MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logcn Structured version   Visualization version   GIF version

Theorem logcn 26707
Description: The logarithm function is continuous away from the branch cut at negative reals. (Contributed by Mario Carneiro, 25-Feb-2015.)
Hypothesis
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
logcn (log ↾ 𝐷) ∈ (𝐷cn→ℂ)

Proof of Theorem logcn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 logf1o 26624 . . . . . . 7 log:(ℂ ∖ {0})–1-1-onto→ran log
2 f1of 6862 . . . . . . 7 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log)
31, 2ax-mp 5 . . . . . 6 log:(ℂ ∖ {0})⟶ran log
4 logcn.d . . . . . . 7 𝐷 = (ℂ ∖ (-∞(,]0))
54logdmss 26702 . . . . . 6 𝐷 ⊆ (ℂ ∖ {0})
6 fssres 6787 . . . . . 6 ((log:(ℂ ∖ {0})⟶ran log ∧ 𝐷 ⊆ (ℂ ∖ {0})) → (log ↾ 𝐷):𝐷⟶ran log)
73, 5, 6mp2an 691 . . . . 5 (log ↾ 𝐷):𝐷⟶ran log
8 ffn 6747 . . . . 5 ((log ↾ 𝐷):𝐷⟶ran log → (log ↾ 𝐷) Fn 𝐷)
97, 8ax-mp 5 . . . 4 (log ↾ 𝐷) Fn 𝐷
10 dffn5 6980 . . . 4 ((log ↾ 𝐷) Fn 𝐷 ↔ (log ↾ 𝐷) = (𝑥𝐷 ↦ ((log ↾ 𝐷)‘𝑥)))
119, 10mpbi 230 . . 3 (log ↾ 𝐷) = (𝑥𝐷 ↦ ((log ↾ 𝐷)‘𝑥))
12 fvres 6939 . . . . 5 (𝑥𝐷 → ((log ↾ 𝐷)‘𝑥) = (log‘𝑥))
134ellogdm 26699 . . . . . . . 8 (𝑥𝐷 ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+)))
1413simplbi 497 . . . . . . 7 (𝑥𝐷𝑥 ∈ ℂ)
154logdmn0 26700 . . . . . . 7 (𝑥𝐷𝑥 ≠ 0)
1614, 15logcld 26630 . . . . . 6 (𝑥𝐷 → (log‘𝑥) ∈ ℂ)
1716replimd 15246 . . . . 5 (𝑥𝐷 → (log‘𝑥) = ((ℜ‘(log‘𝑥)) + (i · (ℑ‘(log‘𝑥)))))
18 relog 26657 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (ℜ‘(log‘𝑥)) = (log‘(abs‘𝑥)))
1914, 15, 18syl2anc 583 . . . . . . 7 (𝑥𝐷 → (ℜ‘(log‘𝑥)) = (log‘(abs‘𝑥)))
2014, 15absrpcld 15497 . . . . . . . 8 (𝑥𝐷 → (abs‘𝑥) ∈ ℝ+)
2120fvresd 6940 . . . . . . 7 (𝑥𝐷 → ((log ↾ ℝ+)‘(abs‘𝑥)) = (log‘(abs‘𝑥)))
2219, 21eqtr4d 2783 . . . . . 6 (𝑥𝐷 → (ℜ‘(log‘𝑥)) = ((log ↾ ℝ+)‘(abs‘𝑥)))
2322oveq1d 7463 . . . . 5 (𝑥𝐷 → ((ℜ‘(log‘𝑥)) + (i · (ℑ‘(log‘𝑥)))) = (((log ↾ ℝ+)‘(abs‘𝑥)) + (i · (ℑ‘(log‘𝑥)))))
2412, 17, 233eqtrd 2784 . . . 4 (𝑥𝐷 → ((log ↾ 𝐷)‘𝑥) = (((log ↾ ℝ+)‘(abs‘𝑥)) + (i · (ℑ‘(log‘𝑥)))))
2524mpteq2ia 5269 . . 3 (𝑥𝐷 ↦ ((log ↾ 𝐷)‘𝑥)) = (𝑥𝐷 ↦ (((log ↾ ℝ+)‘(abs‘𝑥)) + (i · (ℑ‘(log‘𝑥)))))
