MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logcn Structured version   Visualization version   GIF version

Theorem logcn 26563
Description: The logarithm function is continuous away from the branch cut at negative reals. (Contributed by Mario Carneiro, 25-Feb-2015.)
Hypothesis
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
logcn (log ↾ 𝐷) ∈ (𝐷cn→ℂ)

Proof of Theorem logcn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 logf1o 26480 . . . . . . 7 log:(ℂ ∖ {0})–1-1-onto→ran log
2 f1of 6803 . . . . . . 7 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log)
31, 2ax-mp 5 . . . . . 6 log:(ℂ ∖ {0})⟶ran log
4 logcn.d . . . . . . 7 𝐷 = (ℂ ∖ (-∞(,]0))
54logdmss 26558 . . . . . 6 𝐷 ⊆ (ℂ ∖ {0})
6 fssres 6729 . . . . . 6 ((log:(ℂ ∖ {0})⟶ran log ∧ 𝐷 ⊆ (ℂ ∖ {0})) → (log ↾ 𝐷):𝐷⟶ran log)
73, 5, 6mp2an 692 . . . . 5 (log ↾ 𝐷):𝐷⟶ran log
8 ffn 6691 . . . . 5 ((log ↾ 𝐷):𝐷⟶ran log → (log ↾ 𝐷) Fn 𝐷)
97, 8ax-mp 5 . . . 4 (log ↾ 𝐷) Fn 𝐷
10 dffn5 6922 . . . 4 ((log ↾ 𝐷) Fn 𝐷 ↔ (log ↾ 𝐷) = (𝑥𝐷 ↦ ((log ↾ 𝐷)‘𝑥)))
119, 10mpbi 230 . . 3 (log ↾ 𝐷) = (𝑥𝐷 ↦ ((log ↾ 𝐷)‘𝑥))
12 fvres 6880 . . . . 5 (𝑥𝐷 → ((log ↾ 𝐷)‘𝑥) = (log‘𝑥))
134ellogdm 26555 . . . . . . . 8 (𝑥𝐷 ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+)))
1413simplbi 497 . . . . . . 7 (𝑥𝐷𝑥 ∈ ℂ)
154logdmn0 26556 . . . . . . 7 (𝑥𝐷𝑥 ≠ 0)
1614, 15logcld 26486 . . . . . 6 (𝑥𝐷 → (log‘𝑥) ∈ ℂ)
1716replimd 15170 . . . . 5 (𝑥𝐷 → (log‘𝑥) = ((ℜ‘(log‘𝑥)) + (i · (ℑ‘(log‘𝑥)))))
18 relog 26513 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (ℜ‘(log‘𝑥)) = (log‘(abs‘𝑥)))
1914, 15, 18syl2anc 584 . . . . . . 7 (𝑥𝐷 → (ℜ‘(log‘𝑥)) = (log‘(abs‘𝑥)))
2014, 15absrpcld 15424 . . . . . . . 8 (𝑥𝐷 → (abs‘𝑥) ∈ ℝ+)
2120fvresd 6881 . . . . . . 7 (𝑥𝐷 → ((log ↾ ℝ+)‘(abs‘𝑥)) = (log‘(abs‘𝑥)))
2219, 21eqtr4d 2768 . . . . . 6 (𝑥𝐷 → (ℜ‘(log‘𝑥)) = ((log ↾ ℝ+)‘(abs‘𝑥)))
2322oveq1d 7405 . . . . 5 (𝑥𝐷 → ((ℜ‘(log‘𝑥)) + (i · (ℑ‘(log‘𝑥)))) = (((log ↾ ℝ+)‘(abs‘𝑥)) + (i · (ℑ‘(log‘𝑥)))))
2412, 17, 233eqtrd 2769 . . . 4 (𝑥𝐷 → ((log ↾ 𝐷)‘𝑥) = (((log ↾ ℝ+)‘(abs‘𝑥)) + (i · (ℑ‘(log‘𝑥)))))
2524mpteq2ia 5205 . . 3 (𝑥𝐷 ↦ ((log ↾ 𝐷)‘𝑥)) = (𝑥𝐷 ↦ (((log ↾ ℝ+)‘(abs‘𝑥)) + (i · (ℑ‘(log‘𝑥)))))
