MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logcn Structured version   Visualization version   GIF version

Theorem logcn 26606
Description: The logarithm function is continuous away from the branch cut at negative reals. (Contributed by Mario Carneiro, 25-Feb-2015.)
Hypothesis
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
logcn (log ↾ 𝐷) ∈ (𝐷cn→ℂ)

Proof of Theorem logcn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 logf1o 26523 . . . . . . 7 log:(ℂ ∖ {0})–1-1-onto→ran log
2 f1of 6817 . . . . . . 7 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log)
31, 2ax-mp 5 . . . . . 6 log:(ℂ ∖ {0})⟶ran log
4 logcn.d . . . . . . 7 𝐷 = (ℂ ∖ (-∞(,]0))
54logdmss 26601 . . . . . 6 𝐷 ⊆ (ℂ ∖ {0})
6 fssres 6743 . . . . . 6 ((log:(ℂ ∖ {0})⟶ran log ∧ 𝐷 ⊆ (ℂ ∖ {0})) → (log ↾ 𝐷):𝐷⟶ran log)
73, 5, 6mp2an 692 . . . . 5 (log ↾ 𝐷):𝐷⟶ran log
8 ffn 6705 . . . . 5 ((log ↾ 𝐷):𝐷⟶ran log → (log ↾ 𝐷) Fn 𝐷)
97, 8ax-mp 5 . . . 4 (log ↾ 𝐷) Fn 𝐷
10 dffn5 6936 . . . 4 ((log ↾ 𝐷) Fn 𝐷 ↔ (log ↾ 𝐷) = (𝑥𝐷 ↦ ((log ↾ 𝐷)‘𝑥)))
119, 10mpbi 230 . . 3 (log ↾ 𝐷) = (𝑥𝐷 ↦ ((log ↾ 𝐷)‘𝑥))
12 fvres 6894 . . . . 5 (𝑥𝐷 → ((log ↾ 𝐷)‘𝑥) = (log‘𝑥))
134ellogdm 26598 . . . . . . . 8 (𝑥𝐷 ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+)))
1413simplbi 497 . . . . . . 7 (𝑥𝐷𝑥 ∈ ℂ)
154logdmn0 26599 . . . . . . 7 (𝑥𝐷𝑥 ≠ 0)
1614, 15logcld 26529 . . . . . 6 (𝑥𝐷 → (log‘𝑥) ∈ ℂ)
1716replimd 15214 . . . . 5 (𝑥𝐷 → (log‘𝑥) = ((ℜ‘(log‘𝑥)) + (i · (ℑ‘(log‘𝑥)))))
18 relog 26556 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (ℜ‘(log‘𝑥)) = (log‘(abs‘𝑥)))
1914, 15, 18syl2anc 584 . . . . . . 7 (𝑥𝐷 → (ℜ‘(log‘𝑥)) = (log‘(abs‘𝑥)))
2014, 15absrpcld 15465 . . . . . . . 8 (𝑥𝐷 → (abs‘𝑥) ∈ ℝ+)
2120fvresd 6895 . . . . . . 7 (𝑥𝐷 → ((log ↾ ℝ+)‘(abs‘𝑥)) = (log‘(abs‘𝑥)))
2219, 21eqtr4d 2773 . . . . . 6 (𝑥𝐷 → (ℜ‘(log‘𝑥)) = ((log ↾ ℝ+)‘(abs‘𝑥)))
2322oveq1d 7418 . . . . 5 (𝑥𝐷 → ((ℜ‘(log‘𝑥)) + (i · (ℑ‘(log‘𝑥)))) = (((log ↾ ℝ+)‘(abs‘𝑥)) + (i · (ℑ‘(log‘𝑥)))))
2412, 17, 233eqtrd 2774 . . . 4 (𝑥𝐷 → ((log ↾ 𝐷)‘𝑥) = (((log ↾ ℝ+)‘(abs‘𝑥)) + (i · (ℑ‘(log‘𝑥)))))
2524mpteq2ia 5216 . . 3 (𝑥𝐷 ↦ ((log ↾ 𝐷)‘𝑥)) = (𝑥𝐷 ↦ (((log ↾ ℝ+)‘(abs‘𝑥)) + (i · (ℑ‘(log‘𝑥)))))
2611, 25eqtri 2758 . 2 (log ↾ 𝐷) = (𝑥𝐷 ↦ (((log ↾ ℝ+)‘(abs‘𝑥)) + (i · (ℑ‘(log‘𝑥)))))
27 eqid 2735 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2827addcn 24803 . . . . 5 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
2928a1i 11 . . . 4 (⊤ → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
