MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logcn Structured version   Visualization version   GIF version

Theorem logcn 26572
Description: The logarithm function is continuous away from the branch cut at negative reals. (Contributed by Mario Carneiro, 25-Feb-2015.)
Hypothesis
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
logcn (log ↾ 𝐷) ∈ (𝐷cn→ℂ)

Proof of Theorem logcn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 logf1o 26489 . . . . . . 7 log:(ℂ ∖ {0})–1-1-onto→ran log
2 f1of 6768 . . . . . . 7 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log)
31, 2ax-mp 5 . . . . . 6 log:(ℂ ∖ {0})⟶ran log
4 logcn.d . . . . . . 7 𝐷 = (ℂ ∖ (-∞(,]0))
54logdmss 26567 . . . . . 6 𝐷 ⊆ (ℂ ∖ {0})
6 fssres 6694 . . . . . 6 ((log:(ℂ ∖ {0})⟶ran log ∧ 𝐷 ⊆ (ℂ ∖ {0})) → (log ↾ 𝐷):𝐷⟶ran log)
73, 5, 6mp2an 692 . . . . 5 (log ↾ 𝐷):𝐷⟶ran log
8 ffn 6656 . . . . 5 ((log ↾ 𝐷):𝐷⟶ran log → (log ↾ 𝐷) Fn 𝐷)
97, 8ax-mp 5 . . . 4 (log ↾ 𝐷) Fn 𝐷
10 dffn5 6885 . . . 4 ((log ↾ 𝐷) Fn 𝐷 ↔ (log ↾ 𝐷) = (𝑥𝐷 ↦ ((log ↾ 𝐷)‘𝑥)))
119, 10mpbi 230 . . 3 (log ↾ 𝐷) = (𝑥𝐷 ↦ ((log ↾ 𝐷)‘𝑥))
12 fvres 6845 . . . . 5 (𝑥𝐷 → ((log ↾ 𝐷)‘𝑥) = (log‘𝑥))
134ellogdm 26564 . . . . . . . 8 (𝑥𝐷 ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+)))
1413simplbi 497 . . . . . . 7 (𝑥𝐷𝑥 ∈ ℂ)
154logdmn0 26565 . . . . . . 7 (𝑥𝐷𝑥 ≠ 0)
1614, 15logcld 26495 . . . . . 6 (𝑥𝐷 → (log‘𝑥) ∈ ℂ)
1716replimd 15122 . . . . 5 (𝑥𝐷 → (log‘𝑥) = ((ℜ‘(log‘𝑥)) + (i · (ℑ‘(log‘𝑥)))))
18 relog 26522 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (ℜ‘(log‘𝑥)) = (log‘(abs‘𝑥)))
1914, 15, 18syl2anc 584 . . . . . . 7 (𝑥𝐷 → (ℜ‘(log‘𝑥)) = (log‘(abs‘𝑥)))
2014, 15absrpcld 15376 . . . . . . . 8 (𝑥𝐷 → (abs‘𝑥) ∈ ℝ+)
2120fvresd 6846 . . . . . . 7 (𝑥𝐷 → ((log ↾ ℝ+)‘(abs‘𝑥)) = (log‘(abs‘𝑥)))
2219, 21eqtr4d 2767 . . . . . 6 (𝑥𝐷 → (ℜ‘(log‘𝑥)) = ((log ↾ ℝ+)‘(abs‘𝑥)))
2322oveq1d 7368 . . . . 5 (𝑥𝐷 → ((ℜ‘(log‘𝑥)) + (i · (ℑ‘(log‘𝑥)))) = (((log ↾ ℝ+)‘(abs‘𝑥)) + (i · (ℑ‘(log‘𝑥)))))
2412, 17, 233eqtrd 2768 . . . 4 (𝑥𝐷 → ((log ↾ 𝐷)‘𝑥) = (((log ↾ ℝ+)‘(abs‘𝑥)) + (i · (ℑ‘(log‘𝑥)))))
2524mpteq2ia 5190 . . 3 (𝑥𝐷 ↦ ((log ↾ 𝐷)‘𝑥)) = (𝑥𝐷 ↦ (((log ↾ ℝ+)‘(abs‘𝑥)) + (i · (ℑ‘(log‘𝑥)))))
2611, 25eqtri 2752 . 2 (log ↾ 𝐷) = (𝑥𝐷 ↦ (((log ↾ ℝ+)‘(abs‘𝑥)) + (i · (ℑ‘(log‘𝑥)))))
