MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logcn Structured version   Visualization version   GIF version

Theorem logcn 25242
Description: The logarithm function is continuous away from the branch cut at negative reals. (Contributed by Mario Carneiro, 25-Feb-2015.)
Hypothesis
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
logcn (log ↾ 𝐷) ∈ (𝐷cn→ℂ)

Proof of Theorem logcn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 logf1o 25160 . . . . . . 7 log:(ℂ ∖ {0})–1-1-onto→ran log
2 f1of 6594 . . . . . . 7 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log)
31, 2ax-mp 5 . . . . . 6 log:(ℂ ∖ {0})⟶ran log
4 logcn.d . . . . . . 7 𝐷 = (ℂ ∖ (-∞(,]0))
54logdmss 25237 . . . . . 6 𝐷 ⊆ (ℂ ∖ {0})
6 fssres 6522 . . . . . 6 ((log:(ℂ ∖ {0})⟶ran log ∧ 𝐷 ⊆ (ℂ ∖ {0})) → (log ↾ 𝐷):𝐷⟶ran log)
73, 5, 6mp2an 691 . . . . 5 (log ↾ 𝐷):𝐷⟶ran log
8 ffn 6491 . . . . 5 ((log ↾ 𝐷):𝐷⟶ran log → (log ↾ 𝐷) Fn 𝐷)
97, 8ax-mp 5 . . . 4 (log ↾ 𝐷) Fn 𝐷
10 dffn5 6703 . . . 4 ((log ↾ 𝐷) Fn 𝐷 ↔ (log ↾ 𝐷) = (𝑥𝐷 ↦ ((log ↾ 𝐷)‘𝑥)))
119, 10mpbi 233 . . 3 (log ↾ 𝐷) = (𝑥𝐷 ↦ ((log ↾ 𝐷)‘𝑥))
12 fvres 6668 . . . . 5 (𝑥𝐷 → ((log ↾ 𝐷)‘𝑥) = (log‘𝑥))
134ellogdm 25234 . . . . . . . 8 (𝑥𝐷 ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+)))
1413simplbi 501 . . . . . . 7 (𝑥𝐷𝑥 ∈ ℂ)
154logdmn0 25235 . . . . . . 7 (𝑥𝐷𝑥 ≠ 0)
1614, 15logcld 25166 . . . . . 6 (𝑥𝐷 → (log‘𝑥) ∈ ℂ)
1716replimd 14552 . . . . 5 (𝑥𝐷 → (log‘𝑥) = ((ℜ‘(log‘𝑥)) + (i · (ℑ‘(log‘𝑥)))))
18 relog 25192 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (ℜ‘(log‘𝑥)) = (log‘(abs‘𝑥)))
1914, 15, 18syl2anc 587 . . . . . . 7 (𝑥𝐷 → (ℜ‘(log‘𝑥)) = (log‘(abs‘𝑥)))
2014, 15absrpcld 14804 . . . . . . . 8 (𝑥𝐷 → (abs‘𝑥) ∈ ℝ+)
2120fvresd 6669 . . . . . . 7 (𝑥𝐷 → ((log ↾ ℝ+)‘(abs‘𝑥)) = (log‘(abs‘𝑥)))
2219, 21eqtr4d 2839 . . . . . 6 (𝑥𝐷 → (ℜ‘(log‘𝑥)) = ((log ↾ ℝ+)‘(abs‘𝑥)))
2322oveq1d 7154 . . . . 5 (𝑥𝐷 → ((ℜ‘(log‘𝑥)) + (i · (ℑ‘(log‘𝑥)))) = (((log ↾ ℝ+)‘(abs‘𝑥)) + (i · (ℑ‘(log‘𝑥)))))
2412, 17, 233eqtrd 2840 . . . 4 (𝑥𝐷 → ((log ↾ 𝐷)‘𝑥) = (((log ↾ ℝ+)‘(abs‘𝑥)) + (i · (ℑ‘(log‘𝑥)))))
2524mpteq2ia 5124 . . 3 (𝑥𝐷 ↦ ((log ↾ 𝐷)‘𝑥)) = (𝑥𝐷 ↦ (((log ↾ ℝ+)‘(abs‘𝑥)) + (i · (ℑ‘(log‘𝑥)))))
2611, 25eqtri 2824 . 2 (log ↾ 𝐷) = (𝑥𝐷 ↦ (((log ↾ ℝ+)‘(abs‘𝑥)) + (i · (ℑ‘(log‘𝑥)))))
27 eqid 2801 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2827addcn 23474 . . . . 5 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
2928a1i 11 . . . 4 (⊤ → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
3027cnfldtopon 23392 . . . . . . . 8 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
3114ssriv 3922 . . . . . . . 8 𝐷 ⊆ ℂ
32 resttopon 21770 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝐷 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷))
3330, 31, 32mp2an 691 . . . . . . 7 ((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷)
3433a1i 11 . . . . . 6 (⊤ → ((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷))
35 absf 14693 . . . . . . . . . . . 12 abs:ℂ⟶ℝ
36 fssres 6522 . . . . . . . . . . . 12 ((abs:ℂ⟶ℝ ∧ 𝐷 ⊆ ℂ) → (abs ↾ 𝐷):𝐷⟶ℝ)
3735, 31, 36mp2an 691 . . . . . . . . . . 11 (abs ↾ 𝐷):𝐷⟶ℝ
3837a1i 11 . . . . . . . . . 10 (⊤ → (abs ↾ 𝐷):𝐷⟶ℝ)
3938feqmptd 6712 . . . . . . . . 9 (⊤ → (abs ↾ 𝐷) = (𝑥𝐷 ↦ ((abs ↾ 𝐷)‘𝑥)))
40 fvres 6668 . . . . . . . . . 10 (𝑥𝐷 → ((abs ↾ 𝐷)‘𝑥) = (abs‘𝑥))
4140mpteq2ia 5124 . . . . . . . . 9 (𝑥𝐷 ↦ ((abs ↾ 𝐷)‘𝑥)) = (𝑥𝐷 ↦ (abs‘𝑥))
4239, 41eqtrdi 2852 . . . . . . . 8 (⊤ → (abs ↾ 𝐷) = (𝑥𝐷 ↦ (abs‘𝑥)))
43 ffn 6491 . . . . . . . . . . 11 ((abs ↾ 𝐷):𝐷⟶ℝ → (abs ↾ 𝐷) Fn 𝐷)
4437, 43ax-mp 5 . . . . . . . . . 10 (abs ↾ 𝐷) Fn 𝐷
4540, 20eqeltrd 2893 . . . . . . . . . . 11 (𝑥𝐷 → ((abs ↾ 𝐷)‘𝑥) ∈ ℝ+)
4645rgen 3119 . . . . . . . . . 10 𝑥𝐷 ((abs ↾ 𝐷)‘𝑥) ∈ ℝ+
47 ffnfv 6863 . . . . . . . . . 10 ((abs ↾ 𝐷):𝐷⟶ℝ+ ↔ ((abs ↾ 𝐷) Fn 𝐷 ∧ ∀𝑥𝐷 ((abs ↾ 𝐷)‘𝑥) ∈ ℝ+))
4844, 46, 47mpbir2an 710 . . . . . . . . 9 (abs ↾ 𝐷):𝐷⟶ℝ+
49 rpssre 12388 . . . . . . . . . . 11 + ⊆ ℝ
50 ax-resscn 10587 . . . . . . . . . . 11 ℝ ⊆ ℂ
5149, 50sstri 3927 . . . . . . . . . 10 + ⊆ ℂ
52 abscncf 23510 . . . . . . . . . . 11 abs ∈ (ℂ–cn→ℝ)
53 rescncf 23506 . . . . . . . . . . 11 (𝐷 ⊆ ℂ → (abs ∈ (ℂ–cn→ℝ) → (abs ↾ 𝐷) ∈ (𝐷cn→ℝ)))
5431, 52, 53mp2 9 . . . . . . . . . 10 (abs ↾ 𝐷) ∈ (𝐷cn→ℝ)
55 cncffvrn 23507 . . . . . . . . . 10 ((ℝ+ ⊆ ℂ ∧ (abs ↾ 𝐷) ∈ (𝐷cn→ℝ)) → ((abs ↾ 𝐷) ∈ (𝐷cn→ℝ+) ↔ (abs ↾ 𝐷):𝐷⟶ℝ+))
5651, 54, 55mp2an 691 . . . . . . . . 9 ((abs ↾ 𝐷) ∈ (𝐷cn→ℝ+) ↔ (abs ↾ 𝐷):𝐷⟶ℝ+)
5748, 56mpbir 234 . . . . . . . 8 (abs ↾ 𝐷) ∈ (𝐷cn→ℝ+)
5842, 57eqeltrrdi 2902 . . . . . . 7 (⊤ → (𝑥𝐷 ↦ (abs‘𝑥)) ∈ (𝐷cn→ℝ+))
59 eqid 2801 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t 𝐷) = ((TopOpen‘ℂfld) ↾t 𝐷)
60 eqid 2801 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t+) = ((TopOpen‘ℂfld) ↾t+)
6127, 59, 60cncfcn 23519 . . . . . . . 8 ((𝐷 ⊆ ℂ ∧ ℝ+ ⊆ ℂ) → (𝐷cn→ℝ+) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn ((TopOpen‘ℂfld) ↾t+)))
6231, 51, 61mp2an 691 . . . . . . 7 (𝐷cn→ℝ+) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn ((TopOpen‘ℂfld) ↾t+))
6358, 62eleqtrdi 2903 . . . . . 6 (⊤ → (𝑥𝐷 ↦ (abs‘𝑥)) ∈ (((TopOpen‘ℂfld) ↾t 𝐷) Cn ((TopOpen‘ℂfld) ↾t+)))
64 ssid 3940 . . . . . . . . . 10 ℂ ⊆ ℂ
65 cncfss 23508 . . . . . . . . . 10 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ+cn→ℝ) ⊆ (ℝ+cn→ℂ))
6650, 64, 65mp2an 691 . . . . . . . . 9 (ℝ+cn→ℝ) ⊆ (ℝ+cn→ℂ)
67 relogcn 25233 . . . . . . . . 9 (log ↾ ℝ+) ∈ (ℝ+cn→ℝ)
6866, 67sselii 3915 . . . . . . . 8 (log ↾ ℝ+) ∈ (ℝ+cn→ℂ)
6968a1i 11 . . . . . . 7 (⊤ → (log ↾ ℝ+) ∈ (ℝ+cn→ℂ))
7030toponrestid 21530 . . . . . . . . 9 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
7127, 60, 70cncfcn 23519 . . . . . . . 8 ((ℝ+ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ+cn→ℂ) = (((TopOpen‘ℂfld) ↾t+) Cn (TopOpen‘ℂfld)))
7251, 64, 71mp2an 691 . . . . . . 7 (ℝ+cn→ℂ) = (((TopOpen‘ℂfld) ↾t+) Cn (TopOpen‘ℂfld))
7369, 72eleqtrdi 2903 . . . . . 6 (⊤ → (log ↾ ℝ+) ∈ (((TopOpen‘ℂfld) ↾t+) Cn (TopOpen‘ℂfld)))
7434, 63, 73cnmpt11f 22273 . . . . 5 (⊤ → (𝑥𝐷 ↦ ((log ↾ ℝ+)‘(abs‘𝑥))) ∈ (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)))
7527, 59, 70cncfcn 23519 . . . . . 6 ((𝐷 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐷cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)))
7631, 64, 75mp2an 691 . . . . 5 (𝐷cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld))
7774, 76eleqtrrdi 2904 . . . 4 (⊤ → (𝑥𝐷 ↦ ((log ↾ ℝ+)‘(abs‘𝑥))) ∈ (𝐷cn→ℂ))
7816imcld 14550 . . . . . . . 8 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ∈ ℝ)
7978recnd 10662 . . . . . . 7 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ∈ ℂ)
8079adantl 485 . . . . . 6 ((⊤ ∧ 𝑥𝐷) → (ℑ‘(log‘𝑥)) ∈ ℂ)
81 eqidd 2802 . . . . . 6 (⊤ → (𝑥𝐷 ↦ (ℑ‘(log‘𝑥))) = (𝑥𝐷 ↦ (ℑ‘(log‘𝑥))))
82 eqidd 2802 . . . . . 6 (⊤ → (𝑦 ∈ ℂ ↦ (i · 𝑦)) = (𝑦 ∈ ℂ ↦ (i · 𝑦)))
83 oveq2 7147 . . . . . 6 (𝑦 = (ℑ‘(log‘𝑥)) → (i · 𝑦) = (i · (ℑ‘(log‘𝑥))))
8480, 81, 82, 83fmptco 6872 . . . . 5 (⊤ → ((𝑦 ∈ ℂ ↦ (i · 𝑦)) ∘ (𝑥𝐷 ↦ (ℑ‘(log‘𝑥)))) = (𝑥𝐷 ↦ (i · (ℑ‘(log‘𝑥)))))
85 cncfss 23508 . . . . . . . . 9 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐷cn→ℝ) ⊆ (𝐷cn→ℂ))
8650, 64, 85mp2an 691 . . . . . . . 8 (𝐷cn→ℝ) ⊆ (𝐷cn→ℂ)
874logcnlem5 25241 . . . . . . . 8 (𝑥𝐷 ↦ (ℑ‘(log‘𝑥))) ∈ (𝐷cn→ℝ)
8886, 87sselii 3915 . . . . . . 7 (𝑥𝐷 ↦ (ℑ‘(log‘𝑥))) ∈ (𝐷cn→ℂ)
8988a1i 11 . . . . . 6 (⊤ → (𝑥𝐷 ↦ (ℑ‘(log‘𝑥))) ∈ (𝐷cn→ℂ))
90 ax-icn 10589 . . . . . . 7 i ∈ ℂ
91 eqid 2801 . . . . . . . 8 (𝑦 ∈ ℂ ↦ (i · 𝑦)) = (𝑦 ∈ ℂ ↦ (i · 𝑦))
9291mulc1cncf 23514 . . . . . . 7 (i ∈ ℂ → (𝑦 ∈ ℂ ↦ (i · 𝑦)) ∈ (ℂ–cn→ℂ))