3027cnfldtopon 24719 . . . . . . . 8 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
3114ssriv 3962 . . . . . . . 8 𝐷 ⊆ ℂ
32 resttopon 23097 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝐷 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷))
3330, 31, 32mp2an 692 . . . . . . 7 ((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷)
3433a1i 11 . . . . . 6 (⊤ → ((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷))
35 absf 15354 . . . . . . . . . . . 12 abs:ℂ⟶ℝ
36 fssres 6743 . . . . . . . . . . . 12 ((abs:ℂ⟶ℝ ∧ 𝐷 ⊆ ℂ) → (abs ↾ 𝐷):𝐷⟶ℝ)
3735, 31, 36mp2an 692 . . . . . . . . . . 11 (abs ↾ 𝐷):𝐷⟶ℝ
3837a1i 11 . . . . . . . . . 10 (⊤ → (abs ↾ 𝐷):𝐷⟶ℝ)
3938feqmptd 6946 . . . . . . . . 9 (⊤ → (abs ↾ 𝐷) = (𝑥𝐷 ↦ ((abs ↾ 𝐷)‘𝑥)))
40 fvres 6894 . . . . . . . . . 10 (𝑥𝐷 → ((abs ↾ 𝐷)‘𝑥) = (abs‘𝑥))
4140mpteq2ia 5216 . . . . . . . . 9 (𝑥𝐷 ↦ ((abs ↾ 𝐷)‘𝑥)) = (𝑥𝐷 ↦ (abs‘𝑥))
4239, 41eqtrdi 2786 . . . . . . . 8 (⊤ → (abs ↾ 𝐷) = (𝑥𝐷 ↦ (abs‘𝑥)))
43 ffn 6705 . . . . . . . . . . 11 ((abs ↾ 𝐷):𝐷⟶ℝ → (abs ↾ 𝐷) Fn 𝐷)
4437, 43ax-mp 5 . . . . . . . . . 10 (abs ↾ 𝐷) Fn 𝐷
4540, 20eqeltrd 2834 . . . . . . . . . . 11 (𝑥𝐷 → ((abs ↾ 𝐷)‘𝑥) ∈ ℝ+)
4645rgen 3053 . . . . . . . . . 10 𝑥𝐷 ((abs ↾ 𝐷)‘𝑥) ∈ ℝ+
47 ffnfv 7108 . . . . . . . . . 10 ((abs ↾ 𝐷):𝐷⟶ℝ+ ↔ ((abs ↾ 𝐷) Fn 𝐷 ∧ ∀𝑥𝐷 ((abs ↾ 𝐷)‘𝑥) ∈ ℝ+))
4844, 46, 47mpbir2an 711 . . . . . . . . 9 (abs ↾ 𝐷):𝐷⟶ℝ+
49 rpssre 13014 . . . . . . . . . . 11 + ⊆ ℝ
50 ax-resscn 11184 . . . . . . . . . . 11 ℝ ⊆ ℂ
5149, 50sstri 3968 . . . . . . . . . 10 + ⊆ ℂ
52 abscncf 24843 . . . . . . . . . . 11 abs ∈ (ℂ–cn→ℝ)
53 rescncf 24839 . . . . . . . . . . 11 (𝐷 ⊆ ℂ → (abs ∈ (ℂ–cn→ℝ) → (abs ↾ 𝐷) ∈ (𝐷cn→ℝ)))
5431, 52, 53mp2 9 . . . . . . . . . 10 (abs ↾ 𝐷) ∈ (𝐷cn→ℝ)
55 cncfcdm 24840 . . . . . . . . . 10 ((ℝ+ ⊆ ℂ ∧ (abs ↾ 𝐷) ∈ (𝐷cn→ℝ)) → ((abs ↾ 𝐷) ∈ (𝐷cn→ℝ+) ↔ (abs ↾ 𝐷):𝐷⟶ℝ+))
5651, 54, 55mp2an 692 . . . . . . . . 9 ((abs ↾ 𝐷) ∈ (𝐷cn→ℝ+) ↔ (abs ↾ 𝐷):𝐷⟶ℝ+)
5748, 56mpbir 231 . . . . . . . 8 (abs ↾ 𝐷) ∈ (𝐷cn→ℝ+)
5842, 57eqeltrrdi 2843 . . . . . . 7 (⊤ → (𝑥𝐷 ↦ (abs‘𝑥)) ∈ (𝐷cn→ℝ+))
59 eqid 2735 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t 𝐷) = ((TopOpen‘ℂfld) ↾t 𝐷)
60 eqid 2735 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t+) = ((TopOpen‘ℂfld) ↾t+)
6127, 59, 60cncfcn 24852 . . . . . . . 8 ((𝐷 ⊆ ℂ ∧ ℝ+ ⊆ ℂ) → (𝐷cn→ℝ+) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn ((TopOpen‘ℂfld) ↾t+)))
6231, 51, 61mp2an 692 . . . . . . 7 (𝐷cn→ℝ+) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn ((TopOpen‘ℂfld) ↾t+))
