MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  loglesqrt Structured version   Visualization version   GIF version

Theorem loglesqrt 26818
Description: An upper bound on the logarithm. (Contributed by Mario Carneiro, 2-May-2016.) (Proof shortened by AV, 2-Aug-2021.)
Assertion
Ref Expression
loglesqrt ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log‘(𝐴 + 1)) ≤ (√‘𝐴))

Proof of Theorem loglesqrt
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0re 11260 . . . 4 0 ∈ ℝ
21a1i 11 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ∈ ℝ)
3 simpl 482 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ)
4 elicc2 13448 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 ∈ (0[,]𝐴) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥𝐴)))
51, 3, 4sylancr 587 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥𝐴)))
65biimpa 476 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0[,]𝐴)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥𝐴))
76simp1d 1141 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0[,]𝐴)) → 𝑥 ∈ ℝ)
86simp2d 1142 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0[,]𝐴)) → 0 ≤ 𝑥)
97, 8ge0p1rpd 13104 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0[,]𝐴)) → (𝑥 + 1) ∈ ℝ+)
109fvresd 6926 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0[,]𝐴)) → ((log ↾ ℝ+)‘(𝑥 + 1)) = (log‘(𝑥 + 1)))
1110mpteq2dva 5247 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ ((log ↾ ℝ+)‘(𝑥 + 1))) = (𝑥 ∈ (0[,]𝐴) ↦ (log‘(𝑥 + 1))))
12 eqid 2734 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1312cnfldtopon 24818 . . . . . . 7 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
147ex 412 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) → 𝑥 ∈ ℝ))
1514ssrdv 4000 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0[,]𝐴) ⊆ ℝ)
16 ax-resscn 11209 . . . . . . . 8 ℝ ⊆ ℂ
1715, 16sstrdi 4007 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0[,]𝐴) ⊆ ℂ)
18 resttopon 23184 . . . . . . 7 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (0[,]𝐴) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (0[,]𝐴)) ∈ (TopOn‘(0[,]𝐴)))
1913, 17, 18sylancr 587 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((TopOpen‘ℂfld) ↾t (0[,]𝐴)) ∈ (TopOn‘(0[,]𝐴)))
209fmpttd 7134 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)):(0[,]𝐴)⟶ℝ+)
21 rpssre 13039 . . . . . . . . . 10 + ⊆ ℝ
2221, 16sstri 4004 . . . . . . . . 9 + ⊆ ℂ
2312addcn 24900 . . . . . . . . . . 11 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
2423a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
25 ssid 4017 . . . . . . . . . . 11 ℂ ⊆ ℂ
26 cncfmptid 24952 . . . . . . . . . . 11 (((0[,]𝐴) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (0[,]𝐴) ↦ 𝑥) ∈ ((0[,]𝐴)–cn→ℂ))
2717, 25, 26sylancl 586 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ 𝑥) ∈ ((0[,]𝐴)–cn→ℂ))
28 1cnd 11253 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 1 ∈ ℂ)
2925a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ℂ ⊆ ℂ)
30 cncfmptc 24951 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (0[,]𝐴) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (0[,]𝐴) ↦ 1) ∈ ((0[,]𝐴)–cn→ℂ))
3128, 17, 29, 30syl3anc 1370 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ 1) ∈ ((0[,]𝐴)–cn→ℂ))
3212, 24, 27, 31cncfmpt2f 24954 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)) ∈ ((0[,]𝐴)–cn→ℂ))
33 cncfcdm 24937 . . . . . . . . 9 ((ℝ+ ⊆ ℂ ∧ (𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)) ∈ ((0[,]𝐴)–cn→ℂ)) → ((𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)) ∈ ((0[,]𝐴)–cn→ℝ+) ↔ (𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)):(0[,]𝐴)⟶ℝ+))
