| Step | Hyp | Ref
| Expression |
| 1 | | rge0ssre 13496 |
. . . . . . . 8
⊢
(0[,)+∞) ⊆ ℝ |
| 2 | | ax-resscn 11212 |
. . . . . . . 8
⊢ ℝ
⊆ ℂ |
| 3 | 1, 2 | sstri 3993 |
. . . . . . 7
⊢
(0[,)+∞) ⊆ ℂ |
| 4 | 3 | sseli 3979 |
. . . . . 6
⊢ (𝑥 ∈ (0[,)+∞) →
𝑥 ∈
ℂ) |
| 5 | | simpll 767 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬
𝑥 = 0) → 𝐴 ∈
ℂ) |
| 6 | | 1cnd 11256 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬
𝑥 = 0) → 1 ∈
ℂ) |
| 7 | | simplr 769 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬
𝑥 = 0) → 𝑥 ∈
ℂ) |
| 8 | | ax-1ne0 11224 |
. . . . . . . . . . . 12
⊢ 1 ≠
0 |
| 9 | 8 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬
𝑥 = 0) → 1 ≠
0) |
| 10 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬
𝑥 = 0) → ¬ 𝑥 = 0) |
| 11 | 10 | neqned 2947 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬
𝑥 = 0) → 𝑥 ≠ 0) |
| 12 | 5, 6, 7, 9, 11 | divdiv2d 12075 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬
𝑥 = 0) → (𝐴 / (1 / 𝑥)) = ((𝐴 · 𝑥) / 1)) |
| 13 | | mulcl 11239 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴 · 𝑥) ∈ ℂ) |
| 14 | 13 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬
𝑥 = 0) → (𝐴 · 𝑥) ∈ ℂ) |
| 15 | 14 | div1d 12035 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬
𝑥 = 0) → ((𝐴 · 𝑥) / 1) = (𝐴 · 𝑥)) |
| 16 | 12, 15 | eqtrd 2777 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬
𝑥 = 0) → (𝐴 / (1 / 𝑥)) = (𝐴 · 𝑥)) |
| 17 | 16 | oveq2d 7447 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬
𝑥 = 0) → (1 + (𝐴 / (1 / 𝑥))) = (1 + (𝐴 · 𝑥))) |
| 18 | 17 | oveq1d 7446 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬
𝑥 = 0) → ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥)) = ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) |
| 19 | 18 | ifeq2da 4558 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥))) = if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) |
| 20 | 4, 19 | sylan2 593 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ (0[,)+∞)) →
if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥))) = if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) |
| 21 | 20 | mpteq2dva 5242 |
. . . 4
⊢ (𝐴 ∈ ℂ → (𝑥 ∈ (0[,)+∞) ↦
if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥)))) = (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))))) |
| 22 | | resmpt 6055 |
. . . . 5
⊢
((0[,)+∞) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ (0[,)+∞)) =
(𝑥 ∈ (0[,)+∞)
↦ if(𝑥 = 0,
(exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))))) |
| 23 | 3, 22 | ax-mp 5 |
. . . 4
⊢ ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ (0[,)+∞)) =
(𝑥 ∈ (0[,)+∞)
↦ if(𝑥 = 0,
(exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) |
| 24 | 21, 23 | eqtr4di 2795 |
. . 3
⊢ (𝐴 ∈ ℂ → (𝑥 ∈ (0[,)+∞) ↦
if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥)))) = ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾
(0[,)+∞))) |
| 25 | | 0e0icopnf 13498 |
. . . . 5
⊢ 0 ∈
(0[,)+∞) |
| 26 | 25 | a1i 11 |
. . . 4
⊢ (𝐴 ∈ ℂ → 0 ∈
(0[,)+∞)) |
| 27 | | eqeq2 2749 |
. . . . . . . . 9
⊢
((exp‘(𝐴
· 1)) = if((𝐴
· 𝑥) = 0,
(exp‘(𝐴 · 1)),
(exp‘(𝐴 ·
((log‘(1 + (𝐴
· 𝑥))) / (𝐴 · 𝑥))))) → (if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · 1)) ↔ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))))) |
| 28 | | eqeq2 2749 |
. . . . . . . . 9
⊢
((exp‘(𝐴
· ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) = if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) → (if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · ((log‘(1 +
(𝐴 · 𝑥))) / (𝐴 · 𝑥)))) ↔ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))))) |
| 29 | | efrlimOLD.1 |
. . . . . . . . . . . . . 14
⊢ 𝑆 = (0(ball‘(abs ∘
− ))(1 / ((abs‘𝐴) + 1))) |
| 30 | | cnxmet 24793 |
. . . . . . . . . . . . . . 15
⊢ (abs
∘ − ) ∈ (∞Met‘ℂ) |
| 31 | | 0cnd 11254 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℂ → 0 ∈
ℂ) |
| 32 | | abscl 15317 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ∈ ℂ →
(abs‘𝐴) ∈
ℝ) |
| 33 | | peano2re 11434 |
. . . . . . . . . . . . . . . . . . 19
⊢
((abs‘𝐴)
∈ ℝ → ((abs‘𝐴) + 1) ∈ ℝ) |
| 34 | 32, 33 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ ℂ →
((abs‘𝐴) + 1) ∈
ℝ) |
| 35 | | 0red 11264 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ∈ ℂ → 0 ∈
ℝ) |
| 36 | | absge0 15326 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ∈ ℂ → 0 ≤
(abs‘𝐴)) |
| 37 | 32 | ltp1d 12198 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ∈ ℂ →
(abs‘𝐴) <
((abs‘𝐴) +
1)) |
| 38 | 35, 32, 34, 36, 37 | lelttrd 11419 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ ℂ → 0 <
((abs‘𝐴) +
1)) |
| 39 | 34, 38 | elrpd 13074 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ ℂ →
((abs‘𝐴) + 1) ∈
ℝ+) |
| 40 | 39 | rpreccld 13087 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ ℂ → (1 /
((abs‘𝐴) + 1)) ∈
ℝ+) |
| 41 | 40 | rpxrd 13078 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℂ → (1 /
((abs‘𝐴) + 1)) ∈
ℝ*) |
| 42 | | blssm 24428 |
. . . . . . . . . . . . . . 15
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ
∧ (1 / ((abs‘𝐴) +
1)) ∈ ℝ*) → (0(ball‘(abs ∘ − ))(1
/ ((abs‘𝐴) + 1)))
⊆ ℂ) |
| 43 | 30, 31, 41, 42 | mp3an2i 1468 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℂ →
(0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))) ⊆ ℂ) |
| 44 | 29, 43 | eqsstrid 4022 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℂ → 𝑆 ⊆
ℂ) |
| 45 | 44 | sselda 3983 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ ℂ) |
| 46 | | mul0or 11903 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝐴 · 𝑥) = 0 ↔ (𝐴 = 0 ∨ 𝑥 = 0))) |
| 47 | 45, 46 | syldan 591 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → ((𝐴 · 𝑥) = 0 ↔ (𝐴 = 0 ∨ 𝑥 = 0))) |
| 48 | 47 | biimpa 476 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ (𝐴 · 𝑥) = 0) → (𝐴 = 0 ∨ 𝑥 = 0)) |
| 49 | 7, 11 | reccld 12036 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬
𝑥 = 0) → (1 / 𝑥) ∈
ℂ) |
| 50 | 45, 49 | syldanl 602 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ ¬ 𝑥 = 0) → (1 / 𝑥) ∈ ℂ) |
