MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indistgp Structured version   Visualization version   GIF version

Theorem indistgp 24015
Description: Any group equipped with the indiscrete topology is a topological group. (Contributed by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
distgp.1 𝐵 = (Base‘𝐺)
distgp.2 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
indistgp ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → 𝐺 ∈ TopGrp)

Proof of Theorem indistgp
StepHypRef Expression
1 simpl 482 . 2 ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → 𝐺 ∈ Grp)
2 simpr 484 . . . 4 ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → 𝐽 = {∅, 𝐵})
3 distgp.1 . . . . . 6 𝐵 = (Base‘𝐺)
43fvexi 6836 . . . . 5 𝐵 ∈ V
5 indistopon 22916 . . . . 5 (𝐵 ∈ V → {∅, 𝐵} ∈ (TopOn‘𝐵))
64, 5ax-mp 5 . . . 4 {∅, 𝐵} ∈ (TopOn‘𝐵)
72, 6eqeltrdi 2839 . . 3 ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → 𝐽 ∈ (TopOn‘𝐵))
8 distgp.2 . . . 4 𝐽 = (TopOpen‘𝐺)
93, 8istps 22849 . . 3 (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐵))
107, 9sylibr 234 . 2 ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → 𝐺 ∈ TopSp)
11 eqid 2731 . . . . . 6 (-g𝐺) = (-g𝐺)
123, 11grpsubf 18932 . . . . 5 (𝐺 ∈ Grp → (-g𝐺):(𝐵 × 𝐵)⟶𝐵)
1312adantr 480 . . . 4 ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → (-g𝐺):(𝐵 × 𝐵)⟶𝐵)
144, 4xpex 7686 . . . . 5 (𝐵 × 𝐵) ∈ V
154, 14elmap 8795 . . . 4 ((-g𝐺) ∈ (𝐵m (𝐵 × 𝐵)) ↔ (-g𝐺):(𝐵 × 𝐵)⟶𝐵)
1613, 15sylibr 234 . . 3 ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → (-g𝐺) ∈ (𝐵m (𝐵 × 𝐵)))
172oveq2d 7362 . . . 4 ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → ((𝐽 ×t 𝐽) Cn 𝐽) = ((𝐽 ×t 𝐽) Cn {∅, 𝐵}))
18 txtopon 23506 . . . . . 6 ((𝐽 ∈ (TopOn‘𝐵) ∧ 𝐽 ∈ (TopOn‘𝐵)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(𝐵 × 𝐵)))
197, 7, 18syl2anc 584 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → (𝐽 ×t 𝐽) ∈ (TopOn‘(𝐵 × 𝐵)))
20 cnindis 23207 . . . . 5 (((𝐽 ×t 𝐽) ∈ (TopOn‘(𝐵 × 𝐵)) ∧ 𝐵 ∈ V) → ((𝐽 ×t 𝐽) Cn {∅, 𝐵}) = (𝐵m (𝐵 × 𝐵)))
2119, 4, 20sylancl 586 . . . 4 ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → ((𝐽 ×t 𝐽) Cn {∅, 𝐵}) = (𝐵m (𝐵 × 𝐵)))
2217, 21eqtrd 2766 . . 3 ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → ((𝐽 ×t 𝐽) Cn 𝐽) = (𝐵m (𝐵 × 𝐵)))
2316, 22eleqtrrd 2834 . 2 ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → (-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
248, 11istgp2 24006 . 2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ (-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))
251, 10, 23, 24syl3anbrc 1344 1 ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → 𝐺 ∈ TopGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  c0 4280  {cpr 4575   × cxp 5612  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750  Basecbs 17120  TopOpenctopn 17325  Grpcgrp 18846  -gcsg 18848  TopOnctopon 22825  TopSpctps 22847   Cn ccn 23139   ×t ctx 23475  TopGrpctgp 23986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-0g 17345  df-topgen 17347  df-plusf 18547  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cn 23142  df-cnp 23143  df-tx 23477  df-tmd 23987  df-tgp 23988
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator