| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmpt11f | Structured version Visualization version GIF version | ||
| Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnmptid.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| cnmpt11.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) |
| cnmpt11f.f | ⊢ (𝜑 → 𝐹 ∈ (𝐾 Cn 𝐿)) |
| Ref | Expression |
|---|---|
| cnmpt11f | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐹‘𝐴)) ∈ (𝐽 Cn 𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmptid.j | . 2 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 2 | cnmpt11.a | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) | |
| 3 | cntop2 23151 | . . . 4 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → 𝐾 ∈ Top) |
| 5 | toptopon2 22828 | . . 3 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) | |
| 6 | 4, 5 | sylib 218 | . 2 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
| 7 | cnmpt11f.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐾 Cn 𝐿)) | |
| 8 | eqid 2731 | . . . . . 6 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 9 | eqid 2731 | . . . . . 6 ⊢ ∪ 𝐿 = ∪ 𝐿 | |
| 10 | 8, 9 | cnf 23156 | . . . . 5 ⊢ (𝐹 ∈ (𝐾 Cn 𝐿) → 𝐹:∪ 𝐾⟶∪ 𝐿) |
| 11 | 7, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:∪ 𝐾⟶∪ 𝐿) |
| 12 | 11 | feqmptd 6885 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑦 ∈ ∪ 𝐾 ↦ (𝐹‘𝑦))) |
| 13 | 12, 7 | eqeltrrd 2832 | . 2 ⊢ (𝜑 → (𝑦 ∈ ∪ 𝐾 ↦ (𝐹‘𝑦)) ∈ (𝐾 Cn 𝐿)) |
| 14 | fveq2 6817 | . 2 ⊢ (𝑦 = 𝐴 → (𝐹‘𝑦) = (𝐹‘𝐴)) | |
| 15 | 1, 2, 6, 13, 14 | cnmpt11 23573 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐹‘𝐴)) ∈ (𝐽 Cn 𝐿)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∪ cuni 4854 ↦ cmpt 5167 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 Topctop 22803 TopOnctopon 22820 Cn ccn 23134 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-map 8747 df-top 22804 df-topon 22821 df-cn 23137 |
| This theorem is referenced by: cnmpt12f 23576 tgpmulg 24003 prdstgpd 24035 pcorevcl 24947 pcorevlem 24948 logcn 26578 loglesqrt 26693 efrlim 26901 efrlimOLD 26902 cvmliftlem8 35328 knoppcnlem10 36536 areacirclem2 37749 areacirclem4 37751 |
| Copyright terms: Public domain | W3C validator |