| 51 | 50 | adantlr 715 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (1 / 𝑥) ∈ ℂ) |
| 52 | 51 | 1cxpd 26749 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (1↑𝑐(1 /
𝑥)) = 1) |
| 53 | | simplr 769 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → 𝐴 = 0) |
| 54 | 53 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (𝐴 · 𝑥) = (0 · 𝑥)) |
| 55 | 45 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → 𝑥 ∈ ℂ) |
| 56 | 55 | mul02d 11459 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (0 · 𝑥) = 0) |
| 57 | 54, 56 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (𝐴 · 𝑥) = 0) |
| 58 | 57 | oveq2d 7447 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (1 + (𝐴 · 𝑥)) = (1 + 0)) |
| 59 | | 1p0e1 12390 |
. . . . . . . . . . . . . . . . 17
⊢ (1 + 0) =
1 |
| 60 | 58, 59 | eqtrdi 2793 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (1 + (𝐴 · 𝑥)) = 1) |
| 61 | 60 | oveq1d 7446 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)) =
(1↑𝑐(1 / 𝑥))) |
| 62 | 53 | fveq2d 6910 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (exp‘𝐴) = (exp‘0)) |
| 63 | | ef0 16127 |
. . . . . . . . . . . . . . . 16
⊢
(exp‘0) = 1 |
| 64 | 62, 63 | eqtrdi 2793 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (exp‘𝐴) = 1) |
| 65 | 52, 61, 64 | 3eqtr4d 2787 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)) = (exp‘𝐴)) |
| 66 | 65 | ifeq2da 4558 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ 𝐴 = 0) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = if(𝑥 = 0, (exp‘𝐴), (exp‘𝐴))) |
| 67 | | ifid 4566 |
. . . . . . . . . . . . 13
⊢ if(𝑥 = 0, (exp‘𝐴), (exp‘𝐴)) = (exp‘𝐴) |
| 68 | 66, 67 | eqtrdi 2793 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ 𝐴 = 0) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘𝐴)) |
| 69 | | iftrue 4531 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 0 → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘𝐴)) |
| 70 | 69 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ 𝑥 = 0) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘𝐴)) |
| 71 | 68, 70 | jaodan 960 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ (𝐴 = 0 ∨ 𝑥 = 0)) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘𝐴)) |
| 72 | | mulrid 11259 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) |
| 73 | 72 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ (𝐴 = 0 ∨ 𝑥 = 0)) → (𝐴 · 1) = 𝐴) |
| 74 | 73 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ (𝐴 = 0 ∨ 𝑥 = 0)) → (exp‘(𝐴 · 1)) = (exp‘𝐴)) |
| 75 | 71, 74 | eqtr4d 2780 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ (𝐴 = 0 ∨ 𝑥 = 0)) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · 1))) |
| 76 | 48, 75 | syldan 591 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ (𝐴 · 𝑥) = 0) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · 1))) |
| 77 | | mulne0b 11904 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝐴 ≠ 0 ∧ 𝑥 ≠ 0) ↔ (𝐴 · 𝑥) ≠ 0)) |
| 78 | 45, 77 | syldan 591 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → ((𝐴 ≠ 0 ∧ 𝑥 ≠ 0) ↔ (𝐴 · 𝑥) ≠ 0)) |
| 79 | | df-ne 2941 |
. . . . . . . . . . . 12
⊢ ((𝐴 · 𝑥) ≠ 0 ↔ ¬ (𝐴 · 𝑥) = 0) |
| 80 | 78, 79 | bitrdi 287 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → ((𝐴 ≠ 0 ∧ 𝑥 ≠ 0) ↔ ¬ (𝐴 · 𝑥) = 0)) |
| 81 | | simprr 773 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → 𝑥 ≠ 0) |
| 82 | 81 | neneqd 2945 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ¬ 𝑥 = 0) |
| 83 | 82 | iffalsed 4536 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) |
| 84 | | ax-1cn 11213 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℂ |
| 85 | 45, 13 | syldan 591 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → (𝐴 · 𝑥) ∈ ℂ) |
| 86 | | addcl 11237 |
. . . . . . . . . . . . . . . 16
⊢ ((1
∈ ℂ ∧ (𝐴
· 𝑥) ∈ ℂ)
→ (1 + (𝐴 ·
𝑥)) ∈
ℂ) |
| 87 | 84, 85, 86 | sylancr 587 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → (1 + (𝐴 · 𝑥)) ∈ ℂ) |
| 88 | 87 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (1 + (𝐴 · 𝑥)) ∈ ℂ) |
| 89 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . 19
⊢
(1(ball‘(abs ∘ − ))1) = (1(ball‘(abs ∘
− ))1) |
| 90 | 89 | dvlog2lem 26694 |
. . . . . . . . . . . . . . . . . 18
⊢
(1(ball‘(abs ∘ − ))1) ⊆ (ℂ ∖
(-∞(,]0)) |
| 91 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℂ
∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0)) |
| 92 | 91 | logdmss 26684 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℂ
∖ (-∞(,]0)) ⊆ (ℂ ∖ {0}) |
| 93 | 90, 92 | sstri 3993 |
. . . . . . . . . . . . . . . . 17
⊢
(1(ball‘(abs ∘ − ))1) ⊆ (ℂ ∖
{0}) |
| 94 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (abs
∘ − ) = (abs ∘ − ) |
| 95 | 94 | cnmetdval 24791 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((1 +
(𝐴 · 𝑥)) ∈ ℂ ∧ 1 ∈
ℂ) → ((1 + (𝐴
· 𝑥))(abs ∘
− )1) = (abs‘((1 + (𝐴 · 𝑥)) − 1))) |
| 96 | 87, 84, 95 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → ((1 + (𝐴 · 𝑥))(abs ∘ − )1) = (abs‘((1 +
(𝐴 · 𝑥)) − 1))) |
| 97 | | pncan2 11515 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((1
∈ ℂ ∧ (𝐴
· 𝑥) ∈ ℂ)
→ ((1 + (𝐴 ·
𝑥)) − 1) = (𝐴 · 𝑥)) |
| 98 | 84, 85, 97 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → ((1 + (𝐴 · 𝑥)) − 1) = (𝐴 · 𝑥)) |
| 99 | 98 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → (abs‘((1 + (𝐴 · 𝑥)) − 1)) = (abs‘(𝐴 · 𝑥))) |
| 100 | 96, 99 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → ((1 + (𝐴 · 𝑥))(abs ∘ − )1) =
(abs‘(𝐴 ·
𝑥))) |
| 101 | 85 | abscld 15475 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → (abs‘(𝐴 · 𝑥)) ∈ ℝ) |
| 102 | 34 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → ((abs‘𝐴) + 1) ∈ ℝ) |
| 103 | 45 | abscld 15475 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → (abs‘𝑥) ∈ ℝ) |
| 104 | 102, 103 | remulcld 11291 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → (((abs‘𝐴) + 1) · (abs‘𝑥)) ∈
ℝ) |
| 105 | | 1red 11262 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → 1 ∈ ℝ) |
| 106 | | absmul 15333 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) →
(abs‘(𝐴 ·
𝑥)) = ((abs‘𝐴) · (abs‘𝑥))) |
