MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt11f Structured version   Visualization version   GIF version

Theorem cnmpt11f 23167
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
cnmpt11.a (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾))
cnmpt11f.f (πœ‘ β†’ 𝐹 ∈ (𝐾 Cn 𝐿))
Assertion
Ref Expression
cnmpt11f (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ (πΉβ€˜π΄)) ∈ (𝐽 Cn 𝐿))
Distinct variable groups:   π‘₯,𝐹   πœ‘,π‘₯   π‘₯,𝐽   π‘₯,𝑋   π‘₯,𝐾   π‘₯,𝐿
Allowed substitution hint:   𝐴(π‘₯)

Proof of Theorem cnmpt11f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnmptid.j . 2 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
2 cnmpt11.a . 2 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾))
3 cntop2 22744 . . . 4 ((π‘₯ ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾) β†’ 𝐾 ∈ Top)
42, 3syl 17 . . 3 (πœ‘ β†’ 𝐾 ∈ Top)
5 toptopon2 22419 . . 3 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOnβ€˜βˆͺ 𝐾))
64, 5sylib 217 . 2 (πœ‘ β†’ 𝐾 ∈ (TopOnβ€˜βˆͺ 𝐾))
7 cnmpt11f.f . . . . 5 (πœ‘ β†’ 𝐹 ∈ (𝐾 Cn 𝐿))
8 eqid 2732 . . . . . 6 βˆͺ 𝐾 = βˆͺ 𝐾
9 eqid 2732 . . . . . 6 βˆͺ 𝐿 = βˆͺ 𝐿
108, 9cnf 22749 . . . . 5 (𝐹 ∈ (𝐾 Cn 𝐿) β†’ 𝐹:βˆͺ 𝐾⟢βˆͺ 𝐿)
117, 10syl 17 . . . 4 (πœ‘ β†’ 𝐹:βˆͺ 𝐾⟢βˆͺ 𝐿)
1211feqmptd 6960 . . 3 (πœ‘ β†’ 𝐹 = (𝑦 ∈ βˆͺ 𝐾 ↦ (πΉβ€˜π‘¦)))
1312, 7eqeltrrd 2834 . 2 (πœ‘ β†’ (𝑦 ∈ βˆͺ 𝐾 ↦ (πΉβ€˜π‘¦)) ∈ (𝐾 Cn 𝐿))
14 fveq2 6891 . 2 (𝑦 = 𝐴 β†’ (πΉβ€˜π‘¦) = (πΉβ€˜π΄))
151, 2, 6, 13, 14cnmpt11 23166 1 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ (πΉβ€˜π΄)) ∈ (𝐽 Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2106  βˆͺ cuni 4908   ↦ cmpt 5231  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7408  Topctop 22394  TopOnctopon 22411   Cn ccn 22727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-map 8821  df-top 22395  df-topon 22412  df-cn 22730
This theorem is referenced by:  cnmpt12f  23169  tgpmulg  23596  prdstgpd  23628  pcorevcl  24540  pcorevlem  24541  logcn  26154  loglesqrt  26263  efrlim  26471  cvmliftlem8  34278  knoppcnlem10  35373  areacirclem2  36572  areacirclem4  36574
  Copyright terms: Public domain W3C validator