| Step | Hyp | Ref
| Expression |
| 1 | | logf1o 26606 |
. . . . . . 7
⊢
log:(ℂ ∖ {0})–1-1-onto→ran
log |
| 2 | | f1of 6848 |
. . . . . . 7
⊢
(log:(ℂ ∖ {0})–1-1-onto→ran
log → log:(ℂ ∖ {0})⟶ran log) |
| 3 | 1, 2 | ax-mp 5 |
. . . . . 6
⊢
log:(ℂ ∖ {0})⟶ran log |
| 4 | | logcn.d |
. . . . . . 7
⊢ 𝐷 = (ℂ ∖
(-∞(,]0)) |
| 5 | 4 | logdmss 26684 |
. . . . . 6
⊢ 𝐷 ⊆ (ℂ ∖
{0}) |
| 6 | | fssres 6774 |
. . . . . 6
⊢
((log:(ℂ ∖ {0})⟶ran log ∧ 𝐷 ⊆ (ℂ ∖ {0})) → (log
↾ 𝐷):𝐷⟶ran
log) |
| 7 | 3, 5, 6 | mp2an 692 |
. . . . 5
⊢ (log
↾ 𝐷):𝐷⟶ran log |
| 8 | | ffn 6736 |
. . . . 5
⊢ ((log
↾ 𝐷):𝐷⟶ran log → (log
↾ 𝐷) Fn 𝐷) |
| 9 | 7, 8 | ax-mp 5 |
. . . 4
⊢ (log
↾ 𝐷) Fn 𝐷 |
| 10 | | dffn5 6967 |
. . . 4
⊢ ((log
↾ 𝐷) Fn 𝐷 ↔ (log ↾ 𝐷) = (𝑥 ∈ 𝐷 ↦ ((log ↾ 𝐷)‘𝑥))) |
| 11 | 9, 10 | mpbi 230 |
. . 3
⊢ (log
↾ 𝐷) = (𝑥 ∈ 𝐷 ↦ ((log ↾ 𝐷)‘𝑥)) |
| 12 | | fvres 6925 |
. . . . 5
⊢ (𝑥 ∈ 𝐷 → ((log ↾ 𝐷)‘𝑥) = (log‘𝑥)) |
| 13 | 4 | ellogdm 26681 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐷 ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ℝ → 𝑥 ∈
ℝ+))) |
| 14 | 13 | simplbi 497 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ ℂ) |
| 15 | 4 | logdmn0 26682 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 → 𝑥 ≠ 0) |
| 16 | 14, 15 | logcld 26612 |
. . . . . 6
⊢ (𝑥 ∈ 𝐷 → (log‘𝑥) ∈ ℂ) |
| 17 | 16 | replimd 15236 |
. . . . 5
⊢ (𝑥 ∈ 𝐷 → (log‘𝑥) = ((ℜ‘(log‘𝑥)) + (i ·
(ℑ‘(log‘𝑥))))) |
| 18 | | relog 26639 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) →
(ℜ‘(log‘𝑥)) = (log‘(abs‘𝑥))) |
| 19 | 14, 15, 18 | syl2anc 584 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 → (ℜ‘(log‘𝑥)) = (log‘(abs‘𝑥))) |
| 20 | 14, 15 | absrpcld 15487 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐷 → (abs‘𝑥) ∈
ℝ+) |
| 21 | 20 | fvresd 6926 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 → ((log ↾
ℝ+)‘(abs‘𝑥)) = (log‘(abs‘𝑥))) |