27 eqid 2729 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2827addcn 24770 . . . . 5 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
2928a1i 11 . . . 4 (⊤ → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
3027cnfldtopon 24686 . . . . . . . 8 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
3114ssriv 3941 . . . . . . . 8 𝐷 ⊆ ℂ
32 resttopon 23064 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝐷 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷))
3330, 31, 32mp2an 692 . . . . . . 7 ((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷)
3433a1i 11 . . . . . 6 (⊤ → ((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷))
35 absf 15263 . . . . . . . . . . . 12 abs:ℂ⟶ℝ
36 fssres 6694 . . . . . . . . . . . 12 ((abs:ℂ⟶ℝ ∧ 𝐷 ⊆ ℂ) → (abs ↾ 𝐷):𝐷⟶ℝ)
3735, 31, 36mp2an 692 . . . . . . . . . . 11 (abs ↾ 𝐷):𝐷⟶ℝ
3837a1i 11 . . . . . . . . . 10 (⊤ → (abs ↾ 𝐷):𝐷⟶ℝ)
3938feqmptd 6895 . . . . . . . . 9 (⊤ → (abs ↾ 𝐷) = (𝑥𝐷 ↦ ((abs ↾ 𝐷)‘𝑥)))
40 fvres 6845 . . . . . . . . . 10 (𝑥𝐷 → ((abs ↾ 𝐷)‘𝑥) = (abs‘𝑥))
4140mpteq2ia 5190 . . . . . . . . 9 (𝑥𝐷 ↦ ((abs ↾ 𝐷)‘𝑥)) = (𝑥𝐷 ↦ (abs‘𝑥))
4239, 41eqtrdi 2780 . . . . . . . 8 (⊤ → (abs ↾ 𝐷) = (𝑥𝐷 ↦ (abs‘𝑥)))
43 ffn 6656 . . . . . . . . . . 11 ((abs ↾ 𝐷):𝐷⟶ℝ → (abs ↾ 𝐷) Fn 𝐷)
4437, 43ax-mp 5 . . . . . . . . . 10 (abs ↾ 𝐷) Fn 𝐷
4540, 20eqeltrd 2828 . . . . . . . . . . 11 (𝑥𝐷 → ((abs ↾ 𝐷)‘𝑥) ∈ ℝ+)
4645rgen 3046 . . . . . . . . . 10 𝑥𝐷 ((abs ↾ 𝐷)‘𝑥) ∈ ℝ+
47 ffnfv 7057 . . . . . . . . . 10 ((abs ↾ 𝐷):𝐷⟶ℝ+ ↔ ((abs ↾ 𝐷) Fn 𝐷 ∧ ∀𝑥𝐷 ((abs ↾ 𝐷)‘𝑥) ∈ ℝ+))
4844, 46, 47mpbir2an 711 . . . . . . . . 9 (abs ↾ 𝐷):𝐷⟶ℝ+
49 rpssre 12919 . . . . . . . . . . 11 + ⊆ ℝ
50 ax-resscn 11085 . . . . . . . . . . 11 ℝ ⊆ ℂ
5149, 50sstri 3947 . . . . . . . . . 10 + ⊆ ℂ
52 abscncf 24810 . . . . . . . . . . 11 abs ∈ (ℂ–cn→ℝ)
53 rescncf 24806 . . . . . . . . . . 11 (𝐷 ⊆ ℂ → (abs ∈ (ℂ–cn→ℝ) → (abs ↾ 𝐷) ∈ (𝐷cn→ℝ)))
5431, 52, 53mp2 9 . . . . . . . . . 10 (abs ↾ 𝐷) ∈ (𝐷cn→ℝ)
55 cncfcdm 24807 . . . . . . . . . 10 ((ℝ+ ⊆ ℂ ∧ (abs ↾ 𝐷) ∈ (𝐷cn→ℝ)) → ((abs ↾ 𝐷) ∈ (𝐷cn→ℝ+) ↔ (abs ↾ 𝐷):𝐷⟶ℝ+))
5651, 54, 55mp2an 692 . . . . . . . . 9 ((abs ↾ 𝐷) ∈ (𝐷cn→ℝ+) ↔ (abs ↾ 𝐷):𝐷⟶ℝ+)
5748, 56mpbir 231 . . . . . . . 8 (abs ↾ 𝐷) ∈ (𝐷cn→ℝ+)
