MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  loglesqrt Structured version   Visualization version   GIF version

Theorem loglesqrt 25254
Description: An upper bound on the logarithm. (Contributed by Mario Carneiro, 2-May-2016.) (Proof shortened by AV, 2-Aug-2021.)
Assertion
Ref Expression
loglesqrt ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log‘(𝐴 + 1)) ≤ (√‘𝐴))

Proof of Theorem loglesqrt
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0re 10635 . . . 4 0 ∈ ℝ
21a1i 11 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ∈ ℝ)
3 simpl 483 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ)
4 elicc2 12794 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 ∈ (0[,]𝐴) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥𝐴)))
51, 3, 4sylancr 587 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥𝐴)))
65biimpa 477 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0[,]𝐴)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥𝐴))
76simp1d 1136 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0[,]𝐴)) → 𝑥 ∈ ℝ)
86simp2d 1137 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0[,]𝐴)) → 0 ≤ 𝑥)
97, 8ge0p1rpd 12454 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0[,]𝐴)) → (𝑥 + 1) ∈ ℝ+)
109fvresd 6686 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0[,]𝐴)) → ((log ↾ ℝ+)‘(𝑥 + 1)) = (log‘(𝑥 + 1)))
1110mpteq2dva 5157 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ ((log ↾ ℝ+)‘(𝑥 + 1))) = (𝑥 ∈ (0[,]𝐴) ↦ (log‘(𝑥 + 1))))
12 eqid 2825 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1312cnfldtopon 23308 . . . . . . 7 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
147ex 413 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) → 𝑥 ∈ ℝ))
1514ssrdv 3976 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0[,]𝐴) ⊆ ℝ)
16 ax-resscn 10586 . . . . . . . 8 ℝ ⊆ ℂ
1715, 16syl6ss 3982 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0[,]𝐴) ⊆ ℂ)
18 resttopon 21687 . . . . . . 7 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (0[,]𝐴) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (0[,]𝐴)) ∈ (TopOn‘(0[,]𝐴)))
1913, 17, 18sylancr 587 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((TopOpen‘ℂfld) ↾t (0[,]𝐴)) ∈ (TopOn‘(0[,]𝐴)))
209fmpttd 6874 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)):(0[,]𝐴)⟶ℝ+)
21 rpssre 12389 . . . . . . . . . 10 + ⊆ ℝ
2221, 16sstri 3979 . . . . . . . . 9 + ⊆ ℂ
2312addcn 23390 . . . . . . . . . . 11 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
2423a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
25 ssid 3992 . . . . . . . . . . 11 ℂ ⊆ ℂ
26 cncfmptid 23437 . . . . . . . . . . 11 (((0[,]𝐴) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (0[,]𝐴) ↦ 𝑥) ∈ ((0[,]𝐴)–cn→ℂ))
2717, 25, 26sylancl 586 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ 𝑥) ∈ ((0[,]𝐴)–cn→ℂ))
28 1cnd 10628 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 1 ∈ ℂ)
2925a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ℂ ⊆ ℂ)
30 cncfmptc 23436 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (0[,]𝐴) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (0[,]𝐴) ↦ 1) ∈ ((0[,]𝐴)–cn→ℂ))
3128, 17, 29, 30syl3anc 1365 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ 1) ∈ ((0[,]𝐴)–cn→ℂ))