| 22 | 19, 21 | eqtr4d 2780 |
. . . . . 6
⊢ (𝑥 ∈ 𝐷 → (ℜ‘(log‘𝑥)) = ((log ↾
ℝ+)‘(abs‘𝑥))) |
| 23 | 22 | oveq1d 7446 |
. . . . 5
⊢ (𝑥 ∈ 𝐷 → ((ℜ‘(log‘𝑥)) + (i ·
(ℑ‘(log‘𝑥)))) = (((log ↾
ℝ+)‘(abs‘𝑥)) + (i ·
(ℑ‘(log‘𝑥))))) |
| 24 | 12, 17, 23 | 3eqtrd 2781 |
. . . 4
⊢ (𝑥 ∈ 𝐷 → ((log ↾ 𝐷)‘𝑥) = (((log ↾
ℝ+)‘(abs‘𝑥)) + (i ·
(ℑ‘(log‘𝑥))))) |
| 25 | 24 | mpteq2ia 5245 |
. . 3
⊢ (𝑥 ∈ 𝐷 ↦ ((log ↾ 𝐷)‘𝑥)) = (𝑥 ∈ 𝐷 ↦ (((log ↾
ℝ+)‘(abs‘𝑥)) + (i ·
(ℑ‘(log‘𝑥))))) |
| 26 | 11, 25 | eqtri 2765 |
. 2
⊢ (log
↾ 𝐷) = (𝑥 ∈ 𝐷 ↦ (((log ↾
ℝ+)‘(abs‘𝑥)) + (i ·
(ℑ‘(log‘𝑥))))) |
| 27 | | eqid 2737 |
. . . 4
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 28 | 27 | addcn 24887 |
. . . . 5
⊢ + ∈
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) |
| 29 | 28 | a1i 11 |
. . . 4
⊢ (⊤
→ + ∈ (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld))) |
| 30 | 27 | cnfldtopon 24803 |
. . . . . . . 8
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
| 31 | 14 | ssriv 3987 |
. . . . . . . 8
⊢ 𝐷 ⊆
ℂ |
| 32 | | resttopon 23169 |
. . . . . . . 8
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ 𝐷 ⊆ ℂ)
→ ((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷)) |
| 33 | 30, 31, 32 | mp2an 692 |
. . . . . . 7
⊢
((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷) |
| 34 | 33 | a1i 11 |
. . . . . 6
⊢ (⊤
→ ((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷)) |
| 35 | | absf 15376 |
. . . . . . . . . . . 12
⊢
abs:ℂ⟶ℝ |
| 36 | | fssres 6774 |
. . . . . . . . . . . 12
⊢
((abs:ℂ⟶ℝ ∧ 𝐷 ⊆ ℂ) → (abs ↾ 𝐷):𝐷⟶ℝ) |
| 37 | 35, 31, 36 | mp2an 692 |
. . . . . . . . . . 11
⊢ (abs
↾ 𝐷):𝐷⟶ℝ |
| 38 | 37 | a1i 11 |
. . . . . . . . . 10
⊢ (⊤
→ (abs ↾ 𝐷):𝐷⟶ℝ) |
| 39 | 38 | feqmptd 6977 |
. . . . . . . . 9
⊢ (⊤
→ (abs ↾ 𝐷) =
(𝑥 ∈ 𝐷 ↦ ((abs ↾ 𝐷)‘𝑥))) |
| 40 | | fvres 6925 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐷 → ((abs ↾ 𝐷)‘𝑥) = (abs‘𝑥)) |