| 107 | 45, 106 | syldan 591 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → (abs‘(𝐴 · 𝑥)) = ((abs‘𝐴) · (abs‘𝑥))) |
| 108 | 32 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → (abs‘𝐴) ∈ ℝ) |
| 109 | 108, 33 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → ((abs‘𝐴) + 1) ∈ ℝ) |
| 110 | 45 | absge0d 15483 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → 0 ≤ (abs‘𝑥)) |
| 111 | 108 | lep1d 12199 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → (abs‘𝐴) ≤ ((abs‘𝐴) + 1)) |
| 112 | 108, 109,
103, 110, 111 | lemul1ad 12207 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → ((abs‘𝐴) · (abs‘𝑥)) ≤ (((abs‘𝐴) + 1) · (abs‘𝑥))) |
| 113 | 107, 112 | eqbrtrd 5165 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → (abs‘(𝐴 · 𝑥)) ≤ (((abs‘𝐴) + 1) · (abs‘𝑥))) |
| 114 | | 0cn 11253 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 0 ∈
ℂ |
| 115 | 94 | cnmetdval 24791 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑥 ∈ ℂ ∧ 0 ∈
ℂ) → (𝑥(abs
∘ − )0) = (abs‘(𝑥 − 0))) |
| 116 | 45, 114, 115 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → (𝑥(abs ∘ − )0) = (abs‘(𝑥 − 0))) |
| 117 | 45 | subid1d 11609 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → (𝑥 − 0) = 𝑥) |
| 118 | 117 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → (abs‘(𝑥 − 0)) = (abs‘𝑥)) |
| 119 | 116, 118 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → (𝑥(abs ∘ − )0) = (abs‘𝑥)) |
| 120 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) |
| 121 | 120, 29 | eleqtrdi 2851 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ (0(ball‘(abs ∘ −
))(1 / ((abs‘𝐴) +
1)))) |
| 122 | 30 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → (abs ∘ − ) ∈
(∞Met‘ℂ)) |
| 123 | 41 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → (1 / ((abs‘𝐴) + 1)) ∈
ℝ*) |
| 124 | | 0cnd 11254 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → 0 ∈ ℂ) |
| 125 | | elbl3 24402 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ (1 /
((abs‘𝐴) + 1)) ∈
ℝ*) ∧ (0 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑥 ∈ (0(ball‘(abs ∘ −
))(1 / ((abs‘𝐴) +
1))) ↔ (𝑥(abs ∘
− )0) < (1 / ((abs‘𝐴) + 1)))) |
| 126 | 122, 123,
124, 45, 125 | syl22anc 839 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → (𝑥 ∈ (0(ball‘(abs ∘ −
))(1 / ((abs‘𝐴) +
1))) ↔ (𝑥(abs ∘
− )0) < (1 / ((abs‘𝐴) + 1)))) |
| 127 | 121, 126 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → (𝑥(abs ∘ − )0) < (1 /
((abs‘𝐴) +
1))) |
| 128 | 119, 127 | eqbrtrrd 5167 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → (abs‘𝑥) < (1 / ((abs‘𝐴) + 1))) |
| 129 | 38 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → 0 < ((abs‘𝐴) + 1)) |
| 130 | | ltmuldiv2 12142 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((abs‘𝑥)
∈ ℝ ∧ 1 ∈ ℝ ∧ (((abs‘𝐴) + 1) ∈ ℝ ∧ 0 <
((abs‘𝐴) + 1)))
→ ((((abs‘𝐴) +
1) · (abs‘𝑥))
< 1 ↔ (abs‘𝑥)
< (1 / ((abs‘𝐴) +
1)))) |
| 131 | 103, 105,
109, 129, 130 | syl112anc 1376 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → ((((abs‘𝐴) + 1) · (abs‘𝑥)) < 1 ↔
(abs‘𝑥) < (1 /
((abs‘𝐴) +
1)))) |
| 132 | 128, 131 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → (((abs‘𝐴) + 1) · (abs‘𝑥)) < 1) |
| 133 | 101, 104,
105, 113, 132 | lelttrd 11419 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → (abs‘(𝐴 · 𝑥)) < 1) |
| 134 | 100, 133 | eqbrtrd 5165 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → ((1 + (𝐴 · 𝑥))(abs ∘ − )1) <
1) |
| 135 | | 1rp 13038 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 1 ∈
ℝ+ |
| 136 | | rpxr 13044 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (1 ∈
ℝ+ → 1 ∈ ℝ*) |
| 137 | 135, 136 | mp1i 13 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → 1 ∈
ℝ*) |
| 138 | | 1cnd 11256 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → 1 ∈ ℂ) |
| 139 | | elbl3 24402 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈
ℝ*) ∧ (1 ∈ ℂ ∧ (1 + (𝐴 · 𝑥)) ∈ ℂ)) → ((1 + (𝐴 · 𝑥)) ∈ (1(ball‘(abs ∘ −
))1) ↔ ((1 + (𝐴
· 𝑥))(abs ∘
− )1) < 1)) |
| 140 | 122, 137,
138, 87, 139 | syl22anc 839 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → ((1 + (𝐴 · 𝑥)) ∈ (1(ball‘(abs ∘ −
))1) ↔ ((1 + (𝐴
· 𝑥))(abs ∘
− )1) < 1)) |
| 141 | 134, 140 | mpbird 257 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → (1 + (𝐴 · 𝑥)) ∈ (1(ball‘(abs ∘ −
))1)) |
| 142 | 93, 141 | sselid 3981 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → (1 + (𝐴 · 𝑥)) ∈ (ℂ ∖
{0})) |
| 143 | | eldifsni 4790 |
. . . . . . . . . . . . . . . 16
⊢ ((1 +
(𝐴 · 𝑥)) ∈ (ℂ ∖ {0})
→ (1 + (𝐴 ·
𝑥)) ≠
0) |
| 144 | 142, 143 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → (1 + (𝐴 · 𝑥)) ≠ 0) |
| 145 | 144 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (1 + (𝐴 · 𝑥)) ≠ 0) |
| 146 | 45 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → 𝑥 ∈ ℂ) |
| 147 | 146, 81 | reccld 12036 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ ℂ) |
| 148 | 88, 145, 147 | cxpefd 26754 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)) = (exp‘((1 / 𝑥) · (log‘(1 +
(𝐴 · 𝑥)))))) |
| 149 | 87, 144 | logcld 26612 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → (log‘(1 + (𝐴 · 𝑥))) ∈ ℂ) |
| 150 | 149 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (log‘(1 + (𝐴 · 𝑥))) ∈ ℂ) |
| 151 | 147, 150 | mulcomd 11282 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ((1 / 𝑥) · (log‘(1 + (𝐴 · 𝑥)))) = ((log‘(1 + (𝐴 · 𝑥))) · (1 / 𝑥))) |
| 152 | | simpll 767 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → 𝐴 ∈ ℂ) |
| 153 | | simprl 771 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → 𝐴 ≠ 0) |
| 154 | 152, 153 | dividd 12041 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (𝐴 / 𝐴) = 1) |
| 155 | 154 | oveq1d 7446 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ((𝐴 / 𝐴) / 𝑥) = (1 / 𝑥)) |
| 156 | 152, 152,
146, 153, 81 | divdiv1d 12074 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ((𝐴 / 𝐴) / 𝑥) = (𝐴 / (𝐴 · 𝑥))) |
| 157 | 155, 156 | eqtr3d 2779 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) = (𝐴 / (𝐴 · 𝑥))) |