3212, 24, 27, 31cncfmpt2f 23439 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)) ∈ ((0[,]𝐴)–cn→ℂ))
33 cncffvrn 23423 . . . . . . . . 9 ((ℝ+ ⊆ ℂ ∧ (𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)) ∈ ((0[,]𝐴)–cn→ℂ)) → ((𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)) ∈ ((0[,]𝐴)–cn→ℝ+) ↔ (𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)):(0[,]𝐴)⟶ℝ+))
3422, 32, 33sylancr 587 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)) ∈ ((0[,]𝐴)–cn→ℝ+) ↔ (𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)):(0[,]𝐴)⟶ℝ+))
3520, 34mpbird 258 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)) ∈ ((0[,]𝐴)–cn→ℝ+))
36 eqid 2825 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t (0[,]𝐴)) = ((TopOpen‘ℂfld) ↾t (0[,]𝐴))
37 eqid 2825 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t+) = ((TopOpen‘ℂfld) ↾t+)
3812, 36, 37cncfcn 23434 . . . . . . . 8 (((0[,]𝐴) ⊆ ℂ ∧ ℝ+ ⊆ ℂ) → ((0[,]𝐴)–cn→ℝ+) = (((TopOpen‘ℂfld) ↾t (0[,]𝐴)) Cn ((TopOpen‘ℂfld) ↾t+)))
3917, 22, 38sylancl 586 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((0[,]𝐴)–cn→ℝ+) = (((TopOpen‘ℂfld) ↾t (0[,]𝐴)) Cn ((TopOpen‘ℂfld) ↾t+)))
4035, 39eleqtrd 2919 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)) ∈ (((TopOpen‘ℂfld) ↾t (0[,]𝐴)) Cn ((TopOpen‘ℂfld) ↾t+)))
41 relogcn 25136 . . . . . . . 8 (log ↾ ℝ+) ∈ (ℝ+cn→ℝ)
42 eqid 2825 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t ℝ) = ((TopOpen‘ℂfld) ↾t ℝ)
4312, 37, 42cncfcn 23434 . . . . . . . . 9 ((ℝ+ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ+cn→ℝ) = (((TopOpen‘ℂfld) ↾t+) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
4422, 16, 43mp2an 688 . . . . . . . 8 (ℝ+cn→ℝ) = (((TopOpen‘ℂfld) ↾t+) Cn ((TopOpen‘ℂfld) ↾t ℝ))
4541, 44eleqtri 2915 . . . . . . 7 (log ↾ ℝ+) ∈ (((TopOpen‘ℂfld) ↾t+) Cn ((TopOpen‘ℂfld) ↾t ℝ))
4645a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log ↾ ℝ+) ∈ (((TopOpen‘ℂfld) ↾t+) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
4719, 40, 46cnmpt11f 22190 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ ((log ↾ ℝ+)‘(𝑥 + 1))) ∈ (((TopOpen‘ℂfld) ↾t (0[,]𝐴)) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
4812, 36, 42cncfcn 23434 . . . . . 6 (((0[,]𝐴) ⊆ ℂ ∧ ℝ ⊆ ℂ) → ((0[,]𝐴)–cn→ℝ) = (((TopOpen‘ℂfld) ↾t (0[,]𝐴)) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
4917, 16, 48sylancl 586 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((0[,]𝐴)–cn→ℝ) = (((TopOpen‘ℂfld) ↾t (0[,]𝐴)) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
5047, 49eleqtrrd 2920 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ ((log ↾ ℝ+)‘(𝑥 + 1))) ∈ ((0[,]𝐴)–cn→ℝ))
5111, 50eqeltrrd 2918 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ (log‘(𝑥 + 1))) ∈ ((0[,]𝐴)–cn→ℝ))
52 reelprrecn 10621 . . . . 5 ℝ ∈ {ℝ, ℂ}
5352a1i 11 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ℝ ∈ {ℝ, ℂ})
54 simpr 485 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
55 1rp 12386 . . . . . . 7 1 ∈ ℝ+
56 rpaddcl 12404 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ 1 ∈ ℝ+) → (𝑥 + 1) ∈ ℝ+)
5754, 55, 56sylancl 586 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (𝑥 + 1) ∈ ℝ+)
5857relogcld 25121 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (log‘(𝑥 + 1)) ∈ ℝ)
