Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnmpt11f | Structured version Visualization version GIF version |
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmptid.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
cnmpt11.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) |
cnmpt11f.f | ⊢ (𝜑 → 𝐹 ∈ (𝐾 Cn 𝐿)) |
Ref | Expression |
---|---|
cnmpt11f | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐹‘𝐴)) ∈ (𝐽 Cn 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmptid.j | . 2 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
2 | cnmpt11.a | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) | |
3 | cntop2 22300 | . . . 4 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → 𝐾 ∈ Top) |
5 | toptopon2 21975 | . . 3 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) | |
6 | 4, 5 | sylib 217 | . 2 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
7 | cnmpt11f.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐾 Cn 𝐿)) | |
8 | eqid 2738 | . . . . . 6 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
9 | eqid 2738 | . . . . . 6 ⊢ ∪ 𝐿 = ∪ 𝐿 | |
10 | 8, 9 | cnf 22305 | . . . . 5 ⊢ (𝐹 ∈ (𝐾 Cn 𝐿) → 𝐹:∪ 𝐾⟶∪ 𝐿) |
11 | 7, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:∪ 𝐾⟶∪ 𝐿) |
12 | 11 | feqmptd 6819 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑦 ∈ ∪ 𝐾 ↦ (𝐹‘𝑦))) |
13 | 12, 7 | eqeltrrd 2840 | . 2 ⊢ (𝜑 → (𝑦 ∈ ∪ 𝐾 ↦ (𝐹‘𝑦)) ∈ (𝐾 Cn 𝐿)) |
14 | fveq2 6756 | . 2 ⊢ (𝑦 = 𝐴 → (𝐹‘𝑦) = (𝐹‘𝐴)) | |
15 | 1, 2, 6, 13, 14 | cnmpt11 22722 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐹‘𝐴)) ∈ (𝐽 Cn 𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∪ cuni 4836 ↦ cmpt 5153 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Topctop 21950 TopOnctopon 21967 Cn ccn 22283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-top 21951 df-topon 21968 df-cn 22286 |
This theorem is referenced by: cnmpt12f 22725 tgpmulg 23152 prdstgpd 23184 pcorevcl 24094 pcorevlem 24095 logcn 25707 loglesqrt 25816 efrlim 26024 cvmliftlem8 33154 knoppcnlem10 34609 areacirclem2 35793 areacirclem4 35795 |
Copyright terms: Public domain | W3C validator |