| 41 | 40 | mpteq2ia 5245 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐷 ↦ ((abs ↾ 𝐷)‘𝑥)) = (𝑥 ∈ 𝐷 ↦ (abs‘𝑥)) |
| 42 | 39, 41 | eqtrdi 2793 |
. . . . . . . 8
⊢ (⊤
→ (abs ↾ 𝐷) =
(𝑥 ∈ 𝐷 ↦ (abs‘𝑥))) |
| 43 | | ffn 6736 |
. . . . . . . . . . 11
⊢ ((abs
↾ 𝐷):𝐷⟶ℝ → (abs
↾ 𝐷) Fn 𝐷) |
| 44 | 37, 43 | ax-mp 5 |
. . . . . . . . . 10
⊢ (abs
↾ 𝐷) Fn 𝐷 |
| 45 | 40, 20 | eqeltrd 2841 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐷 → ((abs ↾ 𝐷)‘𝑥) ∈
ℝ+) |
| 46 | 45 | rgen 3063 |
. . . . . . . . . 10
⊢
∀𝑥 ∈
𝐷 ((abs ↾ 𝐷)‘𝑥) ∈ ℝ+ |
| 47 | | ffnfv 7139 |
. . . . . . . . . 10
⊢ ((abs
↾ 𝐷):𝐷⟶ℝ+
↔ ((abs ↾ 𝐷) Fn
𝐷 ∧ ∀𝑥 ∈ 𝐷 ((abs ↾ 𝐷)‘𝑥) ∈
ℝ+)) |
| 48 | 44, 46, 47 | mpbir2an 711 |
. . . . . . . . 9
⊢ (abs
↾ 𝐷):𝐷⟶ℝ+ |
| 49 | | rpssre 13042 |
. . . . . . . . . . 11
⊢
ℝ+ ⊆ ℝ |
| 50 | | ax-resscn 11212 |
. . . . . . . . . . 11
⊢ ℝ
⊆ ℂ |
| 51 | 49, 50 | sstri 3993 |
. . . . . . . . . 10
⊢
ℝ+ ⊆ ℂ |
| 52 | | abscncf 24927 |
. . . . . . . . . . 11
⊢ abs
∈ (ℂ–cn→ℝ) |
| 53 | | rescncf 24923 |
. . . . . . . . . . 11
⊢ (𝐷 ⊆ ℂ → (abs
∈ (ℂ–cn→ℝ)
→ (abs ↾ 𝐷)
∈ (𝐷–cn→ℝ))) |
| 54 | 31, 52, 53 | mp2 9 |
. . . . . . . . . 10
⊢ (abs
↾ 𝐷) ∈ (𝐷–cn→ℝ) |
| 55 | | cncfcdm 24924 |
. . . . . . . . . 10
⊢
((ℝ+ ⊆ ℂ ∧ (abs ↾ 𝐷) ∈ (𝐷–cn→ℝ)) → ((abs ↾ 𝐷) ∈ (𝐷–cn→ℝ+) ↔ (abs ↾ 𝐷):𝐷⟶ℝ+)) |
| 56 | 51, 54, 55 | mp2an 692 |
. . . . . . . . 9
⊢ ((abs
↾ 𝐷) ∈ (𝐷–cn→ℝ+) ↔ (abs ↾ 𝐷):𝐷⟶ℝ+) |
| 57 | 48, 56 | mpbir 231 |
. . . . . . . 8
⊢ (abs
↾ 𝐷) ∈ (𝐷–cn→ℝ+) |
| 58 | 42, 57 | eqeltrrdi 2850 |
. . . . . . 7
⊢ (⊤
→ (𝑥 ∈ 𝐷 ↦ (abs‘𝑥)) ∈ (𝐷–cn→ℝ+)) |
| 59 | | eqid 2737 |
. . . . . . . . 9
⊢
((TopOpen‘ℂfld) ↾t 𝐷) =
((TopOpen‘ℂfld) ↾t 𝐷) |
| 60 | | eqid 2737 |
. . . . . . . . 9
⊢
((TopOpen‘ℂfld) ↾t
ℝ+) = ((TopOpen‘ℂfld)
↾t ℝ+) |
| 61 | 27, 59, 60 | cncfcn 24936 |
. . . . . . . 8
⊢ ((𝐷 ⊆ ℂ ∧
ℝ+ ⊆ ℂ) → (𝐷–cn→ℝ+) =
(((TopOpen‘ℂfld) ↾t 𝐷) Cn ((TopOpen‘ℂfld)
↾t ℝ+))) |