5958recnd 10661 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (log‘(𝑥 + 1)) ∈ ℂ)
6057rpreccld 12434 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (1 / (𝑥 + 1)) ∈ ℝ+)
61 1cnd 10628 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℂ)
62 relogcl 25074 . . . . . . . 8 (𝑦 ∈ ℝ+ → (log‘𝑦) ∈ ℝ)
6362adantl 482 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+) → (log‘𝑦) ∈ ℝ)
6463recnd 10661 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+) → (log‘𝑦) ∈ ℂ)
65 rpreccl 12408 . . . . . . 7 (𝑦 ∈ ℝ+ → (1 / 𝑦) ∈ ℝ+)
6665adantl 482 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+) → (1 / 𝑦) ∈ ℝ+)
67 peano2re 10805 . . . . . . . . 9 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
6867adantl 482 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → (𝑥 + 1) ∈ ℝ)
6968recnd 10661 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → (𝑥 + 1) ∈ ℂ)
70 1cnd 10628 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ)
7116a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ℝ ⊆ ℂ)
7271sselda 3970 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
7353dvmptid 24471 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1))
74 0cnd 10626 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → 0 ∈ ℂ)
7553, 28dvmptc 24472 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ ↦ 1)) = (𝑥 ∈ ℝ ↦ 0))
7653, 72, 70, 73, 70, 74, 75dvmptadd 24474 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ ↦ (𝑥 + 1))) = (𝑥 ∈ ℝ ↦ (1 + 0)))
77 1p0e1 11753 . . . . . . . . 9 (1 + 0) = 1
7877mpteq2i 5154 . . . . . . . 8 (𝑥 ∈ ℝ ↦ (1 + 0)) = (𝑥 ∈ ℝ ↦ 1)
7976, 78syl6eq 2876 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ ↦ (𝑥 + 1))) = (𝑥 ∈ ℝ ↦ 1))
8021a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ℝ+ ⊆ ℝ)
8112tgioo2 23328 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
82 ioorp 12807 . . . . . . . . 9 (0(,)+∞) = ℝ+
83 iooretop 23291 . . . . . . . . 9 (0(,)+∞) ∈ (topGen‘ran (,))
8482, 83eqeltrri 2914 . . . . . . . 8 + ∈ (topGen‘ran (,))
8584a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ℝ+ ∈ (topGen‘ran (,)))
8653, 69, 70, 79, 80, 81, 12, 85dvmptres 24477 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 + 1))) = (𝑥 ∈ ℝ+ ↦ 1))
87 dvrelog 25135 . . . . . . 7 (ℝ D (log ↾ ℝ+)) = (𝑦 ∈ ℝ+ ↦ (1 / 𝑦))
88 relogf1o 25065 . . . . . . . . . . 11 (log ↾ ℝ+):ℝ+1-1-onto→ℝ
89 f1of 6611 . . . . . . . . . . 11 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ)
9088, 89mp1i 13 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log ↾ ℝ+):ℝ+⟶ℝ)
9190feqmptd 6729 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log ↾ ℝ+) = (𝑦 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑦)))
92 fvres 6685 . . . . . . . . . 10 (𝑦 ∈ ℝ+ → ((log ↾ ℝ+)‘𝑦) = (log‘𝑦))
9392mpteq2ia 5153 . . . . . . . . 9 (𝑦 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑦)) = (𝑦 ∈ ℝ+ ↦ (log‘𝑦))
9491, 93syl6eq 2876 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log ↾ ℝ+) = (𝑦 ∈ ℝ+ ↦ (log‘𝑦)))
9594oveq2d 7167 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (log ↾ ℝ+)) = (ℝ D (𝑦 ∈ ℝ+ ↦ (log‘𝑦))))
9687, 95syl5reqr 2875 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑦 ∈ ℝ+ ↦ (log‘𝑦))) = (𝑦 ∈ ℝ+ ↦ (1 / 𝑦)))
97 fveq2 6666 . . . . . 6 (𝑦 = (𝑥 + 1) → (log‘𝑦) = (log‘(𝑥 + 1)))
