| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmpt11f | Structured version Visualization version GIF version | ||
| Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnmptid.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| cnmpt11.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) |
| cnmpt11f.f | ⊢ (𝜑 → 𝐹 ∈ (𝐾 Cn 𝐿)) |
| Ref | Expression |
|---|---|
| cnmpt11f | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐹‘𝐴)) ∈ (𝐽 Cn 𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmptid.j | . 2 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 2 | cnmpt11.a | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) | |
| 3 | cntop2 23249 | . . . 4 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → 𝐾 ∈ Top) |
| 5 | toptopon2 22924 | . . 3 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) | |
| 6 | 4, 5 | sylib 218 | . 2 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
| 7 | cnmpt11f.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐾 Cn 𝐿)) | |
| 8 | eqid 2737 | . . . . . 6 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 9 | eqid 2737 | . . . . . 6 ⊢ ∪ 𝐿 = ∪ 𝐿 | |
| 10 | 8, 9 | cnf 23254 | . . . . 5 ⊢ (𝐹 ∈ (𝐾 Cn 𝐿) → 𝐹:∪ 𝐾⟶∪ 𝐿) |
| 11 | 7, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:∪ 𝐾⟶∪ 𝐿) |
| 12 | 11 | feqmptd 6977 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑦 ∈ ∪ 𝐾 ↦ (𝐹‘𝑦))) |
| 13 | 12, 7 | eqeltrrd 2842 | . 2 ⊢ (𝜑 → (𝑦 ∈ ∪ 𝐾 ↦ (𝐹‘𝑦)) ∈ (𝐾 Cn 𝐿)) |
| 14 | fveq2 6906 | . 2 ⊢ (𝑦 = 𝐴 → (𝐹‘𝑦) = (𝐹‘𝐴)) | |
| 15 | 1, 2, 6, 13, 14 | cnmpt11 23671 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐹‘𝐴)) ∈ (𝐽 Cn 𝐿)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ∪ cuni 4907 ↦ cmpt 5225 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 Topctop 22899 TopOnctopon 22916 Cn ccn 23232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8868 df-top 22900 df-topon 22917 df-cn 23235 |
| This theorem is referenced by: cnmpt12f 23674 tgpmulg 24101 prdstgpd 24133 pcorevcl 25058 pcorevlem 25059 logcn 26689 loglesqrt 26804 efrlim 27012 efrlimOLD 27013 cvmliftlem8 35297 knoppcnlem10 36503 areacirclem2 37716 areacirclem4 37718 |
| Copyright terms: Public domain | W3C validator |