| 62 | 31, 51, 61 | mp2an 692 |
. . . . . . 7
⊢ (𝐷–cn→ℝ+) =
(((TopOpen‘ℂfld) ↾t 𝐷) Cn ((TopOpen‘ℂfld)
↾t ℝ+)) |
| 63 | 58, 62 | eleqtrdi 2851 |
. . . . . 6
⊢ (⊤
→ (𝑥 ∈ 𝐷 ↦ (abs‘𝑥)) ∈
(((TopOpen‘ℂfld) ↾t 𝐷) Cn ((TopOpen‘ℂfld)
↾t ℝ+))) |
| 64 | | ssid 4006 |
. . . . . . . . . 10
⊢ ℂ
⊆ ℂ |
| 65 | | cncfss 24925 |
. . . . . . . . . 10
⊢ ((ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) →
(ℝ+–cn→ℝ) ⊆
(ℝ+–cn→ℂ)) |
| 66 | 50, 64, 65 | mp2an 692 |
. . . . . . . . 9
⊢
(ℝ+–cn→ℝ) ⊆
(ℝ+–cn→ℂ) |
| 67 | | relogcn 26680 |
. . . . . . . . 9
⊢ (log
↾ ℝ+) ∈ (ℝ+–cn→ℝ) |
| 68 | 66, 67 | sselii 3980 |
. . . . . . . 8
⊢ (log
↾ ℝ+) ∈ (ℝ+–cn→ℂ) |
| 69 | 68 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ (log ↾ ℝ+) ∈
(ℝ+–cn→ℂ)) |
| 70 | 30 | toponrestid 22927 |
. . . . . . . . 9
⊢
(TopOpen‘ℂfld) =
((TopOpen‘ℂfld) ↾t
ℂ) |
| 71 | 27, 60, 70 | cncfcn 24936 |
. . . . . . . 8
⊢
((ℝ+ ⊆ ℂ ∧ ℂ ⊆ ℂ)
→ (ℝ+–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t
ℝ+) Cn
(TopOpen‘ℂfld))) |
| 72 | 51, 64, 71 | mp2an 692 |
. . . . . . 7
⊢
(ℝ+–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t
ℝ+) Cn (TopOpen‘ℂfld)) |
| 73 | 69, 72 | eleqtrdi 2851 |
. . . . . 6
⊢ (⊤
→ (log ↾ ℝ+) ∈
(((TopOpen‘ℂfld) ↾t
ℝ+) Cn
(TopOpen‘ℂfld))) |
| 74 | 34, 63, 73 | cnmpt11f 23672 |
. . . . 5
⊢ (⊤
→ (𝑥 ∈ 𝐷 ↦ ((log ↾
ℝ+)‘(abs‘𝑥))) ∈
(((TopOpen‘ℂfld) ↾t 𝐷) Cn
(TopOpen‘ℂfld))) |
| 75 | 27, 59, 70 | cncfcn 24936 |
. . . . . 6
⊢ ((𝐷 ⊆ ℂ ∧ ℂ
⊆ ℂ) → (𝐷–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t 𝐷) Cn
(TopOpen‘ℂfld))) |
| 76 | 31, 64, 75 | mp2an 692 |
. . . . 5
⊢ (𝐷–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t 𝐷) Cn
(TopOpen‘ℂfld)) |
| 77 | 74, 76 | eleqtrrdi 2852 |
. . . 4
⊢ (⊤
→ (𝑥 ∈ 𝐷 ↦ ((log ↾
ℝ+)‘(abs‘𝑥))) ∈ (𝐷–cn→ℂ)) |
| 78 | 16 | imcld 15234 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐷 → (ℑ‘(log‘𝑥)) ∈
ℝ) |