98 oveq2 7159 . . . . . 6 (𝑦 = (𝑥 + 1) → (1 / 𝑦) = (1 / (𝑥 + 1)))
9953, 53, 57, 61, 64, 66, 86, 96, 97, 98dvmptco 24486 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘(𝑥 + 1)))) = (𝑥 ∈ ℝ+ ↦ ((1 / (𝑥 + 1)) · 1)))
10060rpcnd 12426 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (1 / (𝑥 + 1)) ∈ ℂ)
101100mulid1d 10650 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((1 / (𝑥 + 1)) · 1) = (1 / (𝑥 + 1)))
102101mpteq2dva 5157 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ ℝ+ ↦ ((1 / (𝑥 + 1)) · 1)) = (𝑥 ∈ ℝ+ ↦ (1 / (𝑥 + 1))))
10399, 102eqtrd 2860 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘(𝑥 + 1)))) = (𝑥 ∈ ℝ+ ↦ (1 / (𝑥 + 1))))
104 ioossicc 12815 . . . . . . . . 9 (0(,)𝐴) ⊆ (0[,]𝐴)
105104sseli 3966 . . . . . . . 8 (𝑥 ∈ (0(,)𝐴) → 𝑥 ∈ (0[,]𝐴))
106105, 7sylan2 592 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0(,)𝐴)) → 𝑥 ∈ ℝ)
107 eliooord 12789 . . . . . . . . 9 (𝑥 ∈ (0(,)𝐴) → (0 < 𝑥𝑥 < 𝐴))
108107simpld 495 . . . . . . . 8 (𝑥 ∈ (0(,)𝐴) → 0 < 𝑥)
109108adantl 482 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0(,)𝐴)) → 0 < 𝑥)
110106, 109elrpd 12421 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0(,)𝐴)) → 𝑥 ∈ ℝ+)
111110ex 413 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0(,)𝐴) → 𝑥 ∈ ℝ+))
112111ssrdv 3976 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0(,)𝐴) ⊆ ℝ+)
113 iooretop 23291 . . . . 5 (0(,)𝐴) ∈ (topGen‘ran (,))
114113a1i 11 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0(,)𝐴) ∈ (topGen‘ran (,)))
11553, 59, 60, 103, 112, 81, 12, 114dvmptres 24477 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ (0(,)𝐴) ↦ (log‘(𝑥 + 1)))) = (𝑥 ∈ (0(,)𝐴) ↦ (1 / (𝑥 + 1))))
116 elrege0 12835 . . . . . . . . 9 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
1177, 8, 116sylanbrc 583 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0[,]𝐴)) → 𝑥 ∈ (0[,)+∞))
118117ex 413 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) → 𝑥 ∈ (0[,)+∞)))
119118ssrdv 3976 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0[,]𝐴) ⊆ (0[,)+∞))
120119resabs1d 5882 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√ ↾ (0[,)+∞)) ↾ (0[,]𝐴)) = (√ ↾ (0[,]𝐴)))
121 sqrtf 14716 . . . . . . 7 √:ℂ⟶ℂ
122121a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → √:ℂ⟶ℂ)
123122, 17feqresmpt 6730 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√ ↾ (0[,]𝐴)) = (𝑥 ∈ (0[,]𝐴) ↦ (√‘𝑥)))
124120, 123eqtrd 2860 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√ ↾ (0[,)+∞)) ↾ (0[,]𝐴)) = (𝑥 ∈ (0[,]𝐴) ↦ (√‘𝑥)))
125 resqrtcn 25245 . . . . 5 (√ ↾ (0[,)+∞)) ∈ ((0[,)+∞)–cn→ℝ)
126 rescncf 23422 . . . . 5 ((0[,]𝐴) ⊆ (0[,)+∞) → ((√ ↾ (0[,)+∞)) ∈ ((0[,)+∞)–cn→ℝ) → ((√ ↾ (0[,)+∞)) ↾ (0[,]𝐴)) ∈ ((0[,]𝐴)–cn→ℝ)))
127119, 125, 126mpisyl 21 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√ ↾ (0[,)+∞)) ↾ (0[,]𝐴)) ∈ ((0[,]𝐴)–cn→ℝ))
128124, 127eqeltrrd 2918 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ (√‘𝑥)) ∈ ((0[,]𝐴)–cn→ℝ))
129 rpcn 12392 . . . . . 6 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
130129adantl 482 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
131130sqrtcld 14790 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℂ)
132 2rp 12387 . . . . . 6 2 ∈ ℝ+
133 rpsqrtcl 14617 . . . . . . 7 (𝑥 ∈ ℝ+ → (√‘𝑥) ∈ ℝ+)
134133adantl 482 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ+)
