MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt11f Structured version   Visualization version   GIF version

Theorem cnmpt11f 23518
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
cnmpt11.a (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾))
cnmpt11f.f (πœ‘ β†’ 𝐹 ∈ (𝐾 Cn 𝐿))
Assertion
Ref Expression
cnmpt11f (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ (πΉβ€˜π΄)) ∈ (𝐽 Cn 𝐿))
Distinct variable groups:   π‘₯,𝐹   πœ‘,π‘₯   π‘₯,𝐽   π‘₯,𝑋   π‘₯,𝐾   π‘₯,𝐿
Allowed substitution hint:   𝐴(π‘₯)

Proof of Theorem cnmpt11f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnmptid.j . 2 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
2 cnmpt11.a . 2 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾))
3 cntop2 23095 . . . 4 ((π‘₯ ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾) β†’ 𝐾 ∈ Top)
42, 3syl 17 . . 3 (πœ‘ β†’ 𝐾 ∈ Top)
5 toptopon2 22770 . . 3 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOnβ€˜βˆͺ 𝐾))
64, 5sylib 217 . 2 (πœ‘ β†’ 𝐾 ∈ (TopOnβ€˜βˆͺ 𝐾))
7 cnmpt11f.f . . . . 5 (πœ‘ β†’ 𝐹 ∈ (𝐾 Cn 𝐿))
8 eqid 2726 . . . . . 6 βˆͺ 𝐾 = βˆͺ 𝐾
9 eqid 2726 . . . . . 6 βˆͺ 𝐿 = βˆͺ 𝐿
108, 9cnf 23100 . . . . 5 (𝐹 ∈ (𝐾 Cn 𝐿) β†’ 𝐹:βˆͺ 𝐾⟢βˆͺ 𝐿)
117, 10syl 17 . . . 4 (πœ‘ β†’ 𝐹:βˆͺ 𝐾⟢βˆͺ 𝐿)
1211feqmptd 6953 . . 3 (πœ‘ β†’ 𝐹 = (𝑦 ∈ βˆͺ 𝐾 ↦ (πΉβ€˜π‘¦)))
1312, 7eqeltrrd 2828 . 2 (πœ‘ β†’ (𝑦 ∈ βˆͺ 𝐾 ↦ (πΉβ€˜π‘¦)) ∈ (𝐾 Cn 𝐿))
14 fveq2 6884 . 2 (𝑦 = 𝐴 β†’ (πΉβ€˜π‘¦) = (πΉβ€˜π΄))
151, 2, 6, 13, 14cnmpt11 23517 1 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ (πΉβ€˜π΄)) ∈ (𝐽 Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2098  βˆͺ cuni 4902   ↦ cmpt 5224  βŸΆwf 6532  β€˜cfv 6536  (class class class)co 7404  Topctop 22745  TopOnctopon 22762   Cn ccn 23078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7407  df-oprab 7408  df-mpo 7409  df-map 8821  df-top 22746  df-topon 22763  df-cn 23081
This theorem is referenced by:  cnmpt12f  23520  tgpmulg  23947  prdstgpd  23979  pcorevcl  24902  pcorevlem  24903  logcn  26531  loglesqrt  26643  efrlim  26851  efrlimOLD  26852  cvmliftlem8  34810  knoppcnlem10  35885  areacirclem2  37089  areacirclem4  37091
  Copyright terms: Public domain W3C validator