧ 𝐵 ∈ V) → ((𝐽 ×t 𝐽) Cn {∅, 𝐵}) = (𝐵 ↑m (𝐵 × 𝐵))) | |
21 | 19, 4, 20 | sylancl 585 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → ((𝐽 ×t 𝐽) Cn {∅, 𝐵}) = (𝐵 ↑m (𝐵 × 𝐵))) |
22 | 17, 21 | eqtrd 2778 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → ((𝐽 ×t 𝐽) Cn 𝐽) = (𝐵 ↑m (𝐵 × 𝐵))) |
23 | 16, 22 | eleqtrrd 2842 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → (-g‘𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
24 | 8, 11 | istgp2 23150 | . 2 ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ (-g‘𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) |
25 | 1, 10, 23, 24 | syl3anbrc 1341 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → 𝐺 ∈ TopGrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 {cpr 4560 × cxp 5578 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 Basecbs 16840 TopOpenctopn 17049 Grpcgrp 18492 -gcsg 18494 TopOnctopon 21967 TopSpctps 21989 Cn ccn 22283 ×t ctx 22619 TopGrpctgp 23130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-map 8575 df-0g 17069 df-topgen 17071 df-plusf 18240 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cn 22286 df-cnp 22287 df-tx 22621 df-tmd 23131 df-tgp 23132 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |