Step | Hyp | Ref
| Expression |
1 | | logf1o 25720 |
. . . . . . 7
⊢
log:(ℂ ∖ {0})–1-1-onto→ran
log |
2 | | f1of 6716 |
. . . . . . 7
⊢
(log:(ℂ ∖ {0})–1-1-onto→ran
log → log:(ℂ ∖ {0})⟶ran log) |
3 | 1, 2 | ax-mp 5 |
. . . . . 6
⊢
log:(ℂ ∖ {0})⟶ran log |
4 | | logcn.d |
. . . . . . 7
⊢ 𝐷 = (ℂ ∖
(-∞(,]0)) |
5 | 4 | logdmss 25797 |
. . . . . 6
⊢ 𝐷 ⊆ (ℂ ∖
{0}) |
6 | | fssres 6640 |
. . . . . 6
⊢
((log:(ℂ ∖ {0})⟶ran log ∧ 𝐷 ⊆ (ℂ ∖ {0})) → (log
↾ 𝐷):𝐷⟶ran
log) |
7 | 3, 5, 6 | mp2an 689 |
. . . . 5
⊢ (log
↾ 𝐷):𝐷⟶ran log |
8 | | ffn 6600 |
. . . . 5
⊢ ((log
↾ 𝐷):𝐷⟶ran log → (log
↾ 𝐷) Fn 𝐷) |
9 | 7, 8 | ax-mp 5 |
. . . 4
⊢ (log
↾ 𝐷) Fn 𝐷 |
10 | | dffn5 6828 |
. . . 4
⊢ ((log
↾ 𝐷) Fn 𝐷 ↔ (log ↾ 𝐷) = (𝑥 ∈ 𝐷 ↦ ((log ↾ 𝐷)‘𝑥))) |
11 | 9, 10 | mpbi 229 |
. . 3
⊢ (log
↾ 𝐷) = (𝑥 ∈ 𝐷 ↦ ((log ↾ 𝐷)‘𝑥)) |
12 | | fvres 6793 |
. . . . 5
⊢ (𝑥 ∈ 𝐷 → ((log ↾ 𝐷)‘𝑥) = (log‘𝑥)) |
13 | 4 | ellogdm 25794 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐷 ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ℝ → 𝑥 ∈
ℝ+))) |
14 | 13 | simplbi 498 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ ℂ) |
15 | 4 | logdmn0 25795 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 → 𝑥 ≠ 0) |
16 | 14, 15 | logcld 25726 |
. . . . . 6
⊢ (𝑥 ∈ 𝐷 → (log‘𝑥) ∈ ℂ) |
17 | 16 | replimd 14908 |
. . . . 5
⊢ (𝑥 ∈ 𝐷 → (log‘𝑥) = ((ℜ‘(log‘𝑥)) + (i ·
(ℑ‘(log‘𝑥))))) |
18 | | relog 25752 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) →
(ℜ‘(log‘𝑥)) = (log‘(abs‘𝑥))) |
19 | 14, 15, 18 | syl2anc 584 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 → (ℜ‘(log‘𝑥)) = (log‘(abs‘𝑥))) |
20 | 14, 15 | absrpcld 15160 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐷 → (abs‘𝑥) ∈
ℝ+) |
21 | 20 | fvresd 6794 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 → ((log ↾
ℝ+)‘(abs‘𝑥)) = (log‘(abs‘𝑥))) |
22 | 19, 21 | eqtr4d 2781 |
. . . . . 6
⊢ (𝑥 ∈ 𝐷 → (ℜ‘(log‘𝑥)) = ((log ↾
ℝ+)‘(abs‘𝑥))) |
23 | 22 | oveq1d 7290 |
. . . . 5
⊢ (𝑥 ∈ 𝐷 → ((ℜ‘(log‘𝑥)) + (i ·
(ℑ‘(log‘𝑥)))) = (((log ↾
ℝ+)‘(abs‘𝑥)) + (i ·
(ℑ‘(log‘𝑥))))) |
24 | 12, 17, 23 | 3eqtrd 2782 |
. . . 4
⊢ (𝑥 ∈ 𝐷 → ((log ↾ 𝐷)‘𝑥) = (((log ↾
ℝ+)‘(abs‘𝑥)) + (i ·
(ℑ‘(log‘𝑥))))) |
25 | 24 | mpteq2ia 5177 |
. . 3
⊢ (𝑥 ∈ 𝐷 ↦ ((log ↾ 𝐷)‘𝑥)) = (𝑥 ∈ 𝐷 ↦ (((log ↾
ℝ+)‘(abs‘𝑥)) + (i ·
(ℑ‘(log‘𝑥))))) |
26 | 11, 25 | eqtri 2766 |
. 2
⊢ (log
↾ 𝐷) = (𝑥 ∈ 𝐷 ↦ (((log ↾
ℝ+)‘(abs‘𝑥)) + (i ·
(ℑ‘(log‘𝑥))))) |
27 | | eqid 2738 |
. . . 4
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
28 | 27 | addcn 24028 |
. . . . 5
⊢ + ∈
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) |
29 | 28 | a1i 11 |
. . . 4
⊢ (⊤
→ + ∈ (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld))) |
30 | 27 | cnfldtopon 23946 |
. . . . . . . 8
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
31 | 14 | ssriv 3925 |
. . . . . . . 8
⊢ 𝐷 ⊆
ℂ |
32 | | resttopon 22312 |
. . . . . . . 8
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ 𝐷 ⊆ ℂ)
→ ((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷)) |
33 | 30, 31, 32 | mp2an 689 |
. . . . . . 7
⊢
((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷) |
34 | 33 | a1i 11 |
. . . . . 6
⊢ (⊤
→ ((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷)) |
35 | | absf 15049 |
. . . . . . . . . . . 12
⊢
abs:ℂ⟶ℝ |
36 | | fssres 6640 |
. . . . . . . . . . . 12
⊢
((abs:ℂ⟶ℝ ∧ 𝐷 ⊆ ℂ) → (abs ↾ 𝐷):𝐷⟶ℝ) |
37 | 35, 31, 36 | mp2an 689 |
. . . . . . . . . . 11
⊢ (abs
↾ 𝐷):𝐷⟶ℝ |
38 | 37 | a1i 11 |
. . . . . . . . . 10
⊢ (⊤
→ (abs ↾ 𝐷):𝐷⟶ℝ) |
39 | 38 | feqmptd 6837 |
. . . . . . . . 9
⊢ (⊤
→ (abs ↾ 𝐷) =
(𝑥 ∈ 𝐷 ↦ ((abs ↾ 𝐷)‘𝑥))) |
40 | | fvres 6793 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐷 → ((abs ↾ 𝐷)‘𝑥) = (abs‘𝑥)) |
41 | 40 | mpteq2ia 5177 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐷 ↦ ((abs ↾ 𝐷)‘𝑥)) = (𝑥 ∈ 𝐷 ↦ (abs‘𝑥)) |
42 | 39, 41 | eqtrdi 2794 |
. . . . . . . 8
⊢ (⊤
→ (abs ↾ 𝐷) =
(𝑥 ∈ 𝐷 ↦ (abs‘𝑥))) |
43 | | ffn 6600 |
. . . . . . . . . . 11
⊢ ((abs
↾ 𝐷):𝐷⟶ℝ → (abs
↾ 𝐷) Fn 𝐷) |
44 | 37, 43 | ax-mp 5 |
. . . . . . . . . 10
⊢ (abs
↾ 𝐷) Fn 𝐷 |
45 | 40, 20 | eqeltrd 2839 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐷 → ((abs ↾ 𝐷)‘𝑥) ∈
ℝ+) |
46 | 45 | rgen 3074 |
. . . . . . . . . 10
⊢
∀𝑥 ∈
𝐷 ((abs ↾ 𝐷)‘𝑥) ∈ ℝ+ |
47 | | ffnfv 6992 |
. . . . . . . . . 10
⊢ ((abs
↾ 𝐷):𝐷⟶ℝ+
↔ ((abs ↾ 𝐷) Fn
𝐷 ∧ ∀𝑥 ∈ 𝐷 ((abs ↾ 𝐷)‘𝑥) ∈
ℝ+)) |
48 | 44, 46, 47 | mpbir2an 708 |
. . . . . . . . 9
⊢ (abs
↾ 𝐷):𝐷⟶ℝ+ |
49 | | rpssre 12737 |
. . . . . . . . . . 11
⊢
ℝ+ ⊆ ℝ |
50 | | ax-resscn 10928 |
. . . . . . . . . . 11
⊢ ℝ
⊆ ℂ |
51 | 49, 50 | sstri 3930 |
. . . . . . . . . 10
⊢
ℝ+ ⊆ ℂ |
52 | | abscncf 24064 |
. . . . . . . . . . 11
⊢ abs
∈ (ℂ–cn→ℝ) |
53 | | rescncf 24060 |
. . . . . . . . . . 11
⊢ (𝐷 ⊆ ℂ → (abs
∈ (ℂ–cn→ℝ)
→ (abs ↾ 𝐷)
∈ (𝐷–cn→ℝ))) |
54 | 31, 52, 53 | mp2 9 |
. . . . . . . . . 10
⊢ (abs
↾ 𝐷) ∈ (𝐷–cn→ℝ) |
55 | | cncffvrn 24061 |
. . . . . . . . . 10
⊢
((ℝ+ ⊆ ℂ ∧ (abs ↾ 𝐷) ∈ (𝐷–cn→ℝ)) → ((abs ↾ 𝐷) ∈ (𝐷–cn→ℝ+) ↔ (abs ↾ 𝐷):𝐷⟶ℝ+)) |
56 | 51, 54, 55 | mp2an 689 |
. . . . . . . . 9
⊢ ((abs
↾ 𝐷) ∈ (𝐷–cn→ℝ+) ↔ (abs ↾ 𝐷):𝐷⟶ℝ+) |
57 | 48, 56 | mpbir 230 |
. . . . . . . 8
⊢ (abs
↾ 𝐷) ∈ (𝐷–cn→ℝ+) |
58 | 42, 57 | eqeltrrdi 2848 |
. . . . . . 7
⊢ (⊤
→ (𝑥 ∈ 𝐷 ↦ (abs‘𝑥)) ∈ (𝐷–cn→ℝ+)) |
59 | | eqid 2738 |
. . . . . . . . 9
⊢
((TopOpen‘ℂfld) ↾t 𝐷) =
((TopOpen‘ℂfld) ↾t 𝐷) |
60 | | eqid 2738 |
. . . . . . . . 9
⊢
((TopOpen‘ℂfld) ↾t
ℝ+) = ((TopOpen‘ℂfld)
↾t ℝ+) |
61 | 27, 59, 60 | cncfcn 24073 |
. . . . . . . 8
⊢ ((𝐷 ⊆ ℂ ∧
ℝ+ ⊆ ℂ) → (𝐷–cn→ℝ+) =
(((TopOpen‘ℂfld) ↾t 𝐷) Cn ((TopOpen‘ℂfld)
↾t ℝ+))) |
62 | 31, 51, 61 | mp2an 689 |
. . . . . . 7
⊢ (𝐷–cn→ℝ+) =
(((TopOpen‘ℂfld) ↾t 𝐷) Cn ((TopOpen‘ℂfld)
↾t ℝ+)) |
63 | 58, 62 | eleqtrdi 2849 |
. . . . . 6
⊢ (⊤
→ (𝑥 ∈ 𝐷 ↦ (abs‘𝑥)) ∈
(((TopOpen‘ℂfld) ↾t 𝐷) Cn ((TopOpen‘ℂfld)
↾t ℝ+))) |
64 | | ssid 3943 |
. . . . . . . . . 10
⊢ ℂ
⊆ ℂ |
65 | | cncfss 24062 |
. . . . . . . . . 10
⊢ ((ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) →
(ℝ+–cn→ℝ) ⊆
(ℝ+–cn→ℂ)) |
66 | 50, 64, 65 | mp2an 689 |
. . . . . . . . 9
⊢
(ℝ+–cn→ℝ) ⊆
(ℝ+–cn→ℂ) |
67 | | relogcn 25793 |
. . . . . . . . 9
⊢ (log
↾ ℝ+) ∈ (ℝ+–cn→ℝ) |
68 | 66, 67 | sselii 3918 |
. . . . . . . 8
⊢ (log
↾ ℝ+) ∈ (ℝ+–cn→ℂ) |
69 | 68 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ (log ↾ ℝ+) ∈
(ℝ+–cn→ℂ)) |
70 | 30 | toponrestid 22070 |
. . . . . . . . 9
⊢
(TopOpen‘ℂfld) =
((TopOpen‘ℂfld) ↾t
ℂ) |
71 | 27, 60, 70 | cncfcn 24073 |
. . . . . . . 8
⊢
((ℝ+ ⊆ ℂ ∧ ℂ ⊆ ℂ)
→ (ℝ+–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t
ℝ+) Cn
(TopOpen‘ℂfld))) |
72 | 51, 64, 71 | mp2an 689 |
. . . . . . 7
⊢
(ℝ+–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t
ℝ+) Cn (TopOpen‘ℂfld)) |
73 | 69, 72 | eleqtrdi 2849 |
. . . . . 6
⊢ (⊤
→ (log ↾ ℝ+) ∈
(((TopOpen‘ℂfld) ↾t
ℝ+) Cn
(TopOpen‘ℂfld))) |
74 | 34, 63, 73 | cnmpt11f 22815 |
. . . . 5
⊢ (⊤
→ (𝑥 ∈ 𝐷 ↦ ((log ↾
ℝ+)‘(abs‘𝑥))) ∈
(((TopOpen‘ℂfld) ↾t 𝐷) Cn
(TopOpen‘ℂfld))) |
75 | 27, 59, 70 | cncfcn 24073 |
. . . . . 6
⊢ ((𝐷 ⊆ ℂ ∧ ℂ
⊆ ℂ) → (𝐷–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t 𝐷) Cn
(TopOpen‘ℂfld))) |
76 | 31, 64, 75 | mp2an 689 |
. . . . 5
⊢ (𝐷–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t 𝐷) Cn
(TopOpen‘ℂfld)) |
77 | 74, 76 | eleqtrrdi 2850 |
. . . 4
⊢ (⊤
→ (𝑥 ∈ 𝐷 ↦ ((log ↾
ℝ+)‘(abs‘𝑥))) ∈ (𝐷–cn→ℂ)) |
78 | 16 | imcld 14906 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐷 → (ℑ‘(log‘𝑥)) ∈
ℝ) |
79 | 78 | recnd 11003 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 → (ℑ‘(log‘𝑥)) ∈
ℂ) |
80 | 79 | adantl 482 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ 𝐷) →
(ℑ‘(log‘𝑥)) ∈ ℂ) |
81 | | eqidd 2739 |
. . . . . 6
⊢ (⊤
→ (𝑥 ∈ 𝐷 ↦
(ℑ‘(log‘𝑥))) = (𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥)))) |
82 | | eqidd 2739 |
. . . . . 6
⊢ (⊤
→ (𝑦 ∈ ℂ
↦ (i · 𝑦)) =
(𝑦 ∈ ℂ ↦
(i · 𝑦))) |
83 | | oveq2 7283 |
. . . . . 6
⊢ (𝑦 =
(ℑ‘(log‘𝑥)) → (i · 𝑦) = (i ·
(ℑ‘(log‘𝑥)))) |
84 | 80, 81, 82, 83 | fmptco 7001 |
. . . . 5
⊢ (⊤
→ ((𝑦 ∈ ℂ
↦ (i · 𝑦))
∘ (𝑥 ∈ 𝐷 ↦
(ℑ‘(log‘𝑥)))) = (𝑥 ∈ 𝐷 ↦ (i ·
(ℑ‘(log‘𝑥))))) |
85 | | cncfss 24062 |
. . . . . . . . 9
⊢ ((ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐷–cn→ℝ) ⊆ (𝐷–cn→ℂ)) |
86 | 50, 64, 85 | mp2an 689 |
. . . . . . . 8
⊢ (𝐷–cn→ℝ) ⊆ (𝐷–cn→ℂ) |
87 | 4 | logcnlem5 25801 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥))) ∈ (𝐷–cn→ℝ) |
88 | 86, 87 | sselii 3918 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥))) ∈ (𝐷–cn→ℂ) |
89 | 88 | a1i 11 |
. . . . . 6
⊢ (⊤
→ (𝑥 ∈ 𝐷 ↦
(ℑ‘(log‘𝑥))) ∈ (𝐷–cn→ℂ)) |
90 | | ax-icn 10930 |
. . . . . . 7
⊢ i ∈
ℂ |
91 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑦 ∈ ℂ ↦ (i
· 𝑦)) = (𝑦 ∈ ℂ ↦ (i
· 𝑦)) |
92 | 91 | mulc1cncf 24068 |
. . . . . . 7
⊢ (i ∈
ℂ → (𝑦 ∈
ℂ ↦ (i · 𝑦)) ∈ (ℂ–cn→ℂ)) |
93 | 90, 92 | mp1i 13 |
. . . . . 6
⊢ (⊤
→ (𝑦 ∈ ℂ
↦ (i · 𝑦))
∈ (ℂ–cn→ℂ)) |
94 | 89, 93 | cncfco 24070 |
. . . . 5
⊢ (⊤
→ ((𝑦 ∈ ℂ
↦ (i · 𝑦))
∘ (𝑥 ∈ 𝐷 ↦
(ℑ‘(log‘𝑥)))) ∈ (𝐷–cn→ℂ)) |
95 | 84, 94 | eqeltrrd 2840 |
. . . 4
⊢ (⊤
→ (𝑥 ∈ 𝐷 ↦ (i ·
(ℑ‘(log‘𝑥)))) ∈ (𝐷–cn→ℂ)) |
96 | 27, 29, 77, 95 | cncfmpt2f 24078 |
. . 3
⊢ (⊤
→ (𝑥 ∈ 𝐷 ↦ (((log ↾
ℝ+)‘(abs‘𝑥)) + (i ·
(ℑ‘(log‘𝑥))))) ∈ (𝐷–cn→ℂ)) |
97 | 96 | mptru 1546 |
. 2
⊢ (𝑥 ∈ 𝐷 ↦ (((log ↾
ℝ+)‘(abs‘𝑥)) + (i ·
(ℑ‘(log‘𝑥))))) ∈ (𝐷–cn→ℂ) |
98 | 26, 97 | eqeltri 2835 |
1
⊢ (log
↾ 𝐷) ∈ (𝐷–cn→ℂ) |