| 158 | 157 | oveq2d 7447 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ((log‘(1 + (𝐴 · 𝑥))) · (1 / 𝑥)) = ((log‘(1 + (𝐴 · 𝑥))) · (𝐴 / (𝐴 · 𝑥)))) |
| 159 | 85 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (𝐴 · 𝑥) ∈ ℂ) |
| 160 | 78 | biimpa 476 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (𝐴 · 𝑥) ≠ 0) |
| 161 | 150, 152,
159, 160 | div12d 12079 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ((log‘(1 + (𝐴 · 𝑥))) · (𝐴 / (𝐴 · 𝑥))) = (𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) |
| 162 | 151, 158,
161 | 3eqtrd 2781 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ((1 / 𝑥) · (log‘(1 + (𝐴 · 𝑥)))) = (𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) |
| 163 | 162 | fveq2d 6910 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (exp‘((1 / 𝑥) · (log‘(1 +
(𝐴 · 𝑥))))) = (exp‘(𝐴 · ((log‘(1 +
(𝐴 · 𝑥))) / (𝐴 · 𝑥))))) |
| 164 | 83, 148, 163 | 3eqtrd 2781 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · ((log‘(1 +
(𝐴 · 𝑥))) / (𝐴 · 𝑥))))) |
| 165 | 164 | ex 412 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → ((𝐴 ≠ 0 ∧ 𝑥 ≠ 0) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · ((log‘(1 +
(𝐴 · 𝑥))) / (𝐴 · 𝑥)))))) |
| 166 | 80, 165 | sylbird 260 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → (¬ (𝐴 · 𝑥) = 0 → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · ((log‘(1 +
(𝐴 · 𝑥))) / (𝐴 · 𝑥)))))) |
| 167 | 166 | imp 406 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ ¬ (𝐴 · 𝑥) = 0) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · ((log‘(1 +
(𝐴 · 𝑥))) / (𝐴 · 𝑥))))) |
| 168 | 27, 28, 76, 167 | ifbothda 4564 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))) |
| 169 | 168 | mpteq2dva 5242 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (𝑥 ∈ 𝑆 ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) = (𝑥 ∈ 𝑆 ↦ if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))))) |
| 170 | 44 | resmptd 6058 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ 𝑆) = (𝑥 ∈ 𝑆 ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))))) |
| 171 | | 1cnd 11256 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ (𝐴 · 𝑥) = 0) → 1 ∈
ℂ) |
| 172 | 149 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ ¬ (𝐴 · 𝑥) = 0) → (log‘(1 + (𝐴 · 𝑥))) ∈ ℂ) |
| 173 | 85 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ ¬ (𝐴 · 𝑥) = 0) → (𝐴 · 𝑥) ∈ ℂ) |
| 174 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ ¬ (𝐴 · 𝑥) = 0) → ¬ (𝐴 · 𝑥) = 0) |
| 175 | 174 | neqned 2947 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ ¬ (𝐴 · 𝑥) = 0) → (𝐴 · 𝑥) ≠ 0) |
| 176 | 172, 173,
175 | divcld 12043 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) ∧ ¬ (𝐴 · 𝑥) = 0) → ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)) ∈ ℂ) |
| 177 | 171, 176 | ifclda 4561 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))) ∈ ℂ) |
| 178 | | eqidd 2738 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ → (𝑥 ∈ 𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) = (𝑥 ∈ 𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) |
| 179 | | eqidd 2738 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦
(exp‘(𝐴 ·
𝑦))) = (𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦)))) |
| 180 | | oveq2 7439 |
. . . . . . . . . 10
⊢ (𝑦 = if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))) → (𝐴 · 𝑦) = (𝐴 · if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) |
| 181 | 180 | fveq2d 6910 |
. . . . . . . . 9
⊢ (𝑦 = if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))) → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))) |
| 182 | | oveq2 7439 |
. . . . . . . . . . 11
⊢
(if((𝐴 ·
𝑥) = 0, 1, ((log‘(1 +
(𝐴 · 𝑥))) / (𝐴 · 𝑥))) = 1 → (𝐴 · if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) = (𝐴 · 1)) |
| 183 | 182 | fveq2d 6910 |
. . . . . . . . . 10
⊢
(if((𝐴 ·
𝑥) = 0, 1, ((log‘(1 +
(𝐴 · 𝑥))) / (𝐴 · 𝑥))) = 1 → (exp‘(𝐴 · if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) = (exp‘(𝐴 · 1))) |
| 184 | | oveq2 7439 |
. . . . . . . . . . 11
⊢
(if((𝐴 ·
𝑥) = 0, 1, ((log‘(1 +
(𝐴 · 𝑥))) / (𝐴 · 𝑥))) = ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)) → (𝐴 · if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) = (𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) |
| 185 | 184 | fveq2d 6910 |
. . . . . . . . . 10
⊢
(if((𝐴 ·
𝑥) = 0, 1, ((log‘(1 +
(𝐴 · 𝑥))) / (𝐴 · 𝑥))) = ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)) → (exp‘(𝐴 · if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) = (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) |
| 186 | 183, 185 | ifsb 4539 |
. . . . . . . . 9
⊢
(exp‘(𝐴
· if((𝐴 ·
𝑥) = 0, 1, ((log‘(1 +
(𝐴 · 𝑥))) / (𝐴 · 𝑥))))) = if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) |
| 187 | 181, 186 | eqtrdi 2793 |
. . . . . . . 8
⊢ (𝑦 = if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))) → (exp‘(𝐴 · 𝑦)) = if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))) |
| 188 | 177, 178,
179, 187 | fmptco 7149 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → ((𝑦 ∈ ℂ ↦
(exp‘(𝐴 ·
𝑦))) ∘ (𝑥 ∈ 𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) = (𝑥 ∈ 𝑆 ↦ if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))))) |
| 189 | 169, 170,
188 | 3eqtr4d 2787 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ 𝑆) = ((𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∘ (𝑥 ∈ 𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))) |
| 190 | | eqidd 2738 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ → (𝑥 ∈ 𝑆 ↦ (1 + (𝐴 · 𝑥))) = (𝑥 ∈ 𝑆 ↦ (1 + (𝐴 · 𝑥)))) |
| 191 | | eqidd 2738 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ → (𝑦 ∈ (1(ball‘(abs
∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) = (𝑦 ∈ (1(ball‘(abs ∘ −
))1) ↦ if(𝑦 = 1, 1,
((log‘𝑦) / (𝑦 − 1))))) |
| 192 | | eqeq1 2741 |
. . . . . . . . . . 11
⊢ (𝑦 = (1 + (𝐴 · 𝑥)) → (𝑦 = 1 ↔ (1 + (𝐴 · 𝑥)) = 1)) |
| 193 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑦 = (1 + (𝐴 · 𝑥)) → (log‘𝑦) = (log‘(1 + (𝐴 · 𝑥)))) |
| 194 | | oveq1 7438 |
. . . . . . . . . . . 12
⊢ (𝑦 = (1 + (𝐴 · 𝑥)) → (𝑦 − 1) = ((1 + (𝐴 · 𝑥)) − 1)) |
| 195 | 193, 194 | oveq12d 7449 |