2611, 25eqtri 2753 . 2 (log ↾ 𝐷) = (𝑥𝐷 ↦ (((log ↾ ℝ+)‘(abs‘𝑥)) + (i · (ℑ‘(log‘𝑥)))))
27 eqid 2730 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2827addcn 24761 . . . . 5 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
2928a1i 11 . . . 4 (⊤ → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
3027cnfldtopon 24677 . . . . . . . 8 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
3114ssriv 3953 . . . . . . . 8 𝐷 ⊆ ℂ
32 resttopon 23055 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝐷 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷))
3330, 31, 32mp2an 692 . . . . . . 7 ((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷)
3433a1i 11 . . . . . 6 (⊤ → ((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷))
35 absf 15311 . . . . . . . . . . . 12 abs:ℂ⟶ℝ
36 fssres 6729 . . . . . . . . . . . 12 ((abs:ℂ⟶ℝ ∧ 𝐷 ⊆ ℂ) → (abs ↾ 𝐷):𝐷⟶ℝ)
3735, 31, 36mp2an 692 . . . . . . . . . . 11 (abs ↾ 𝐷):𝐷⟶ℝ
3837a1i 11 . . . . . . . . . 10 (⊤ → (abs ↾ 𝐷):𝐷⟶ℝ)
3938feqmptd 6932 . . . . . . . . 9 (⊤ → (abs ↾ 𝐷) = (𝑥𝐷 ↦ ((abs ↾ 𝐷)‘𝑥)))
40 fvres 6880 . . . . . . . . . 10 (𝑥𝐷 → ((abs ↾ 𝐷)‘𝑥) = (abs‘𝑥))
4140mpteq2ia 5205 . . . . . . . . 9 (𝑥𝐷 ↦ ((abs ↾ 𝐷)‘𝑥)) = (𝑥𝐷 ↦ (abs‘𝑥))
4239, 41eqtrdi 2781 . . . . . . . 8 (⊤ → (abs ↾ 𝐷) = (𝑥𝐷 ↦ (abs‘𝑥)))
43 ffn 6691 . . . . . . . . . . 11 ((abs ↾ 𝐷):𝐷⟶ℝ → (abs ↾ 𝐷) Fn 𝐷)
4437, 43ax-mp 5 . . . . . . . . . 10 (abs ↾ 𝐷) Fn 𝐷
4540, 20eqeltrd 2829 . . . . . . . . . . 11 (𝑥𝐷 → ((abs ↾ 𝐷)‘𝑥) ∈ ℝ+)
4645rgen 3047 . . . . . . . . . 10 𝑥𝐷 ((abs ↾ 𝐷)‘𝑥) ∈ ℝ+
47 ffnfv 7094 . . . . . . . . . 10 ((abs ↾ 𝐷):𝐷⟶ℝ+ ↔ ((abs ↾ 𝐷) Fn 𝐷 ∧ ∀𝑥𝐷 ((abs ↾ 𝐷)‘𝑥) ∈ ℝ+))
4844, 46, 47mpbir2an 711 . . . . . . . . 9 (abs ↾ 𝐷):𝐷⟶ℝ+
49 rpssre 12966 . . . . . . . . . . 11 + ⊆ ℝ
50 ax-resscn 11132 . . . . . . . . . . 11 ℝ ⊆ ℂ
5149, 50sstri 3959 . . . . . . . . . 10 + ⊆ ℂ
52 abscncf 24801 . . . . . . . . . . 11 abs ∈ (ℂ–cn→ℝ)
53 rescncf 24797 . . . . . . . . . . 11 (𝐷 ⊆ ℂ → (abs ∈ (ℂ–cn→ℝ) → (abs ↾ 𝐷) ∈ (𝐷cn→ℝ)))
5431, 52, 53mp2 9 . . . . . . . . . 10 (abs ↾ 𝐷) ∈ (𝐷cn→ℝ)
55 cncfcdm 24798 . . . . . . . . . 10 ((ℝ+ ⊆ ℂ ∧ (abs ↾ 𝐷) ∈ (𝐷cn→ℝ)) → ((abs ↾ 𝐷) ∈ (𝐷cn→ℝ+) ↔ (abs ↾ 𝐷):𝐷⟶ℝ+))
5651, 54, 55mp2an 692 . . . . . . . . 9 ((abs ↾ 𝐷) ∈ (𝐷cn→ℝ+) ↔ (abs ↾ 𝐷):𝐷⟶ℝ+)