2611, 25eqtri 2768 . 2 (log ↾ 𝐷) = (𝑥𝐷 ↦ (((log ↾ ℝ+)‘(abs‘𝑥)) + (i · (ℑ‘(log‘𝑥)))))
27 eqid 2740 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2827addcn 24906 . . . . 5 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
2928a1i 11 . . . 4 (⊤ → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
3027cnfldtopon 24824 . . . . . . . 8 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
3114ssriv 4012 . . . . . . . 8 𝐷 ⊆ ℂ
32 resttopon 23190 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝐷 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷))
3330, 31, 32mp2an 691 . . . . . . 7 ((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷)
3433a1i 11 . . . . . 6 (⊤ → ((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷))
35 absf 15386 . . . . . . . . . . . 12 abs:ℂ⟶ℝ
36 fssres 6787 . . . . . . . . . . . 12 ((abs:ℂ⟶ℝ ∧ 𝐷 ⊆ ℂ) → (abs ↾ 𝐷):𝐷⟶ℝ)
3735, 31, 36mp2an 691 . . . . . . . . . . 11 (abs ↾ 𝐷):𝐷⟶ℝ
3837a1i 11 . . . . . . . . . 10 (⊤ → (abs ↾ 𝐷):𝐷⟶ℝ)
3938feqmptd 6990 . . . . . . . . 9 (⊤ → (abs ↾ 𝐷) = (𝑥𝐷 ↦ ((abs ↾ 𝐷)‘𝑥)))
40 fvres 6939 . . . . . . . . . 10 (𝑥𝐷 → ((abs ↾ 𝐷)‘𝑥) = (abs‘𝑥))
4140mpteq2ia 5269 . . . . . . . . 9 (𝑥𝐷 ↦ ((abs ↾ 𝐷)‘𝑥)) = (𝑥𝐷 ↦ (abs‘𝑥))
4239, 41eqtrdi 2796 . . . . . . . 8 (⊤ → (abs ↾ 𝐷) = (𝑥𝐷 ↦ (abs‘𝑥)))
43 ffn 6747 . . . . . . . . . . 11 ((abs ↾ 𝐷):𝐷⟶ℝ → (abs ↾ 𝐷) Fn 𝐷)
4437, 43ax-mp 5 . . . . . . . . . 10 (abs ↾ 𝐷) Fn 𝐷
4540, 20eqeltrd 2844 . . . . . . . . . . 11 (𝑥𝐷 → ((abs ↾ 𝐷)‘𝑥) ∈ ℝ+)
4645rgen 3069 . . . . . . . . . 10 𝑥𝐷 ((abs ↾ 𝐷)‘𝑥) ∈ ℝ+
47 ffnfv 7153 . . . . . . . . . 10 ((abs ↾ 𝐷):𝐷⟶ℝ+ ↔ ((abs ↾ 𝐷) Fn 𝐷 ∧ ∀𝑥𝐷 ((abs ↾ 𝐷)‘𝑥) ∈ ℝ+))
4844, 46, 47mpbir2an 710 . . . . . . . . 9 (abs ↾ 𝐷):𝐷⟶ℝ+
49 rpssre 13064 . . . . . . . . . . 11 + ⊆ ℝ
50 ax-resscn 11241 . . . . . . . . . . 11 ℝ ⊆ ℂ
5149, 50sstri 4018 . . . . . . . . . 10 + ⊆ ℂ
52 abscncf 24946 . . . . . . . . . . 11 abs ∈ (ℂ–cn→ℝ)
53 rescncf 24942 . . . . . . . . . . 11 (𝐷 ⊆ ℂ → (abs ∈ (ℂ–cn→ℝ) → (abs ↾ 𝐷) ∈ (𝐷cn→ℝ)))
5431, 52, 53mp2 9 . . . . . . . . . 10 (abs ↾ 𝐷) ∈ (𝐷cn→ℝ)
55 cncfcdm 24943 . . . . . . . . . 10 ((ℝ+ ⊆ ℂ ∧ (abs ↾ 𝐷) ∈ (𝐷cn→ℝ)) → ((abs ↾ 𝐷) ∈ (𝐷cn→ℝ+) ↔ (abs ↾ 𝐷):𝐷⟶ℝ+))
5651, 54, 55mp2an 691 . . . . . . . . 9 ((abs ↾ 𝐷) ∈ (𝐷cn→ℝ+) ↔ (abs ↾ 𝐷):𝐷⟶ℝ+)