135 rpmulcl 12405 . . . . . 6 ((2 ∈ ℝ+ ∧ (√‘𝑥) ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℝ+)
136132, 134, 135sylancr 587 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℝ+)
137136rpreccld 12434 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (1 / (2 · (√‘𝑥))) ∈ ℝ+)
138 dvsqrt 25238 . . . . 5 (ℝ D (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / (2 · (√‘𝑥))))
139138a1i 11 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / (2 · (√‘𝑥)))))
14053, 131, 137, 139, 112, 81, 12, 114dvmptres 24477 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ (0(,)𝐴) ↦ (√‘𝑥))) = (𝑥 ∈ (0(,)𝐴) ↦ (1 / (2 · (√‘𝑥)))))
141134rpred 12424 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ)
142 1re 10633 . . . . . . . . 9 1 ∈ ℝ
143 resubcl 10942 . . . . . . . . 9 (((√‘𝑥) ∈ ℝ ∧ 1 ∈ ℝ) → ((√‘𝑥) − 1) ∈ ℝ)
144141, 142, 143sylancl 586 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((√‘𝑥) − 1) ∈ ℝ)
145144sqge0d 13605 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 0 ≤ (((√‘𝑥) − 1)↑2))
146130sqsqrtd 14792 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((√‘𝑥)↑2) = 𝑥)
147146oveq1d 7166 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((√‘𝑥)↑2) − (2 · (√‘𝑥))) = (𝑥 − (2 · (√‘𝑥))))
148147oveq1d 7166 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((((√‘𝑥)↑2) − (2 · (√‘𝑥))) + 1) = ((𝑥 − (2 · (√‘𝑥))) + 1))
149 binom2sub1 13575 . . . . . . . . 9 ((√‘𝑥) ∈ ℂ → (((√‘𝑥) − 1)↑2) = ((((√‘𝑥)↑2) − (2 · (√‘𝑥))) + 1))
150131, 149syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((√‘𝑥) − 1)↑2) = ((((√‘𝑥)↑2) − (2 · (√‘𝑥))) + 1))
151136rpcnd 12426 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℂ)
152130, 61, 151addsubd 11010 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((𝑥 + 1) − (2 · (√‘𝑥))) = ((𝑥 − (2 · (√‘𝑥))) + 1))
153148, 150, 1523eqtr4d 2870 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((√‘𝑥) − 1)↑2) = ((𝑥 + 1) − (2 · (√‘𝑥))))
154145, 153breqtrd 5088 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 0 ≤ ((𝑥 + 1) − (2 · (√‘𝑥))))
15557rpred 12424 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (𝑥 + 1) ∈ ℝ)
156136rpred 12424 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℝ)
157155, 156subge0d 11222 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (0 ≤ ((𝑥 + 1) − (2 · (√‘𝑥))) ↔ (2 · (√‘𝑥)) ≤ (𝑥 + 1)))
158154, 157mpbid 233 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 · (√‘𝑥)) ≤ (𝑥 + 1))
159136, 57lerecd 12443 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((2 · (√‘𝑥)) ≤ (𝑥 + 1) ↔ (1 / (𝑥 + 1)) ≤ (1 / (2 · (√‘𝑥)))))
160158, 159mpbid 233 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (1 / (𝑥 + 1)) ≤ (1 / (2 · (√‘𝑥))))
161110, 160syldan 591 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0(,)𝐴)) → (1 / (𝑥 + 1)) ≤ (1 / (2 · (√‘𝑥))))
162 rexr 10679 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
163 0xr 10680 . . . . 5 0 ∈ ℝ*
164 lbicc2 12845 . . . . 5 ((0 ∈ ℝ*𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 0 ∈ (0[,]𝐴))
165163, 164mp3an1 1441 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 0 ∈ (0[,]𝐴))
166162, 165sylan 580 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ∈ (0[,]𝐴))
167 ubicc2 12846 . . . . 5 ((0 ∈ ℝ*𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ∈ (0[,]𝐴))
