| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmpt11f | Structured version Visualization version GIF version | ||
| Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnmptid.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| cnmpt11.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) |
| cnmpt11f.f | ⊢ (𝜑 → 𝐹 ∈ (𝐾 Cn 𝐿)) |
| Ref | Expression |
|---|---|
| cnmpt11f | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐹‘𝐴)) ∈ (𝐽 Cn 𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmptid.j | . 2 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 2 | cnmpt11.a | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) | |
| 3 | cntop2 23104 | . . . 4 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → 𝐾 ∈ Top) |
| 5 | toptopon2 22781 | . . 3 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) | |
| 6 | 4, 5 | sylib 218 | . 2 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
| 7 | cnmpt11f.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐾 Cn 𝐿)) | |
| 8 | eqid 2729 | . . . . . 6 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 9 | eqid 2729 | . . . . . 6 ⊢ ∪ 𝐿 = ∪ 𝐿 | |
| 10 | 8, 9 | cnf 23109 | . . . . 5 ⊢ (𝐹 ∈ (𝐾 Cn 𝐿) → 𝐹:∪ 𝐾⟶∪ 𝐿) |
| 11 | 7, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:∪ 𝐾⟶∪ 𝐿) |
| 12 | 11 | feqmptd 6911 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑦 ∈ ∪ 𝐾 ↦ (𝐹‘𝑦))) |
| 13 | 12, 7 | eqeltrrd 2829 | . 2 ⊢ (𝜑 → (𝑦 ∈ ∪ 𝐾 ↦ (𝐹‘𝑦)) ∈ (𝐾 Cn 𝐿)) |
| 14 | fveq2 6840 | . 2 ⊢ (𝑦 = 𝐴 → (𝐹‘𝑦) = (𝐹‘𝐴)) | |
| 15 | 1, 2, 6, 13, 14 | cnmpt11 23526 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐹‘𝐴)) ∈ (𝐽 Cn 𝐿)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∪ cuni 4867 ↦ cmpt 5183 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 Topctop 22756 TopOnctopon 22773 Cn ccn 23087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 df-top 22757 df-topon 22774 df-cn 23090 |
| This theorem is referenced by: cnmpt12f 23529 tgpmulg 23956 prdstgpd 23988 pcorevcl 24901 pcorevlem 24902 logcn 26532 loglesqrt 26647 efrlim 26855 efrlimOLD 26856 cvmliftlem8 35252 knoppcnlem10 36463 areacirclem2 37676 areacirclem4 37678 |
| Copyright terms: Public domain | W3C validator |