![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmpt11f | Structured version Visualization version GIF version |
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmptid.j | β’ (π β π½ β (TopOnβπ)) |
cnmpt11.a | β’ (π β (π₯ β π β¦ π΄) β (π½ Cn πΎ)) |
cnmpt11f.f | β’ (π β πΉ β (πΎ Cn πΏ)) |
Ref | Expression |
---|---|
cnmpt11f | β’ (π β (π₯ β π β¦ (πΉβπ΄)) β (π½ Cn πΏ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmptid.j | . 2 β’ (π β π½ β (TopOnβπ)) | |
2 | cnmpt11.a | . 2 β’ (π β (π₯ β π β¦ π΄) β (π½ Cn πΎ)) | |
3 | cntop2 23095 | . . . 4 β’ ((π₯ β π β¦ π΄) β (π½ Cn πΎ) β πΎ β Top) | |
4 | 2, 3 | syl 17 | . . 3 β’ (π β πΎ β Top) |
5 | toptopon2 22770 | . . 3 β’ (πΎ β Top β πΎ β (TopOnββͺ πΎ)) | |
6 | 4, 5 | sylib 217 | . 2 β’ (π β πΎ β (TopOnββͺ πΎ)) |
7 | cnmpt11f.f | . . . . 5 β’ (π β πΉ β (πΎ Cn πΏ)) | |
8 | eqid 2726 | . . . . . 6 β’ βͺ πΎ = βͺ πΎ | |
9 | eqid 2726 | . . . . . 6 β’ βͺ πΏ = βͺ πΏ | |
10 | 8, 9 | cnf 23100 | . . . . 5 β’ (πΉ β (πΎ Cn πΏ) β πΉ:βͺ πΎβΆβͺ πΏ) |
11 | 7, 10 | syl 17 | . . . 4 β’ (π β πΉ:βͺ πΎβΆβͺ πΏ) |
12 | 11 | feqmptd 6953 | . . 3 β’ (π β πΉ = (π¦ β βͺ πΎ β¦ (πΉβπ¦))) |
13 | 12, 7 | eqeltrrd 2828 | . 2 β’ (π β (π¦ β βͺ πΎ β¦ (πΉβπ¦)) β (πΎ Cn πΏ)) |
14 | fveq2 6884 | . 2 β’ (π¦ = π΄ β (πΉβπ¦) = (πΉβπ΄)) | |
15 | 1, 2, 6, 13, 14 | cnmpt11 23517 | 1 β’ (π β (π₯ β π β¦ (πΉβπ΄)) β (π½ Cn πΏ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2098 βͺ cuni 4902 β¦ cmpt 5224 βΆwf 6532 βcfv 6536 (class class class)co 7404 Topctop 22745 TopOnctopon 22762 Cn ccn 23078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7407 df-oprab 7408 df-mpo 7409 df-map 8821 df-top 22746 df-topon 22763 df-cn 23081 |
This theorem is referenced by: cnmpt12f 23520 tgpmulg 23947 prdstgpd 23979 pcorevcl 24902 pcorevlem 24903 logcn 26531 loglesqrt 26643 efrlim 26851 efrlimOLD 26852 cvmliftlem8 34810 knoppcnlem10 35885 areacirclem2 37089 areacirclem4 37091 |
Copyright terms: Public domain | W3C validator |