. . . . . . . . . . 11
⊢ (𝑦 = (1 + (𝐴 · 𝑥)) → ((log‘𝑦) / (𝑦 − 1)) = ((log‘(1 + (𝐴 · 𝑥))) / ((1 + (𝐴 · 𝑥)) − 1))) |
| 196 | 192, 195 | ifbieq2d 4552 |
. . . . . . . . . 10
⊢ (𝑦 = (1 + (𝐴 · 𝑥)) → if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1))) = if((1 + (𝐴 · 𝑥)) = 1, 1, ((log‘(1 + (𝐴 · 𝑥))) / ((1 + (𝐴 · 𝑥)) − 1)))) |
| 197 | 141, 190,
191, 196 | fmptco 7149 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → ((𝑦 ∈ (1(ball‘(abs
∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∘ (𝑥 ∈ 𝑆 ↦ (1 + (𝐴 · 𝑥)))) = (𝑥 ∈ 𝑆 ↦ if((1 + (𝐴 · 𝑥)) = 1, 1, ((log‘(1 + (𝐴 · 𝑥))) / ((1 + (𝐴 · 𝑥)) − 1))))) |
| 198 | 59 | eqeq2i 2750 |
. . . . . . . . . . . 12
⊢ ((1 +
(𝐴 · 𝑥)) = (1 + 0) ↔ (1 + (𝐴 · 𝑥)) = 1) |
| 199 | 138, 85, 124 | addcand 11464 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → ((1 + (𝐴 · 𝑥)) = (1 + 0) ↔ (𝐴 · 𝑥) = 0)) |
| 200 | 198, 199 | bitr3id 285 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → ((1 + (𝐴 · 𝑥)) = 1 ↔ (𝐴 · 𝑥) = 0)) |
| 201 | 98 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → ((log‘(1 + (𝐴 · 𝑥))) / ((1 + (𝐴 · 𝑥)) − 1)) = ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))) |
| 202 | 200, 201 | ifbieq2d 4552 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → if((1 + (𝐴 · 𝑥)) = 1, 1, ((log‘(1 + (𝐴 · 𝑥))) / ((1 + (𝐴 · 𝑥)) − 1))) = if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) |
| 203 | 202 | mpteq2dva 5242 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → (𝑥 ∈ 𝑆 ↦ if((1 + (𝐴 · 𝑥)) = 1, 1, ((log‘(1 + (𝐴 · 𝑥))) / ((1 + (𝐴 · 𝑥)) − 1)))) = (𝑥 ∈ 𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) |
| 204 | 197, 203 | eqtrd 2777 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ → ((𝑦 ∈ (1(ball‘(abs
∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∘ (𝑥 ∈ 𝑆 ↦ (1 + (𝐴 · 𝑥)))) = (𝑥 ∈ 𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) |
| 205 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
((TopOpen‘ℂfld) ↾t 𝑆) =
((TopOpen‘ℂfld) ↾t 𝑆) |
| 206 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 207 | 206 | cnfldtopon 24803 |
. . . . . . . . . . . . 13
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
| 208 | 207 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℂ →
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ)) |
| 209 | | 1cnd 11256 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℂ → 1 ∈
ℂ) |
| 210 | 208, 208,
209 | cnmptc 23670 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ 1)
∈ ((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
| 211 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℂ → 𝐴 ∈
ℂ) |
| 212 | 208, 208,
211 | cnmptc 23670 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ 𝐴) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
| 213 | 208 | cnmptid 23669 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ 𝑥) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
| 214 | 206 | mulcn 24889 |
. . . . . . . . . . . . . . 15
⊢ ·
∈ (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) |
| 215 | 214 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℂ → ·
∈ (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld))) |
| 216 | 208, 212,
213, 215 | cnmpt12f 23674 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
| 217 | 206 | addcn 24887 |
. . . . . . . . . . . . . 14
⊢ + ∈
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) |
| 218 | 217 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℂ → + ∈
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld))) |
| 219 | 208, 210,
216, 218 | cnmpt12f 23674 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ (1 +
(𝐴 · 𝑥))) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
| 220 | 205, 208,
44, 219 | cnmpt1res 23684 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ → (𝑥 ∈ 𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈
(((TopOpen‘ℂfld) ↾t 𝑆) Cn
(TopOpen‘ℂfld))) |
| 221 | 141 | fmpttd 7135 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℂ → (𝑥 ∈ 𝑆 ↦ (1 + (𝐴 · 𝑥))):𝑆⟶(1(ball‘(abs ∘ −
))1)) |
| 222 | 221 | frnd 6744 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℂ → ran
(𝑥 ∈ 𝑆 ↦ (1 + (𝐴 · 𝑥))) ⊆ (1(ball‘(abs ∘
− ))1)) |
| 223 | | difss 4136 |
. . . . . . . . . . . . . 14
⊢ (ℂ
∖ {0}) ⊆ ℂ |
| 224 | 93, 223 | sstri 3993 |
. . . . . . . . . . . . 13
⊢
(1(ball‘(abs ∘ − ))1) ⊆ ℂ |
| 225 | 224 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℂ →
(1(ball‘(abs ∘ − ))1) ⊆ ℂ) |
| 226 | | cnrest2 23294 |
. . . . . . . . . . . 12
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ ran (𝑥 ∈ 𝑆 ↦ (1 + (𝐴 · 𝑥))) ⊆ (1(ball‘(abs ∘
− ))1) ∧ (1(ball‘(abs ∘ − ))1) ⊆ ℂ)
→ ((𝑥 ∈ 𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈
(((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld))
↔ (𝑥 ∈ 𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈
(((TopOpen‘ℂfld) ↾t 𝑆) Cn ((TopOpen‘ℂfld)
↾t (1(ball‘(abs ∘ −
))1))))) |
| 227 | 207, 222,
225, 226 | mp3an2i 1468 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ → ((𝑥 ∈ 𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈
(((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld))
↔ (𝑥 ∈ 𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈
(((TopOpen‘ℂfld) ↾t 𝑆) Cn ((TopOpen‘ℂfld)
↾t (1(ball‘(abs ∘ −
))1))))) |
| 228 | 220, 227 | mpbid 232 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ → (𝑥 ∈ 𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈
(((TopOpen‘ℂfld) ↾t 𝑆) Cn ((TopOpen‘ℂfld)
↾t (1(ball‘(abs ∘ − ))1)))) |
| 229 | | blcntr 24423 |
. . . . . . . . . . . . 13
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ
∧ (1 / ((abs‘𝐴) +
1)) ∈ ℝ+) → 0 ∈ (0(ball‘(abs ∘
− ))(1 / ((abs‘𝐴) + 1)))) |
| 230 | 30, 31, 40, 229 | mp3an2i 1468 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℂ → 0 ∈
(0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1)))) |
| 231 | 230, 29 | eleqtrrdi 2852 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ → 0 ∈
𝑆) |
| 232 | | resttopon 23169 |
. . . . . . . . . . . . 13
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ 𝑆 ⊆ ℂ)
→ ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆)) |
| 233 | 207, 44, 232 | sylancr 587 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℂ →
((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆)) |
| 234 | | toponuni 22920 |
. . . . . . . . . . . 12
⊢
(((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ∪
((TopOpen‘ℂfld) ↾t 𝑆)) |
| 235 | 233, 234 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ → 𝑆 = ∪
((TopOpen‘ℂfld) ↾t 𝑆)) |
| 236 | 231, 235 | eleqtrd 2843 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ → 0 ∈
∪ ((TopOpen‘ℂfld)
↾t 𝑆)) |
| 237 | | eqid 2737 |
. . . . . . . . . . 11
⊢ ∪ ((TopOpen‘ℂfld)
↾t 𝑆) =
∪ ((TopOpen‘ℂfld)
↾t 𝑆) |
| 238 | 237 | cncnpi 23286 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈
(((TopOpen‘ℂfld) ↾t 𝑆) Cn ((TopOpen‘ℂfld)
↾t (1(ball‘(abs ∘ − ))1))) ∧ 0 ∈
∪ ((TopOpen‘ℂfld)
↾t 𝑆))
→ (𝑥 ∈ 𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈
((((TopOpen‘ℂfld) ↾t 𝑆) CnP ((TopOpen‘ℂfld)
↾t (1(ball‘(abs ∘ −
))1)))‘0)) |
| 239 | 228, 236,
238 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → (𝑥 ∈ 𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈
((((TopOpen‘ℂfld) ↾t 𝑆) CnP ((TopOpen‘ℂfld)
↾t (1(ball‘(abs ∘ −
))1)))‘0)) |
| 240 | | cnelprrecn 11248 |
. . . . . . . . . . 11
⊢ ℂ
∈ {ℝ, ℂ} |
| 241 | | logf1o 26606 |
. . . . . . . . . . . . . 14
⊢
log:(ℂ ∖ {0})–1-1-onto→ran
log |
| 242 | | f1of 6848 |
. . . . . . . . . . . . . 14
⊢
(log:(ℂ ∖ {0})–1-1-onto→ran
log → log:(ℂ ∖ {0})⟶ran log) |
| 243 | 241, 242 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
log:(ℂ ∖ {0})⟶ran log |
| 244 | | logrncn 26604 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ran log → 𝑥 ∈
ℂ) |
| 245 | 244 | ssriv 3987 |
. . . . . . . . . . . . 13
⊢ ran log
⊆ ℂ |
| 246 | | fss 6752 |
. . . . . . . . . . . . 13
⊢
((log:(ℂ ∖ {0})⟶ran log ∧ ran log ⊆
ℂ) → log:(ℂ ∖ {0})⟶ℂ) |
| 247 | 243, 245,
246 | mp2an 692 |
. . . . . . . . . . . 12
⊢
log:(ℂ ∖ {0})⟶ℂ |
| 248 | | fssres 6774 |
. . . . . . . . . . . 12
⊢
((log:(ℂ ∖ {0})⟶ℂ ∧ (1(ball‘(abs
∘ − ))1) ⊆ (ℂ ∖ {0})) → (log ↾
(1(ball‘(abs ∘ − ))1)):(1(ball‘(abs ∘ −
))1)⟶ℂ) |
| 249 | 247, 93, 248 | mp2an 692 |
. . . . . . . . . . 11
⊢ (log
↾ (1(ball‘(abs ∘ − ))1)):(1(ball‘(abs ∘
− ))1)⟶ℂ |
| 250 | | blcntr 24423 |
. . . . . . . . . . . . . 14
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℂ
∧ 1 ∈ ℝ+) → 1 ∈ (1(ball‘(abs ∘
− ))1)) |
| 251 | 30, 84, 135, 250 | mp3an 1463 |
. . . . . . . . . . . . 13
⊢ 1 ∈
(1(ball‘(abs ∘ − ))1) |
| 252 | | ovex 7464 |
. . . . . . . . . . . . . 14
⊢ (1 /
𝑦) ∈
V |
| 253 | 89 | dvlog2 26695 |
. . . . . . . . . . . . . 14
⊢ (ℂ
D (log ↾ (1(ball‘(abs ∘ − ))1))) = (𝑦 ∈ (1(ball‘(abs ∘ −
))1) ↦ (1 / 𝑦)) |
| 254 | 252, 253 | dmmpti 6712 |
. . . . . . . . . . . . 13
⊢ dom
(ℂ D (log ↾ (1(ball‘(abs ∘ − ))1))) =
(1(ball‘(abs ∘ − ))1) |
| 255 | 251, 254 | eleqtrri 2840 |
. . . . . . . . . . . 12
⊢ 1 ∈
dom (ℂ D (log ↾ (1(ball‘(abs ∘ −
))1))) |
| 256 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
((TopOpen‘ℂfld) ↾t
(1(ball‘(abs ∘ − ))1)) =
((TopOpen‘ℂfld) ↾t (1(ball‘(abs
∘ − ))1)) |
| 257 | 253 | fveq1i 6907 |
. . . . . . . . . . . . . . . . 17
⊢ ((ℂ
D (log ↾ (1(ball‘(abs ∘ − ))1)))‘1) = ((𝑦 ∈ (1(ball‘(abs
∘ − ))1) ↦ (1 / 𝑦))‘1) |
| 258 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 1 → (1 / 𝑦) = (1 / 1)) |
| 259 | | 1div1e1 11958 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (1 / 1) =
1 |
| 260 | 258, 259 | eqtrdi 2793 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 1 → (1 / 𝑦) = 1) |
| 261 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (1(ball‘(abs
∘ − ))1) ↦ (1 / 𝑦)) = (𝑦 ∈ (1(ball‘(abs ∘ −
))1) ↦ (1 / 𝑦)) |
| 262 | | 1ex 11257 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
V |
| 263 | 260, 261,
262 | fvmpt 7016 |
. . . . . . . . . . . . . . . . . 18
⊢ (1 ∈
(1(ball‘(abs ∘ − ))1) → ((𝑦 ∈ (1(ball‘(abs ∘ −
))1) ↦ (1 / 𝑦))‘1) = 1) |
| 264 | 251, 263 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ (1(ball‘(abs
∘ − ))1) ↦ (1 / 𝑦))‘1) = 1 |
| 265 | 257, 264 | eqtr2i 2766 |
. . . . . . . . . . . . . . . 16
⊢ 1 =
((ℂ D (log ↾ (1(ball‘(abs ∘ −
))1)))‘1) |
| 266 | 265 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (1(ball‘(abs
∘ − ))1) → 1 = ((ℂ D (log ↾ (1(ball‘(abs
∘ − ))1)))‘1)) |
| 267 | | fvres 6925 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ (1(ball‘(abs
∘ − ))1) → ((log ↾ (1(ball‘(abs ∘ −
))1))‘𝑦) =
(log‘𝑦)) |
| 268 | | fvres 6925 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (1 ∈
(1(ball‘(abs ∘ − ))1) → ((log ↾ (1(ball‘(abs
∘ − ))1))‘1) = (log‘1)) |
| 269 | 251, 268 | mp1i 13 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (1(ball‘(abs
∘ − ))1) → ((log ↾ (1(ball‘(abs ∘ −
))1))‘1) = (log‘1)) |
| 270 | | log1 26627 |
. . . . . . . . . . . . . . . . . . 19
⊢
(log‘1) = 0 |
| 271 | 269, 270 | eqtrdi 2793 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ (1(ball‘(abs
∘ − ))1) → ((log ↾ (1(ball‘(abs ∘ −
))1))‘1) = 0) |
| 272 | 267, 271 | oveq12d 7449 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (1(ball‘(abs
∘ − ))1) → (((log ↾ (1(ball‘(abs ∘ −
))1))‘𝑦) −
((log ↾ (1(ball‘(abs ∘ − ))1))‘1)) =
((log‘𝑦) −
0)) |
| 273 | 93 | sseli 3979 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ (1(ball‘(abs
∘ − ))1) → 𝑦 ∈ (ℂ ∖
{0})) |
| 274 | | eldifsn 4786 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ (ℂ ∖ {0})
↔ (𝑦 ∈ ℂ
∧ 𝑦 ≠
0)) |
| 275 | 273, 274 | sylib 218 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (1(ball‘(abs
∘ − ))1) → (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) |
| 276 | | logcl 26610 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (log‘𝑦) ∈
ℂ) |
| 277 | 275, 276 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ (1(ball‘(abs
∘ − ))1) → (log‘𝑦) ∈ ℂ) |
| 278 | 277 | subid1d 11609 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (1(ball‘(abs
∘ − ))1) → ((log‘𝑦) − 0) = (log‘𝑦)) |
| 279 | 272, 278 | eqtr2d 2778 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (1(ball‘(abs
∘ − ))1) → (log‘𝑦) = (((log ↾ (1(ball‘(abs ∘
− ))1))‘𝑦)
− ((log ↾ (1(ball‘(abs ∘ −
))1))‘1))) |
| 280 | 279 | oveq1d 7446 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (1(ball‘(abs
∘ − ))1) → ((log‘𝑦) / (𝑦 − 1)) = ((((log ↾
(1(ball‘(abs ∘ − ))1))‘𝑦) − ((log ↾ (1(ball‘(abs
∘ − ))1))‘1)) / (𝑦 − 1))) |
| 281 | 266, 280 | ifeq12d 4547 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (1(ball‘(abs
∘ − ))1) → if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1))) = if(𝑦 = 1, ((ℂ D (log ↾
(1(ball‘(abs ∘ − ))1)))‘1), ((((log ↾
(1(ball‘(abs ∘ − ))1))‘𝑦) − ((log ↾ (1(ball‘(abs
∘ − ))1))‘1)) / (𝑦 − 1)))) |
| 282 | 281 | mpteq2ia 5245 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (1(ball‘(abs
∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) = (𝑦 ∈ (1(ball‘(abs ∘ −
))1) ↦ if(𝑦 = 1,
((ℂ D (log ↾ (1(ball‘(abs ∘ − ))1)))‘1),
((((log ↾ (1(ball‘(abs ∘ − ))1))‘𝑦) − ((log ↾
(1(ball‘(abs ∘ − ))1))‘1)) / (𝑦 − 1)))) |
| 283 | 256, 206,
282 | dvcnp 25954 |
. . . . . . . . . . . 12
⊢
(((ℂ ∈ {ℝ, ℂ} ∧ (log ↾
(1(ball‘(abs ∘ − ))1)):(1(ball‘(abs ∘ −
))1)⟶ℂ ∧ (1(ball‘(abs ∘ − ))1) ⊆
ℂ) ∧ 1 ∈ dom (ℂ D (log ↾ (1(ball‘(abs ∘
− ))1)))) → (𝑦
∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∈
((((TopOpen‘ℂfld) ↾t (1(ball‘(abs
∘ − ))1)) CnP
(TopOpen‘ℂfld))‘1)) |
| 284 | 255, 283 | mpan2 691 |
. . . . . . . . . . 11
⊢ ((ℂ
∈ {ℝ, ℂ} ∧ (log ↾ (1(ball‘(abs ∘ −
))1)):(1(ball‘(abs ∘ − ))1)⟶ℂ ∧
(1(ball‘(abs ∘ − ))1) ⊆ ℂ) → (𝑦 ∈ (1(ball‘(abs
∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∈
((((TopOpen‘ℂfld) ↾t (1(ball‘(abs
∘ − ))1)) CnP
(TopOpen‘ℂfld))‘1)) |
| 285 | 240, 249,
224, 284 | mp3an 1463 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (1(ball‘(abs
∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∈
((((TopOpen‘ℂfld) ↾t (1(ball‘(abs
∘ − ))1)) CnP
(TopOpen‘ℂfld))‘1) |
| 286 | | oveq2 7439 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 0 → (𝐴 · 𝑥) = (𝐴 · 0)) |
| 287 | 286 | oveq2d 7447 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 0 → (1 + (𝐴 · 𝑥)) = (1 + (𝐴 · 0))) |
| 288 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝑆 ↦ (1 + (𝐴 · 𝑥))) = (𝑥 ∈ 𝑆 ↦ (1 + (𝐴 · 𝑥))) |
| 289 | | ovex 7464 |
. . . . . . . . . . . . . 14
⊢ (1 +
(𝐴 · 0)) ∈
V |
| 290 | 287, 288,
289 | fvmpt 7016 |
. . . . . . . . . . . . 13
⊢ (0 ∈
𝑆 → ((𝑥 ∈ 𝑆 ↦ (1 + (𝐴 · 𝑥)))‘0) = (1 + (𝐴 · 0))) |
| 291 | 231, 290 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℂ → ((𝑥 ∈ 𝑆 ↦ (1 + (𝐴 · 𝑥)))‘0) = (1 + (𝐴 · 0))) |
| 292 | | mul01 11440 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℂ → (𝐴 · 0) =
0) |
| 293 | 292 | oveq2d 7447 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℂ → (1 +
(𝐴 · 0)) = (1 +
0)) |
| 294 | 293, 59 | eqtrdi 2793 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℂ → (1 +
(𝐴 · 0)) =
1) |
| 295 | 291, 294 | eqtrd 2777 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ → ((𝑥 ∈ 𝑆 ↦ (1 + (𝐴 · 𝑥)))‘0) = 1) |
| 296 | 295 | fveq2d 6910 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ →
((((TopOpen‘ℂfld) ↾t (1(ball‘(abs
∘ − ))1)) CnP (TopOpen‘ℂfld))‘((𝑥 ∈ 𝑆 ↦ (1 + (𝐴 · 𝑥)))‘0)) =
((((TopOpen‘ℂfld) ↾t (1(ball‘(abs
∘ − ))1)) CnP
(TopOpen‘ℂfld))‘1)) |
| 297 | 285, 296 | eleqtrrid 2848 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → (𝑦 ∈ (1(ball‘(abs
∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∈
((((TopOpen‘ℂfld) ↾t (1(ball‘(abs
∘ − ))1)) CnP (TopOpen‘ℂfld))‘((𝑥 ∈ 𝑆 ↦ (1 + (𝐴 · 𝑥)))‘0))) |
| 298 | | cnpco 23275 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈
((((TopOpen‘ℂfld) ↾t 𝑆) CnP ((TopOpen‘ℂfld)
↾t (1(ball‘(abs ∘ − ))1)))‘0) ∧
(𝑦 ∈
(1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∈
((((TopOpen‘ℂfld) ↾t (1(ball‘(abs
∘ − ))1)) CnP (TopOpen‘ℂfld))‘((𝑥 ∈ 𝑆 ↦ (1 + (𝐴 · 𝑥)))‘0))) → ((𝑦 ∈ (1(ball‘(abs ∘ −
))1) ↦ if(𝑦 = 1, 1,
((log‘𝑦) / (𝑦 − 1)))) ∘ (𝑥 ∈ 𝑆 ↦ (1 + (𝐴 · 𝑥)))) ∈
((((TopOpen‘ℂfld) ↾t 𝑆) CnP
(TopOpen‘ℂfld))‘0)) |
| 299 | 239, 297,
298 | syl2anc 584 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ → ((𝑦 ∈ (1(ball‘(abs
∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∘ (𝑥 ∈ 𝑆 ↦ (1 + (𝐴 · 𝑥)))) ∈
((((TopOpen‘ℂfld) ↾t 𝑆) CnP
(TopOpen‘ℂfld))‘0)) |
| 300 | 204, 299 | eqeltrrd 2842 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (𝑥 ∈ 𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) ∈
((((TopOpen‘ℂfld) ↾t 𝑆) CnP
(TopOpen‘ℂfld))‘0)) |
| 301 | 208, 208,
211 | cnmptc 23670 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ 𝐴) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
| 302 | 208 | cnmptid 23669 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ 𝑦) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
| 303 | 208, 301,
302, 215 | cnmpt12f 23674 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
| 304 | | efcn 26487 |
. . . . . . . . . . 11
⊢ exp
∈ (ℂ–cn→ℂ) |
| 305 | 206 | cncfcn1 24937 |
. . . . . . . . . . 11
⊢
(ℂ–cn→ℂ) =
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld)) |
| 306 | 304, 305 | eleqtri 2839 |
. . . . . . . . . 10
⊢ exp
∈ ((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld)) |
| 307 | 306 | a1i 11 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → exp
∈ ((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
| 308 | 208, 303,
307 | cnmpt11f 23672 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦
(exp‘(𝐴 ·
𝑦))) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
| 309 | 177 | fmpttd 7135 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → (𝑥 ∈ 𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))):𝑆⟶ℂ) |
| 310 | 309, 231 | ffvelcdmd 7105 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ → ((𝑥 ∈ 𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))‘0) ∈
ℂ) |
| 311 | | unicntop 24806 |
. . . . . . . . 9
⊢ ℂ =
∪
(TopOpen‘ℂfld) |
| 312 | 311 | cncnpi 23286 |
. . . . . . . 8
⊢ (((𝑦 ∈ ℂ ↦
(exp‘(𝐴 ·
𝑦))) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld)) ∧ ((𝑥 ∈ 𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))‘0) ∈ ℂ) → (𝑦 ∈ ℂ ↦
(exp‘(𝐴 ·
𝑦))) ∈
(((TopOpen‘ℂfld) CnP
(TopOpen‘ℂfld))‘((𝑥 ∈ 𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))‘0))) |
