![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmpt11f | Structured version Visualization version GIF version |
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmptid.j | β’ (π β π½ β (TopOnβπ)) |
cnmpt11.a | β’ (π β (π₯ β π β¦ π΄) β (π½ Cn πΎ)) |
cnmpt11f.f | β’ (π β πΉ β (πΎ Cn πΏ)) |
Ref | Expression |
---|---|
cnmpt11f | β’ (π β (π₯ β π β¦ (πΉβπ΄)) β (π½ Cn πΏ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmptid.j | . 2 β’ (π β π½ β (TopOnβπ)) | |
2 | cnmpt11.a | . 2 β’ (π β (π₯ β π β¦ π΄) β (π½ Cn πΎ)) | |
3 | cntop2 22744 | . . . 4 β’ ((π₯ β π β¦ π΄) β (π½ Cn πΎ) β πΎ β Top) | |
4 | 2, 3 | syl 17 | . . 3 β’ (π β πΎ β Top) |
5 | toptopon2 22419 | . . 3 β’ (πΎ β Top β πΎ β (TopOnββͺ πΎ)) | |
6 | 4, 5 | sylib 217 | . 2 β’ (π β πΎ β (TopOnββͺ πΎ)) |
7 | cnmpt11f.f | . . . . 5 β’ (π β πΉ β (πΎ Cn πΏ)) | |
8 | eqid 2732 | . . . . . 6 β’ βͺ πΎ = βͺ πΎ | |
9 | eqid 2732 | . . . . . 6 β’ βͺ πΏ = βͺ πΏ | |
10 | 8, 9 | cnf 22749 | . . . . 5 β’ (πΉ β (πΎ Cn πΏ) β πΉ:βͺ πΎβΆβͺ πΏ) |
11 | 7, 10 | syl 17 | . . . 4 β’ (π β πΉ:βͺ πΎβΆβͺ πΏ) |
12 | 11 | feqmptd 6960 | . . 3 β’ (π β πΉ = (π¦ β βͺ πΎ β¦ (πΉβπ¦))) |
13 | 12, 7 | eqeltrrd 2834 | . 2 β’ (π β (π¦ β βͺ πΎ β¦ (πΉβπ¦)) β (πΎ Cn πΏ)) |
14 | fveq2 6891 | . 2 β’ (π¦ = π΄ β (πΉβπ¦) = (πΉβπ΄)) | |
15 | 1, 2, 6, 13, 14 | cnmpt11 23166 | 1 β’ (π β (π₯ β π β¦ (πΉβπ΄)) β (π½ Cn πΏ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2106 βͺ cuni 4908 β¦ cmpt 5231 βΆwf 6539 βcfv 6543 (class class class)co 7408 Topctop 22394 TopOnctopon 22411 Cn ccn 22727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-map 8821 df-top 22395 df-topon 22412 df-cn 22730 |
This theorem is referenced by: cnmpt12f 23169 tgpmulg 23596 prdstgpd 23628 pcorevcl 24540 pcorevlem 24541 logcn 26154 loglesqrt 26263 efrlim 26471 cvmliftlem8 34278 knoppcnlem10 35373 areacirclem2 36572 areacirclem4 36574 |
Copyright terms: Public domain | W3C validator |