5748, 56mpbir 231 . . . . . . . 8 (abs ↾ 𝐷) ∈ (𝐷cn→ℝ+)
5842, 57eqeltrrdi 2838 . . . . . . 7 (⊤ → (𝑥𝐷 ↦ (abs‘𝑥)) ∈ (𝐷cn→ℝ+))
59 eqid 2730 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t 𝐷) = ((TopOpen‘ℂfld) ↾t 𝐷)
60 eqid 2730 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t+) = ((TopOpen‘ℂfld) ↾t+)
6127, 59, 60cncfcn 24810 . . . . . . . 8 ((𝐷 ⊆ ℂ ∧ ℝ+ ⊆ ℂ) → (𝐷cn→ℝ+) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn ((TopOpen‘ℂfld) ↾t+)))
6231, 51, 61mp2an 692 . . . . . . 7 (𝐷cn→ℝ+) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn ((TopOpen‘ℂfld) ↾t+))
6358, 62eleqtrdi 2839 . . . . . 6 (⊤ → (𝑥𝐷 ↦ (abs‘𝑥)) ∈ (((TopOpen‘ℂfld) ↾t 𝐷) Cn ((TopOpen‘ℂfld) ↾t+)))
64 ssid 3972 . . . . . . . . . 10 ℂ ⊆ ℂ
65 cncfss 24799 . . . . . . . . . 10 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ+cn→ℝ) ⊆ (ℝ+cn→ℂ))
6650, 64, 65mp2an 692 . . . . . . . . 9 (ℝ+cn→ℝ) ⊆ (ℝ+cn→ℂ)
67 relogcn 26554 . . . . . . . . 9 (log ↾ ℝ+) ∈ (ℝ+cn→ℝ)
6866, 67sselii 3946 . . . . . . . 8 (log ↾ ℝ+) ∈ (ℝ+cn→ℂ)
6968a1i 11 . . . . . . 7 (⊤ → (log ↾ ℝ+) ∈ (ℝ+cn→ℂ))
7030toponrestid 22815 . . . . . . . . 9 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
7127, 60, 70cncfcn 24810 . . . . . . . 8 ((ℝ+ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ+cn→ℂ) = (((TopOpen‘ℂfld) ↾t+) Cn (TopOpen‘ℂfld)))
7251, 64, 71mp2an 692 . . . . . . 7 (ℝ+cn→ℂ) = (((TopOpen‘ℂfld) ↾t+) Cn (TopOpen‘ℂfld))
7369, 72eleqtrdi 2839 . . . . . 6 (⊤ → (log ↾ ℝ+) ∈ (((TopOpen‘ℂfld) ↾t+) Cn (TopOpen‘ℂfld)))
7434, 63, 73cnmpt11f 23558 . . . . 5 (⊤ → (𝑥𝐷 ↦ ((log ↾ ℝ+)‘(abs‘𝑥))) ∈ (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)))
7527, 59, 70cncfcn 24810 . . . . . 6 ((𝐷 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐷cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)))
7631, 64, 75mp2an 692 . . . . 5 (𝐷cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld))
7774, 76eleqtrrdi 2840 . . . 4 (⊤ → (𝑥𝐷 ↦ ((log ↾ ℝ+)‘(abs‘𝑥))) ∈ (𝐷cn→ℂ))
7816imcld 15168 . . . . . . . 8 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ∈ ℝ)
7978recnd 11209 . . . . . . 7 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ∈ ℂ)
8079adantl 481 . . . . . 6 ((⊤ ∧ 𝑥𝐷) → (ℑ‘(log‘𝑥)) ∈ ℂ)