| 313 | 308, 310,
312 | syl2anc 584 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦
(exp‘(𝐴 ·
𝑦))) ∈
(((TopOpen‘ℂfld) CnP
(TopOpen‘ℂfld))‘((𝑥 ∈ 𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))‘0))) |
| 314 | | cnpco 23275 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) ∈
((((TopOpen‘ℂfld) ↾t 𝑆) CnP
(TopOpen‘ℂfld))‘0) ∧ (𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∈
(((TopOpen‘ℂfld) CnP
(TopOpen‘ℂfld))‘((𝑥 ∈ 𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))‘0))) → ((𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∘ (𝑥 ∈ 𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) ∈
((((TopOpen‘ℂfld) ↾t 𝑆) CnP
(TopOpen‘ℂfld))‘0)) |
| 315 | 300, 313,
314 | syl2anc 584 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → ((𝑦 ∈ ℂ ↦
(exp‘(𝐴 ·
𝑦))) ∘ (𝑥 ∈ 𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) ∈
((((TopOpen‘ℂfld) ↾t 𝑆) CnP
(TopOpen‘ℂfld))‘0)) |
| 316 | 189, 315 | eqeltrd 2841 |
. . . . 5
⊢ (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ 𝑆) ∈
((((TopOpen‘ℂfld) ↾t 𝑆) CnP
(TopOpen‘ℂfld))‘0)) |
| 317 | 206 | cnfldtop 24804 |
. . . . . . 7
⊢
(TopOpen‘ℂfld) ∈ Top |
| 318 | 317 | a1i 11 |
. . . . . 6
⊢ (𝐴 ∈ ℂ →
(TopOpen‘ℂfld) ∈ Top) |
| 319 | 206 | cnfldtopn 24802 |
. . . . . . . . . . 11
⊢
(TopOpen‘ℂfld) = (MetOpen‘(abs ∘
− )) |
| 320 | 319 | blopn 24513 |
. . . . . . . . . 10
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ
∧ (1 / ((abs‘𝐴) +
1)) ∈ ℝ*) → (0(ball‘(abs ∘ − ))(1
/ ((abs‘𝐴) + 1)))
∈ (TopOpen‘ℂfld)) |
| 321 | 30, 31, 41, 320 | mp3an2i 1468 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ →
(0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))) ∈
(TopOpen‘ℂfld)) |
| 322 | 29, 321 | eqeltrid 2845 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ → 𝑆 ∈
(TopOpen‘ℂfld)) |
| 323 | | isopn3i 23090 |
. . . . . . . 8
⊢
(((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ∈
(TopOpen‘ℂfld)) →
((int‘(TopOpen‘ℂfld))‘𝑆) = 𝑆) |
| 324 | 317, 322,
323 | sylancr 587 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ →
((int‘(TopOpen‘ℂfld))‘𝑆) = 𝑆) |
| 325 | 231, 324 | eleqtrrd 2844 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → 0 ∈
((int‘(TopOpen‘ℂfld))‘𝑆)) |
| 326 | | efcl 16118 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ →
(exp‘𝐴) ∈
ℂ) |
| 327 | 326 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ 𝑥 = 0) → (exp‘𝐴) ∈
ℂ) |
| 328 | 84, 14, 86 | sylancr 587 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬
𝑥 = 0) → (1 + (𝐴 · 𝑥)) ∈ ℂ) |
| 329 | 328, 49 | cxpcld 26750 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬
𝑥 = 0) → ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)) ∈
ℂ) |
| 330 | 327, 329 | ifclda 4561 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) ∈
ℂ) |
| 331 | 330 | fmpttd 7135 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))):ℂ⟶ℂ) |
| 332 | 311, 311 | cnprest 23297 |
. . . . . 6
⊢
((((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ⊆ ℂ) ∧ (0
∈ ((int‘(TopOpen‘ℂfld))‘𝑆) ∧ (𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))):ℂ⟶ℂ))
→ ((𝑥 ∈ ℂ
↦ if(𝑥 = 0,
(exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ∈
(((TopOpen‘ℂfld) CnP
(TopOpen‘ℂfld))‘0) ↔ ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ 𝑆) ∈
((((TopOpen‘ℂfld) ↾t 𝑆) CnP
(TopOpen‘ℂfld))‘0))) |
| 333 | 318, 44, 325, 331, 332 | syl22anc 839 |
. . . . 5
⊢ (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ∈
(((TopOpen‘ℂfld) CnP
(TopOpen‘ℂfld))‘0) ↔ ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ 𝑆) ∈
((((TopOpen‘ℂfld) ↾t 𝑆) CnP
(TopOpen‘ℂfld))‘0))) |
| 334 | 316, 333 | mpbird 257 |
. . . 4
⊢ (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ∈
(((TopOpen‘ℂfld) CnP
(TopOpen‘ℂfld))‘0)) |
| 335 | 311 | cnpresti 23296 |
. . . 4
⊢
(((0[,)+∞) ⊆ ℂ ∧ 0 ∈ (0[,)+∞) ∧
(𝑥 ∈ ℂ ↦
if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ∈
(((TopOpen‘ℂfld) CnP
(TopOpen‘ℂfld))‘0)) → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ (0[,)+∞))
∈ ((((TopOpen‘ℂfld) ↾t
(0[,)+∞)) CnP
(TopOpen‘ℂfld))‘0)) |
| 336 | 3, 26, 334, 335 | mp3an2i 1468 |
. . 3
⊢ (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ (0[,)+∞))
∈ ((((TopOpen‘ℂfld) ↾t
(0[,)+∞)) CnP
(TopOpen‘ℂfld))‘0)) |
| 337 | 24, 336 | eqeltrd 2841 |
. 2
⊢ (𝐴 ∈ ℂ → (𝑥 ∈ (0[,)+∞) ↦
if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥)))) ∈
((((TopOpen‘ℂfld) ↾t (0[,)+∞))
CnP (TopOpen‘ℂfld))‘0)) |
| 338 | | simpl 482 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℝ+)
→ 𝐴 ∈
ℂ) |
| 339 | | rpcn 13045 |
. . . . . . 7
⊢ (𝑘 ∈ ℝ+
→ 𝑘 ∈
ℂ) |
| 340 | 339 | adantl 481 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℝ+)
→ 𝑘 ∈
ℂ) |
| 341 | | rpne0 13051 |
. . . . . . 7
⊢ (𝑘 ∈ ℝ+
→ 𝑘 ≠
0) |
| 342 | 341 | adantl 481 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℝ+)
→ 𝑘 ≠
0) |
| 343 | 338, 340,
342 | divcld 12043 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℝ+)
→ (𝐴 / 𝑘) ∈
ℂ) |
| 344 | | addcl 11237 |
. . . . 5
⊢ ((1
∈ ℂ ∧ (𝐴 /
𝑘) ∈ ℂ) →
(1 + (𝐴 / 𝑘)) ∈
ℂ) |
| 345 | 84, 343, 344 | sylancr 587 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℝ+)
→ (1 + (𝐴 / 𝑘)) ∈
ℂ) |
| 346 | 345, 340 | cxpcld 26750 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℝ+)
→ ((1 + (𝐴 / 𝑘))↑𝑐𝑘) ∈
ℂ) |
| 347 | | oveq2 7439 |
. . . . 5
⊢ (𝑘 = (1 / 𝑥) → (𝐴 / 𝑘) = (𝐴 / (1 / 𝑥))) |
| 348 | 347 | oveq2d 7447 |
. . . 4
⊢ (𝑘 = (1 / 𝑥) → (1 + (𝐴 / 𝑘)) = (1 + (𝐴 / (1 / 𝑥)))) |
| 349 | | id 22 |
. . . 4
⊢ (𝑘 = (1 / 𝑥) → 𝑘 = (1 / 𝑥)) |
| 350 | 348, 349 | oveq12d 7449 |
. . 3
⊢ (𝑘 = (1 / 𝑥) → ((1 + (𝐴 / 𝑘))↑𝑐𝑘) = ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥))) |
| 351 | | eqid 2737 |
. . 3
⊢
((TopOpen‘ℂfld) ↾t
(0[,)+∞)) = ((TopOpen‘ℂfld) ↾t
(0[,)+∞)) |
| 352 | 326, 346,
350, 206, 351 | rlimcnp3 27010 |
. 2
⊢ (𝐴 ∈ ℂ → ((𝑘 ∈ ℝ+
↦ ((1 + (𝐴 / 𝑘))↑𝑐𝑘)) ⇝𝑟
(exp‘𝐴) ↔ (𝑥 ∈ (0[,)+∞) ↦
if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥)))) ∈
((((TopOpen‘ℂfld) ↾t (0[,)+∞))
CnP (TopOpen‘ℂfld))‘0))) |
| 353 | 337, 352 | mpbird 257 |
1
⊢ (𝐴 ∈ ℂ → (𝑘 ∈ ℝ+
↦ ((1 + (𝐴 / 𝑘))↑𝑐𝑘)) ⇝𝑟
(exp‘𝐴)) |