168163, 167mp3an1 1441 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ∈ (0[,]𝐴))
169162, 168sylan 580 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ (0[,]𝐴))
170 simpr 485 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ 𝐴)
171 fv0p1e1 11752 . . . 4 (𝑥 = 0 → (log‘(𝑥 + 1)) = (log‘1))
172 log1 25084 . . . 4 (log‘1) = 0
173171, 172syl6eq 2876 . . 3 (𝑥 = 0 → (log‘(𝑥 + 1)) = 0)
174 fveq2 6666 . . . 4 (𝑥 = 0 → (√‘𝑥) = (√‘0))
175 sqrt0 14594 . . . 4 (√‘0) = 0
176174, 175syl6eq 2876 . . 3 (𝑥 = 0 → (√‘𝑥) = 0)
177 fvoveq1 7174 . . 3 (𝑥 = 𝐴 → (log‘(𝑥 + 1)) = (log‘(𝐴 + 1)))
178 fveq2 6666 . . 3 (𝑥 = 𝐴 → (√‘𝑥) = (√‘𝐴))
1792, 3, 51, 115, 128, 140, 161, 166, 169, 170, 173, 176, 177, 178dvle 24521 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((log‘(𝐴 + 1)) − 0) ≤ ((√‘𝐴) − 0))
180 ge0p1rp 12413 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 + 1) ∈ ℝ+)
181180relogcld 25121 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log‘(𝐴 + 1)) ∈ ℝ)
182 resqrtcl 14606 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ)
183181, 182, 2lesub1d 11239 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((log‘(𝐴 + 1)) ≤ (√‘𝐴) ↔ ((log‘(𝐴 + 1)) − 0) ≤ ((√‘𝐴) − 0)))
184179, 183mpbird 258 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log‘(𝐴 + 1)) ≤ (√‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wss 3939  {cpr 4565   class class class wbr 5062  cmpt 5142  ran crn 5554  cres 5555  wf 6347  1-1-ontowf1o 6350  cfv 6351  (class class class)co 7151  cc 10527  cr 10528  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534  +∞cpnf 10664  *cxr 10666   < clt 10667  cle 10668  cmin 10862   / cdiv 11289  2c2 11684  +crp 12382  (,)cioo 12731  [,)cico 12733  [,]cicc 12734  cexp 13422  csqrt 14585  t crest 16686  TopOpenctopn 16687  topGenctg 16703  fldccnfld 20463  TopOnctopon 21436   Cn ccn 21750   ×t ctx 22086  cnccncf 23401   D cdv 24378  logclog 25053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8282  df-map 8401  df-pm 8402  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12383  df-xneg 12500  df-xadd 12501  df-xmul 12502  df-ioo 12735  df-ioc 12736  df-ico 12737  df-icc 12738  df-fz 12886  df-fzo 13027  df-fl 13155  df-mod 13231  df-seq 13363  df-exp 13423  df-fac 13627  df-bc 13656  df-hash 13684  df-shft 14419  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-limsup 14821  df-clim 14838  df-rlim 14839  df-sum 15036  df-ef 15413  df-sin 15415  df-cos 15416  df-tan 15417  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-submnd 17947  df-mulg 18157  df-cntz 18379  df-cmn 18830  df-psmet 20455  df-xmet 20456  df-met 20457  df-bl 20458  df-mopn 20459  df-fbas 20460  df-fg 20461  df-cnfld 20464  df-top 21420  df-topon 21437  df-topsp 21459  df-bases 21472  df-cld 21545  df-ntr 21546  df-cls 21547  df-nei 21624  df-lp 21662  df-perf 21663  df-cn 21753  df-cnp 21754  df-haus 21841  df-cmp 21913  df-tx 22088  df-hmeo 22281  df-fil 22372  df-fm 22464  df-flim 22465  df-flf 22466  df-xms 22847  df-ms 22848  df-tms 22849  df-cncf 23403  df-limc 24381  df-dv 24382  df-log 25055  df-cxp 25056
This theorem is referenced by:  rplogsumlem1  25976
  Copyright terms: Public domain W3C validator