| 79 | 78 | recnd 11289 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 → (ℑ‘(log‘𝑥)) ∈
ℂ) |
| 80 | 79 | adantl 481 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ 𝐷) →
(ℑ‘(log‘𝑥)) ∈ ℂ) |
| 81 | | eqidd 2738 |
. . . . . 6
⊢ (⊤
→ (𝑥 ∈ 𝐷 ↦
(ℑ‘(log‘𝑥))) = (𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥)))) |
| 82 | | eqidd 2738 |
. . . . . 6
⊢ (⊤
→ (𝑦 ∈ ℂ
↦ (i · 𝑦)) =
(𝑦 ∈ ℂ ↦
(i · 𝑦))) |
| 83 | | oveq2 7439 |
. . . . . 6
⊢ (𝑦 =
(ℑ‘(log‘𝑥)) → (i · 𝑦) = (i ·
(ℑ‘(log‘𝑥)))) |
| 84 | 80, 81, 82, 83 | fmptco 7149 |
. . . . 5
⊢ (⊤
→ ((𝑦 ∈ ℂ
↦ (i · 𝑦))
∘ (𝑥 ∈ 𝐷 ↦
(ℑ‘(log‘𝑥)))) = (𝑥 ∈ 𝐷 ↦ (i ·
(ℑ‘(log‘𝑥))))) |
| 85 | | cncfss 24925 |
. . . . . . . . 9
⊢ ((ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐷–cn→ℝ) ⊆ (𝐷–cn→ℂ)) |
| 86 | 50, 64, 85 | mp2an 692 |
. . . . . . . 8
⊢ (𝐷–cn→ℝ) ⊆ (𝐷–cn→ℂ) |
| 87 | 4 | logcnlem5 26688 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥))) ∈ (𝐷–cn→ℝ) |
| 88 | 86, 87 | sselii 3980 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥))) ∈ (𝐷–cn→ℂ) |
| 89 | 88 | a1i 11 |
. . . . . 6
⊢ (⊤
→ (𝑥 ∈ 𝐷 ↦
(ℑ‘(log‘𝑥))) ∈ (𝐷–cn→ℂ)) |
| 90 | | ax-icn 11214 |
. . . . . . 7
⊢ i ∈
ℂ |
| 91 | | eqid 2737 |
. . . . . . . 8
⊢ (𝑦 ∈ ℂ ↦ (i
· 𝑦)) = (𝑦 ∈ ℂ ↦ (i
· 𝑦)) |
| 92 | 91 | mulc1cncf 24931 |
. . . . . . 7
⊢ (i ∈
ℂ → (𝑦 ∈
ℂ ↦ (i · 𝑦)) ∈ (ℂ–cn→ℂ)) |
| 93 | 90, 92 | mp1i 13 |
. . . . . 6
⊢ (⊤
→ (𝑦 ∈ ℂ
↦ (i · 𝑦))
∈ (ℂ–cn→ℂ)) |
| 94 | 89, 93 | cncfco 24933 |
. . . . 5
⊢ (⊤
→ ((𝑦 ∈ ℂ
↦ (i · 𝑦))
∘ (𝑥 ∈ 𝐷 ↦
(ℑ‘(log‘𝑥)))) ∈ (𝐷–cn→ℂ)) |
| 95 | 84, 94 | eqeltrrd 2842 |
. . . 4
⊢ (⊤
→ (𝑥 ∈ 𝐷 ↦ (i ·
(ℑ‘(log‘𝑥)))) ∈ (𝐷–cn→ℂ)) |
| 96 | 27, 29, 77, 95 | cncfmpt2f 24941 |
. . 3
⊢ (⊤
→ (𝑥 ∈ 𝐷 ↦ (((log ↾
ℝ+)‘(abs‘𝑥)) + (i ·
(ℑ‘(log‘𝑥))))) ∈ (𝐷–cn→ℂ)) |
| 97 | 96 | mptru 1547 |
. 2
⊢ (𝑥 ∈ 𝐷 ↦ (((log ↾
ℝ+)‘(abs‘𝑥)) + (i ·
(ℑ‘(log‘𝑥))))) ∈ (𝐷–cn→ℂ) |
| 98 | 26, 97 | eqeltri 2837 |
1
⊢ (log
↾ 𝐷) ∈ (𝐷–cn→ℂ) |