9390, 92mp1i 13 . . . . . 6 (⊤ → (𝑦 ∈ ℂ ↦ (i · 𝑦)) ∈ (ℂ–cn→ℂ))
9489, 93cncfco 23516 . . . . 5 (⊤ → ((𝑦 ∈ ℂ ↦ (i · 𝑦)) ∘ (𝑥𝐷 ↦ (ℑ‘(log‘𝑥)))) ∈ (𝐷cn→ℂ))
9584, 94eqeltrrd 2894 . . . 4 (⊤ → (𝑥𝐷 ↦ (i · (ℑ‘(log‘𝑥)))) ∈ (𝐷cn→ℂ))
9627, 29, 77, 95cncfmpt2f 23524 . . 3 (⊤ → (𝑥𝐷 ↦ (((log ↾ ℝ+)‘(abs‘𝑥)) + (i · (ℑ‘(log‘𝑥))))) ∈ (𝐷cn→ℂ))
9796mptru 1545 . 2 (𝑥𝐷 ↦ (((log ↾ ℝ+)‘(abs‘𝑥)) + (i · (ℑ‘(log‘𝑥))))) ∈ (𝐷cn→ℂ)
9826, 97eqeltri 2889 1 (log ↾ 𝐷) ∈ (𝐷cn→ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wtru 1539  wcel 2112  wne 2990  wral 3109  cdif 3881  wss 3884  {csn 4528  cmpt 5113  ran crn 5524  cres 5525  ccom 5527   Fn wfn 6323  wf 6324  1-1-ontowf1o 6327  cfv 6328  (class class class)co 7139  cc 10528  cr 10529  0cc0 10530  ici 10532   + caddc 10533   · cmul 10535  -∞cmnf 10666  +crp 12381  (,]cioc 12731  cre 14452  cim 14453  abscabs 14589  t crest 16690  TopOpenctopn 16691  fldccnfld 20095  TopOnctopon 21519   Cn ccn 21833   ×t ctx 22169  cnccncf 23485  logclog 25150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430  df-fac 13634  df-bc 13663  df-hash 13691  df-shft 14422  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-limsup 14824  df-clim 14841  df-rlim 14842  df-sum 15039  df-ef 15417  df-sin 15419  df-cos 15420  df-tan 15421  df-pi 15422  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-starv 16576  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-unif 16584  df-hom 16585  df-cco 16586  df-rest 16692  df-topn 16693  df-0g 16711  df-gsum 16712  df-topgen 16713  df-pt 16714  df-prds 16717  df-xrs 16771  df-qtop 16776  df-imas 16777  df-xps 16779  df-mre 16853  df-mrc 16854  df-acs 16856  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-submnd 17953  df-mulg 18221  df-cntz 18443  df-cmn 18904  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-mopn 20091  df-fbas 20092  df-fg 20093  df-cnfld 20096  df-top 21503  df-topon 21520  df-topsp 21542  df-bases 21555  df-cld 21628  df-ntr 21629  df-cls 21630  df-nei 21707  df-lp 21745  df-perf 21746  df-cn 21836  df-cnp 21837  df-haus 21924  df-cmp 21996  df-tx 22171  df-hmeo 22364  df-fil 22455  df-fm 22547  df-flim 22548  df-flf 22549  df-xms 22931  df-ms 22932  df-tms 22933  df-cncf 23487  df-limc 24473  df-dv 24474  df-log 25152
This theorem is referenced by:  dvlog  25246  efopnlem2  25252  dvcncxp1  25336  cxpcn  25338  lgamgulmlem2  25619  lgamcvg2  25644  areacirclem4  35147
  Copyright terms: Public domain W3C validator