81 eqidd 2731 . . . . . 6 (⊤ → (𝑥𝐷 ↦ (ℑ‘(log‘𝑥))) = (𝑥𝐷 ↦ (ℑ‘(log‘𝑥))))
82 eqidd 2731 . . . . . 6 (⊤ → (𝑦 ∈ ℂ ↦ (i · 𝑦)) = (𝑦 ∈ ℂ ↦ (i · 𝑦)))
83 oveq2 7398 . . . . . 6 (𝑦 = (ℑ‘(log‘𝑥)) → (i · 𝑦) = (i · (ℑ‘(log‘𝑥))))
8480, 81, 82, 83fmptco 7104 . . . . 5 (⊤ → ((𝑦 ∈ ℂ ↦ (i · 𝑦)) ∘ (𝑥𝐷 ↦ (ℑ‘(log‘𝑥)))) = (𝑥𝐷 ↦ (i · (ℑ‘(log‘𝑥)))))
85 cncfss 24799 . . . . . . . . 9 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐷cn→ℝ) ⊆ (𝐷cn→ℂ))
8650, 64, 85mp2an 692 . . . . . . . 8 (𝐷cn→ℝ) ⊆ (𝐷cn→ℂ)
874logcnlem5 26562 . . . . . . . 8 (𝑥𝐷 ↦ (ℑ‘(log‘𝑥))) ∈ (𝐷cn→ℝ)
8886, 87sselii 3946 . . . . . . 7 (𝑥𝐷 ↦ (ℑ‘(log‘𝑥))) ∈ (𝐷cn→ℂ)
8988a1i 11 . . . . . 6 (⊤ → (𝑥𝐷 ↦ (ℑ‘(log‘𝑥))) ∈ (𝐷cn→ℂ))
90 ax-icn 11134 . . . . . . 7 i ∈ ℂ
91 eqid 2730 . . . . . . . 8 (𝑦 ∈ ℂ ↦ (i · 𝑦)) = (𝑦 ∈ ℂ ↦ (i · 𝑦))
9291mulc1cncf 24805 . . . . . . 7 (i ∈ ℂ → (𝑦 ∈ ℂ ↦ (i · 𝑦)) ∈ (ℂ–cn→ℂ))
9390, 92mp1i 13 . . . . . 6 (⊤ → (𝑦 ∈ ℂ ↦ (i · 𝑦)) ∈ (ℂ–cn→ℂ))
9489, 93cncfco 24807 . . . . 5 (⊤ → ((𝑦 ∈ ℂ ↦ (i · 𝑦)) ∘ (𝑥𝐷 ↦ (ℑ‘(log‘𝑥)))) ∈ (𝐷cn→ℂ))
9584, 94eqeltrrd 2830 . . . 4 (⊤ → (𝑥𝐷 ↦ (i · (ℑ‘(log‘𝑥)))) ∈ (𝐷cn→ℂ))
9627, 29, 77, 95cncfmpt2f 24815 . . 3 (⊤ → (𝑥𝐷 ↦ (((log ↾ ℝ+)‘(abs‘𝑥)) + (i · (ℑ‘(log‘𝑥))))) ∈ (𝐷cn→ℂ))
9796mptru 1547 . 2 (𝑥𝐷 ↦ (((log ↾ ℝ+)‘(abs‘𝑥)) + (i · (ℑ‘(log‘𝑥))))) ∈ (𝐷cn→ℂ)
9826, 97eqeltri 2825 1 (log ↾ 𝐷) ∈ (𝐷cn→ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wtru 1541  wcel 2109  wne 2926  wral 3045  cdif 3914  wss 3917  {csn 4592  cmpt 5191  ran crn 5642  cres 5643  ccom 5645   Fn wfn 6509  wf 6510  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  ici 11077   + caddc 11078   · cmul 11080  -∞cmnf 11213  +crp 12958  (,]cioc 13314  cre 15070  cim 15071  abscabs 15207  t crest 17390  TopOpenctopn 17391  fldccnfld 21271  TopOnctopon 22804   Cn ccn 23118   ×t ctx 23454  cnccncf 24776  logclog 26470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-tan 16044  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472
This theorem is referenced by:  dvlog  26567  efopnlem2  26573  dvcncxp1  26659  cxpcn  26661  cxpcnOLD  26662  lgamgulmlem2  26947  lgamcvg2  26972  areacirclem4  37712
  Copyright terms: Public domain W3C validator