5842, 57eqeltrrdi 2837 . . . . . . 7 (⊤ → (𝑥𝐷 ↦ (abs‘𝑥)) ∈ (𝐷cn→ℝ+))
59 eqid 2729 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t 𝐷) = ((TopOpen‘ℂfld) ↾t 𝐷)
60 eqid 2729 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t+) = ((TopOpen‘ℂfld) ↾t+)
6127, 59, 60cncfcn 24819 . . . . . . . 8 ((𝐷 ⊆ ℂ ∧ ℝ+ ⊆ ℂ) → (𝐷cn→ℝ+) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn ((TopOpen‘ℂfld) ↾t+)))
6231, 51, 61mp2an 692 . . . . . . 7 (𝐷cn→ℝ+) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn ((TopOpen‘ℂfld) ↾t+))
6358, 62eleqtrdi 2838 . . . . . 6 (⊤ → (𝑥𝐷 ↦ (abs‘𝑥)) ∈ (((TopOpen‘ℂfld) ↾t 𝐷) Cn ((TopOpen‘ℂfld) ↾t+)))
64 ssid 3960 . . . . . . . . . 10 ℂ ⊆ ℂ
65 cncfss 24808 . . . . . . . . . 10 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ+cn→ℝ) ⊆ (ℝ+cn→ℂ))
6650, 64, 65mp2an 692 . . . . . . . . 9 (ℝ+cn→ℝ) ⊆ (ℝ+cn→ℂ)
67 relogcn 26563 . . . . . . . . 9 (log ↾ ℝ+) ∈ (ℝ+cn→ℝ)
6866, 67sselii 3934 . . . . . . . 8 (log ↾ ℝ+) ∈ (ℝ+cn→ℂ)
6968a1i 11 . . . . . . 7 (⊤ → (log ↾ ℝ+) ∈ (ℝ+cn→ℂ))
7030toponrestid 22824 . . . . . . . . 9 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
7127, 60, 70cncfcn 24819 . . . . . . . 8 ((ℝ+ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ+cn→ℂ) = (((TopOpen‘ℂfld) ↾t+) Cn (TopOpen‘ℂfld)))
7251, 64, 71mp2an 692 . . . . . . 7 (ℝ+cn→ℂ) = (((TopOpen‘ℂfld) ↾t+) Cn (TopOpen‘ℂfld))
7369, 72eleqtrdi 2838 . . . . . 6 (⊤ → (log ↾ ℝ+) ∈ (((TopOpen‘ℂfld) ↾t+) Cn (TopOpen‘ℂfld)))
7434, 63, 73cnmpt11f 23567 . . . . 5 (⊤ → (𝑥𝐷 ↦ ((log ↾ ℝ+)‘(abs‘𝑥))) ∈ (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)))
7527, 59, 70cncfcn 24819 . . . . . 6 ((𝐷 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐷cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)))
7631, 64, 75mp2an 692 . . . . 5 (𝐷cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld))
7774, 76eleqtrrdi 2839 . . . 4 (⊤ → (𝑥𝐷 ↦ ((log ↾ ℝ+)‘(abs‘𝑥))) ∈ (𝐷cn→ℂ))
7816imcld 15120 . . . . . . . 8 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ∈ ℝ)
7978recnd 11162 . . . . . . 7 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ∈ ℂ)
8079adantl 481 . . . . . 6 ((⊤ ∧ 𝑥𝐷) → (ℑ‘(log‘𝑥)) ∈ ℂ)
81 eqidd 2730 . . . . . 6 (⊤ → (𝑥𝐷 ↦ (ℑ‘(log‘𝑥))) = (𝑥𝐷 ↦ (ℑ‘(log‘𝑥))))