5748, 56mpbir 231 . . . . . . . 8 (abs ↾ 𝐷) ∈ (𝐷cn→ℝ+)
5842, 57eqeltrrdi 2853 . . . . . . 7 (⊤ → (𝑥𝐷 ↦ (abs‘𝑥)) ∈ (𝐷cn→ℝ+))
59 eqid 2740 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t 𝐷) = ((TopOpen‘ℂfld) ↾t 𝐷)
60 eqid 2740 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t+) = ((TopOpen‘ℂfld) ↾t+)
6127, 59, 60cncfcn 24955 . . . . . . . 8 ((𝐷 ⊆ ℂ ∧ ℝ+ ⊆ ℂ) → (𝐷cn→ℝ+) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn ((TopOpen‘ℂfld) ↾t+)))
6231, 51, 61mp2an 691 . . . . . . 7 (𝐷cn→ℝ+) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn ((TopOpen‘ℂfld) ↾t+))
6358, 62eleqtrdi 2854 . . . . . 6 (⊤ → (𝑥𝐷 ↦ (abs‘𝑥)) ∈ (((TopOpen‘ℂfld) ↾t 𝐷) Cn ((TopOpen‘ℂfld) ↾t+)))
64 ssid 4031 . . . . . . . . . 10 ℂ ⊆ ℂ
65 cncfss 24944 . . . . . . . . . 10 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ+cn→ℝ) ⊆ (ℝ+cn→ℂ))
6650, 64, 65mp2an 691 . . . . . . . . 9 (ℝ+cn→ℝ) ⊆ (ℝ+cn→ℂ)
67 relogcn 26698 . . . . . . . . 9 (log ↾ ℝ+) ∈ (ℝ+cn→ℝ)
6866, 67sselii 4005 . . . . . . . 8 (log ↾ ℝ+) ∈ (ℝ+cn→ℂ)
6968a1i 11 . . . . . . 7 (⊤ → (log ↾ ℝ+) ∈ (ℝ+cn→ℂ))
7030toponrestid 22948 . . . . . . . . 9 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
7127, 60, 70cncfcn 24955 . . . . . . . 8 ((ℝ+ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ+cn→ℂ) = (((TopOpen‘ℂfld) ↾t+) Cn (TopOpen‘ℂfld)))
7251, 64, 71mp2an 691 . . . . . . 7 (ℝ+cn→ℂ) = (((TopOpen‘ℂfld) ↾t+) Cn (TopOpen‘ℂfld))
7369, 72eleqtrdi 2854 . . . . . 6 (⊤ → (log ↾ ℝ+) ∈ (((TopOpen‘ℂfld) ↾t+) Cn (TopOpen‘ℂfld)))
7434, 63, 73cnmpt11f 23693 . . . . 5 (⊤ → (𝑥𝐷 ↦ ((log ↾ ℝ+)‘(abs‘𝑥))) ∈ (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)))
7527, 59, 70cncfcn 24955 . . . . . 6 ((𝐷 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐷cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)))
7631, 64, 75mp2an 691 . . . . 5 (𝐷cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld))
7774, 76eleqtrrdi 2855 . . . 4 (⊤ → (𝑥𝐷 ↦ ((log ↾ ℝ+)‘(abs‘𝑥))) ∈ (𝐷cn→ℂ))
7816imcld 15244 . . . . . . . 8 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ∈ ℝ)
7978recnd 11318 . . . . . . 7 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ∈ ℂ)