6358, 62eleqtrdi 2844 . . . . . 6 (⊤ → (𝑥𝐷 ↦ (abs‘𝑥)) ∈ (((TopOpen‘ℂfld) ↾t 𝐷) Cn ((TopOpen‘ℂfld) ↾t+)))
64 ssid 3981 . . . . . . . . . 10 ℂ ⊆ ℂ
65 cncfss 24841 . . . . . . . . . 10 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ+cn→ℝ) ⊆ (ℝ+cn→ℂ))
6650, 64, 65mp2an 692 . . . . . . . . 9 (ℝ+cn→ℝ) ⊆ (ℝ+cn→ℂ)
67 relogcn 26597 . . . . . . . . 9 (log ↾ ℝ+) ∈ (ℝ+cn→ℝ)
6866, 67sselii 3955 . . . . . . . 8 (log ↾ ℝ+) ∈ (ℝ+cn→ℂ)
6968a1i 11 . . . . . . 7 (⊤ → (log ↾ ℝ+) ∈ (ℝ+cn→ℂ))
7030toponrestid 22857 . . . . . . . . 9 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
7127, 60, 70cncfcn 24852 . . . . . . . 8 ((ℝ+ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ+cn→ℂ) = (((TopOpen‘ℂfld) ↾t+) Cn (TopOpen‘ℂfld)))
7251, 64, 71mp2an 692 . . . . . . 7 (ℝ+cn→ℂ) = (((TopOpen‘ℂfld) ↾t+) Cn (TopOpen‘ℂfld))
7369, 72eleqtrdi 2844 . . . . . 6 (⊤ → (log ↾ ℝ+) ∈ (((TopOpen‘ℂfld) ↾t+) Cn (TopOpen‘ℂfld)))
7434, 63, 73cnmpt11f 23600 . . . . 5 (⊤ → (𝑥𝐷 ↦ ((log ↾ ℝ+)‘(abs‘𝑥))) ∈ (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)))
7527, 59, 70cncfcn 24852 . . . . . 6 ((𝐷 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐷cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)))
7631, 64, 75mp2an 692 . . . . 5 (𝐷cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld))
7774, 76eleqtrrdi 2845 . . . 4 (⊤ → (𝑥𝐷 ↦ ((log ↾ ℝ+)‘(abs‘𝑥))) ∈ (𝐷cn→ℂ))
7816imcld 15212 . . . . . . . 8 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ∈ ℝ)
7978recnd 11261 . . . . . . 7 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ∈ ℂ)
8079adantl 481 . . . . . 6 ((⊤ ∧ 𝑥𝐷) → (ℑ‘(log‘𝑥)) ∈ ℂ)
81 eqidd 2736 . . . . . 6 (⊤ → (𝑥𝐷 ↦ (ℑ‘(log‘𝑥))) = (𝑥𝐷 ↦ (ℑ‘(log‘𝑥))))
82 eqidd 2736 . . . . . 6 (⊤ → (𝑦 ∈ ℂ ↦ (i · 𝑦)) = (𝑦 ∈ ℂ ↦ (i · 𝑦)))
83 oveq2 7411 . . . . . 6 (𝑦 = (ℑ‘(log‘𝑥)) → (i · 𝑦) = (i · (ℑ‘(log‘𝑥))))
8480, 81, 82, 83fmptco 7118 . . . . 5 (⊤ → ((𝑦 ∈ ℂ ↦ (i · 𝑦)) ∘ (𝑥𝐷 ↦ (ℑ‘(log‘𝑥)))) = (𝑥𝐷 ↦ (i · (ℑ‘(log‘𝑥)))))
85 cncfss 24841 . . . . . . . . 9 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐷cn→ℝ) ⊆ (𝐷cn→ℂ))
8650, 64, 85mp2an 692 . . . . . . . 8 (𝐷cn→ℝ) ⊆ (𝐷cn→ℂ)
874logcnlem5 26605 . . . . . . . 8 (𝑥𝐷 ↦ (ℑ‘(log‘𝑥))) ∈ (𝐷cn→ℝ)
8886, 87sselii 3955 . . . . . . 7 (𝑥𝐷 ↦ (ℑ‘(log‘𝑥))) ∈ (𝐷cn→ℂ)
8988a1i 11 . . . . . 6 (⊤ → (𝑥𝐷 ↦ (ℑ‘(log‘𝑥))) ∈ (𝐷cn→ℂ))
90 ax-icn 11186 . . . . . . 7 i ∈ ℂ
91 eqid 2735 . . . . . . . 8 (𝑦 ∈ ℂ ↦ (i · 𝑦)) = (𝑦 ∈ ℂ ↦ (i · 𝑦))
9291mulc1cncf 24847 . . . . . . 7 (i ∈ ℂ → (𝑦 ∈ ℂ ↦ (i · 𝑦)) ∈ (ℂ–cn→ℂ))