82 eqidd 2730 . . . . . 6 (⊤ → (𝑦 ∈ ℂ ↦ (i · 𝑦)) = (𝑦 ∈ ℂ ↦ (i · 𝑦)))
83 oveq2 7361 . . . . . 6 (𝑦 = (ℑ‘(log‘𝑥)) → (i · 𝑦) = (i · (ℑ‘(log‘𝑥))))
8480, 81, 82, 83fmptco 7067 . . . . 5 (⊤ → ((𝑦 ∈ ℂ ↦ (i · 𝑦)) ∘ (𝑥𝐷 ↦ (ℑ‘(log‘𝑥)))) = (𝑥𝐷 ↦ (i · (ℑ‘(log‘𝑥)))))
85 cncfss 24808 . . . . . . . . 9 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐷cn→ℝ) ⊆ (𝐷cn→ℂ))
8650, 64, 85mp2an 692 . . . . . . . 8 (𝐷cn→ℝ) ⊆ (𝐷cn→ℂ)
874logcnlem5 26571 . . . . . . . 8 (𝑥𝐷 ↦ (ℑ‘(log‘𝑥))) ∈ (𝐷cn→ℝ)
8886, 87sselii 3934 . . . . . . 7 (𝑥𝐷 ↦ (ℑ‘(log‘𝑥))) ∈ (𝐷cn→ℂ)
8988a1i 11 . . . . . 6 (⊤ → (𝑥𝐷 ↦ (ℑ‘(log‘𝑥))) ∈ (𝐷cn→ℂ))
90 ax-icn 11087 . . . . . . 7 i ∈ ℂ
91 eqid 2729 . . . . . . . 8 (𝑦 ∈ ℂ ↦ (i · 𝑦)) = (𝑦 ∈ ℂ ↦ (i · 𝑦))
9291mulc1cncf 24814 . . . . . . 7 (i ∈ ℂ → (𝑦 ∈ ℂ ↦ (i · 𝑦)) ∈ (ℂ–cn→ℂ))
9390, 92mp1i 13 . . . . . 6 (⊤ → (𝑦 ∈ ℂ ↦ (i · 𝑦)) ∈ (ℂ–cn→ℂ))
9489, 93cncfco 24816 . . . . 5 (⊤ → ((𝑦 ∈ ℂ ↦ (i · 𝑦)) ∘ (𝑥𝐷 ↦ (ℑ‘(log‘𝑥)))) ∈ (𝐷cn→ℂ))
9584, 94eqeltrrd 2829 . . . 4 (⊤ → (𝑥𝐷 ↦ (i · (ℑ‘(log‘𝑥)))) ∈ (𝐷cn→ℂ))
9627, 29, 77, 95cncfmpt2f 24824 . . 3 (⊤ → (𝑥𝐷 ↦ (((log ↾ ℝ+)‘(abs‘𝑥)) + (i · (ℑ‘(log‘𝑥))))) ∈ (𝐷cn→ℂ))
9796mptru 1547 . 2 (𝑥𝐷 ↦ (((log ↾ ℝ+)‘(abs‘𝑥)) + (i · (ℑ‘(log‘𝑥))))) ∈ (𝐷cn→ℂ)
9826, 97eqeltri 2824 1 (log ↾ 𝐷) ∈ (𝐷cn→ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wtru 1541  wcel 2109  wne 2925  wral 3044  cdif 3902  wss 3905  {csn 4579  cmpt 5176  ran crn 5624  cres 5625  ccom 5627   Fn wfn 6481  wf 6482  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  ici 11030   + caddc 11031   · cmul 11033  -∞cmnf 11166  +crp 12911  (,]cioc 13267  cre 15022  cim 15023  abscabs 15159  t crest 17342  TopOpenctopn 17343  fldccnfld 21279  TopOnctopon 22813   Cn ccn 23127   ×t ctx 23463  cnccncf 24785  logclog 26479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-ef 15992  df-sin 15994  df-cos 15995  df-tan 15996  df-pi 15997  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-cmp 23290  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784  df-log 26481
This theorem is referenced by:  dvlog  26576  efopnlem2  26582  dvcncxp1  26668  cxpcn  26670  cxpcnOLD  26671  lgamgulmlem2  26956  lgamcvg2  26981  areacirclem4  37690
  Copyright terms: Public domain W3C validator