MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt11f Structured version   Visualization version   GIF version

Theorem cnmpt11f 23672
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt11.a (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
cnmpt11f.f (𝜑𝐹 ∈ (𝐾 Cn 𝐿))
Assertion
Ref Expression
cnmpt11f (𝜑 → (𝑥𝑋 ↦ (𝐹𝐴)) ∈ (𝐽 Cn 𝐿))
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥   𝑥,𝐽   𝑥,𝑋   𝑥,𝐾   𝑥,𝐿
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem cnmpt11f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnmptid.j . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 cnmpt11.a . 2 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
3 cntop2 23249 . . . 4 ((𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
42, 3syl 17 . . 3 (𝜑𝐾 ∈ Top)
5 toptopon2 22924 . . 3 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
64, 5sylib 218 . 2 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
7 cnmpt11f.f . . . . 5 (𝜑𝐹 ∈ (𝐾 Cn 𝐿))
8 eqid 2737 . . . . . 6 𝐾 = 𝐾
9 eqid 2737 . . . . . 6 𝐿 = 𝐿
108, 9cnf 23254 . . . . 5 (𝐹 ∈ (𝐾 Cn 𝐿) → 𝐹: 𝐾 𝐿)
117, 10syl 17 . . . 4 (𝜑𝐹: 𝐾 𝐿)
1211feqmptd 6977 . . 3 (𝜑𝐹 = (𝑦 𝐾 ↦ (𝐹𝑦)))
1312, 7eqeltrrd 2842 . 2 (𝜑 → (𝑦 𝐾 ↦ (𝐹𝑦)) ∈ (𝐾 Cn 𝐿))
14 fveq2 6906 . 2 (𝑦 = 𝐴 → (𝐹𝑦) = (𝐹𝐴))
151, 2, 6, 13, 14cnmpt11 23671 1 (𝜑 → (𝑥𝑋 ↦ (𝐹𝐴)) ∈ (𝐽 Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   cuni 4907  cmpt 5225  wf 6557  cfv 6561  (class class class)co 7431  Topctop 22899  TopOnctopon 22916   Cn ccn 23232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8868  df-top 22900  df-topon 22917  df-cn 23235
This theorem is referenced by:  cnmpt12f  23674  tgpmulg  24101  prdstgpd  24133  pcorevcl  25058  pcorevlem  25059  logcn  26689  loglesqrt  26804  efrlim  27012  efrlimOLD  27013  cvmliftlem8  35297  knoppcnlem10  36503  areacirclem2  37716  areacirclem4  37718
  Copyright terms: Public domain W3C validator