8079adantl 481 . . . . . 6 ((⊤ ∧ 𝑥𝐷) → (ℑ‘(log‘𝑥)) ∈ ℂ)
81 eqidd 2741 . . . . . 6 (⊤ → (𝑥𝐷 ↦ (ℑ‘(log‘𝑥))) = (𝑥𝐷 ↦ (ℑ‘(log‘𝑥))))
82 eqidd 2741 . . . . . 6 (⊤ → (𝑦 ∈ ℂ ↦ (i · 𝑦)) = (𝑦 ∈ ℂ ↦ (i · 𝑦)))
83 oveq2 7456 . . . . . 6 (𝑦 = (ℑ‘(log‘𝑥)) → (i · 𝑦) = (i · (ℑ‘(log‘𝑥))))
8480, 81, 82, 83fmptco 7163 . . . . 5 (⊤ → ((𝑦 ∈ ℂ ↦ (i · 𝑦)) ∘ (𝑥𝐷 ↦ (ℑ‘(log‘𝑥)))) = (𝑥𝐷 ↦ (i · (ℑ‘(log‘𝑥)))))
85 cncfss 24944 . . . . . . . . 9 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐷cn→ℝ) ⊆ (𝐷cn→ℂ))
8650, 64, 85mp2an 691 . . . . . . . 8 (𝐷cn→ℝ) ⊆ (𝐷cn→ℂ)
874logcnlem5 26706 . . . . . . . 8 (𝑥𝐷 ↦ (ℑ‘(log‘𝑥))) ∈ (𝐷cn→ℝ)
8886, 87sselii 4005 . . . . . . 7 (𝑥𝐷 ↦ (ℑ‘(log‘𝑥))) ∈ (𝐷cn→ℂ)
8988a1i 11 . . . . . 6 (⊤ → (𝑥𝐷 ↦ (ℑ‘(log‘𝑥))) ∈ (𝐷cn→ℂ))
90 ax-icn 11243 . . . . . . 7 i ∈ ℂ
91 eqid 2740 . . . . . . . 8 (𝑦 ∈ ℂ ↦ (i · 𝑦)) = (𝑦 ∈ ℂ ↦ (i · 𝑦))
9291mulc1cncf 24950 . . . . . . 7 (i ∈ ℂ → (𝑦 ∈ ℂ ↦ (i · 𝑦)) ∈ (ℂ–cn→ℂ))
9390, 92mp1i 13 . . . . . 6 (⊤ → (𝑦 ∈ ℂ ↦ (i · 𝑦)) ∈ (ℂ–cn→ℂ))
9489, 93cncfco 24952 . . . . 5 (⊤ → ((𝑦 ∈ ℂ ↦ (i · 𝑦)) ∘ (𝑥𝐷 ↦ (ℑ‘(log‘𝑥)))) ∈ (𝐷cn→ℂ))
9584, 94eqeltrrd 2845 . . . 4 (⊤ → (𝑥𝐷 ↦ (i · (ℑ‘(log‘𝑥)))) ∈ (𝐷cn→ℂ))
9627, 29, 77, 95cncfmpt2f 24960 . . 3 (⊤ → (𝑥𝐷 ↦ (((log ↾ ℝ+)‘(abs‘𝑥)) + (i · (ℑ‘(log‘𝑥))))) ∈ (𝐷cn→ℂ))
9796mptru 1544 . 2 (𝑥𝐷 ↦ (((log ↾ ℝ+)‘(abs‘𝑥)) + (i · (ℑ‘(log‘𝑥))))) ∈ (𝐷cn→ℂ)
9826, 97eqeltri 2840 1 (log ↾ 𝐷) ∈ (𝐷cn→ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wtru 1538  wcel 2108  wne 2946  wral 3067  cdif 3973  wss 3976  {csn 4648  cmpt 5249  ran crn 5701  cres 5702  ccom 5704   Fn wfn 6568  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  ici 11186   + caddc 11187   · cmul 11189  -∞cmnf 11322  +crp 13057  (,]cioc 13408  cre 15146  cim 15147  abscabs 15283  t crest 17480  TopOpenctopn 17481  fldccnfld 21387  TopOnctopon 22937   Cn ccn 23253   ×t ctx 23589  cnccncf 24921  logclog 26614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-tan 16119  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616
This theorem is referenced by:  dvlog  26711  efopnlem2  26717  dvcncxp1  26803  cxpcn  26805  cxpcnOLD  26806  lgamgulmlem2  27091  lgamcvg2  27116  areacirclem4  37671
  Copyright terms: Public domain W3C validator