9390, 92mp1i 13 . . . . . 6 (⊤ → (𝑦 ∈ ℂ ↦ (i · 𝑦)) ∈ (ℂ–cn→ℂ))
9489, 93cncfco 24849 . . . . 5 (⊤ → ((𝑦 ∈ ℂ ↦ (i · 𝑦)) ∘ (𝑥𝐷 ↦ (ℑ‘(log‘𝑥)))) ∈ (𝐷cn→ℂ))
9584, 94eqeltrrd 2835 . . . 4 (⊤ → (𝑥𝐷 ↦ (i · (ℑ‘(log‘𝑥)))) ∈ (𝐷cn→ℂ))
9627, 29, 77, 95cncfmpt2f 24857 . . 3 (⊤ → (𝑥𝐷 ↦ (((log ↾ ℝ+)‘(abs‘𝑥)) + (i · (ℑ‘(log‘𝑥))))) ∈ (𝐷cn→ℂ))
9796mptru 1547 . 2 (𝑥𝐷 ↦ (((log ↾ ℝ+)‘(abs‘𝑥)) + (i · (ℑ‘(log‘𝑥))))) ∈ (𝐷cn→ℂ)
9826, 97eqeltri 2830 1 (log ↾ 𝐷) ∈ (𝐷cn→ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wtru 1541  wcel 2108  wne 2932  wral 3051  cdif 3923  wss 3926  {csn 4601  cmpt 5201  ran crn 5655  cres 5656  ccom 5658   Fn wfn 6525  wf 6526  1-1-ontowf1o 6529  cfv 6530  (class class class)co 7403  cc 11125  cr 11126  0cc0 11127  ici 11129   + caddc 11130   · cmul 11132  -∞cmnf 11265  +crp 13006  (,]cioc 13361  cre 15114  cim 15115  abscabs 15251  t crest 17432  TopOpenctopn 17433  fldccnfld 21313  TopOnctopon 22846   Cn ccn 23160   ×t ctx 23496  cnccncf 24818  logclog 26513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-ioc 13365  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-fl 13807  df-mod 13885  df-seq 14018  df-exp 14078  df-fac 14290  df-bc 14319  df-hash 14347  df-shft 15084  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-limsup 15485  df-clim 15502  df-rlim 15503  df-sum 15701  df-ef 16081  df-sin 16083  df-cos 16084  df-tan 16085  df-pi 16086  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-rest 17434  df-topn 17435  df-0g 17453  df-gsum 17454  df-topgen 17455  df-pt 17456  df-prds 17459  df-xrs 17514  df-qtop 17519  df-imas 17520  df-xps 17522  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-submnd 18760  df-mulg 19049  df-cntz 19298  df-cmn 19761  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-fbas 21310  df-fg 21311  df-cnfld 21314  df-top 22830  df-topon 22847  df-topsp 22869  df-bases 22882  df-cld 22955  df-ntr 22956  df-cls 22957  df-nei 23034  df-lp 23072  df-perf 23073  df-cn 23163  df-cnp 23164  df-haus 23251  df-cmp 23323  df-tx 23498  df-hmeo 23691  df-fil 23782  df-fm 23874  df-flim 23875  df-flf 23876  df-xms 24257  df-ms 24258  df-tms 24259  df-cncf 24820  df-limc 25817  df-dv 25818  df-log 26515
This theorem is referenced by:  dvlog  26610  efopnlem2  26616  dvcncxp1  26702  cxpcn  26704  cxpcnOLD  26705  lgamgulmlem2  26990  lgamcvg2  27015  areacirclem4  37681
  Copyright terms: Public domain W3C validator