3422, 32, 33sylancr 587 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)) ∈ ((0[,]𝐴)–cn→ℝ+) ↔ (𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)):(0[,]𝐴)⟶ℝ+))
3520, 34mpbird 257 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)) ∈ ((0[,]𝐴)–cn→ℝ+))
36 eqid 2734 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t (0[,]𝐴)) = ((TopOpen‘ℂfld) ↾t (0[,]𝐴))
37 eqid 2734 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t+) = ((TopOpen‘ℂfld) ↾t+)
3812, 36, 37cncfcn 24949 . . . . . . . 8 (((0[,]𝐴) ⊆ ℂ ∧ ℝ+ ⊆ ℂ) → ((0[,]𝐴)–cn→ℝ+) = (((TopOpen‘ℂfld) ↾t (0[,]𝐴)) Cn ((TopOpen‘ℂfld) ↾t+)))
3917, 22, 38sylancl 586 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((0[,]𝐴)–cn→ℝ+) = (((TopOpen‘ℂfld) ↾t (0[,]𝐴)) Cn ((TopOpen‘ℂfld) ↾t+)))
4035, 39eleqtrd 2840 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)) ∈ (((TopOpen‘ℂfld) ↾t (0[,]𝐴)) Cn ((TopOpen‘ℂfld) ↾t+)))
41 relogcn 26694 . . . . . . . 8 (log ↾ ℝ+) ∈ (ℝ+cn→ℝ)
42 eqid 2734 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t ℝ) = ((TopOpen‘ℂfld) ↾t ℝ)
4312, 37, 42cncfcn 24949 . . . . . . . . 9 ((ℝ+ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ+cn→ℝ) = (((TopOpen‘ℂfld) ↾t+) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
4422, 16, 43mp2an 692 . . . . . . . 8 (ℝ+cn→ℝ) = (((TopOpen‘ℂfld) ↾t+) Cn ((TopOpen‘ℂfld) ↾t ℝ))
4541, 44eleqtri 2836 . . . . . . 7 (log ↾ ℝ+) ∈ (((TopOpen‘ℂfld) ↾t+) Cn ((TopOpen‘ℂfld) ↾t ℝ))
4645a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log ↾ ℝ+) ∈ (((TopOpen‘ℂfld) ↾t+) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
4719, 40, 46cnmpt11f 23687 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ ((log ↾ ℝ+)‘(𝑥 + 1))) ∈ (((TopOpen‘ℂfld) ↾t (0[,]𝐴)) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
4812, 36, 42cncfcn 24949 . . . . . 6 (((0[,]𝐴) ⊆ ℂ ∧ ℝ ⊆ ℂ) → ((0[,]𝐴)–cn→ℝ) = (((TopOpen‘ℂfld) ↾t (0[,]𝐴)) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
4917, 16, 48sylancl 586 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((0[,]𝐴)–cn→ℝ) = (((TopOpen‘ℂfld) ↾t (0[,]𝐴)) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
5047, 49eleqtrrd 2841 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ ((log ↾ ℝ+)‘(𝑥 + 1))) ∈ ((0[,]𝐴)–cn→ℝ))
5111, 50eqeltrrd 2839 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ (log‘(𝑥 + 1))) ∈ ((0[,]𝐴)–cn→ℝ))
52 reelprrecn 11244 . . . . 5 ℝ ∈ {ℝ, ℂ}
5352a1i 11 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ℝ ∈ {ℝ, ℂ})
54 simpr 484 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
55 1rp 13035 . . . . . . 7 1 ∈ ℝ+
56 rpaddcl 13054 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ 1 ∈ ℝ+) → (𝑥 + 1) ∈ ℝ+)
5754, 55, 56sylancl 586 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (𝑥 + 1) ∈ ℝ+)
5857relogcld 26679 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (log‘(𝑥 + 1)) ∈ ℝ)
5958recnd 11286 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (log‘(𝑥 + 1)) ∈ ℂ)
6057rpreccld 13084 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (1 / (𝑥 + 1)) ∈ ℝ+)
61 1cnd 11253 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℂ)
62 relogcl 26631 . . . . . . . 8 (𝑦 ∈ ℝ+ → (log‘𝑦) ∈ ℝ)
6362adantl 481 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+) → (log‘𝑦) ∈ ℝ)
6463recnd 11286 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+) → (log‘𝑦) ∈ ℂ)
65 rpreccl 13058 . . . . . . 7 (𝑦 ∈ ℝ+ → (1 / 𝑦) ∈ ℝ+)
6665adantl 481 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+) → (1 / 𝑦) ∈ ℝ+)
67 peano2re 11431 . . . . . . . . 9 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
6867adantl 481 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → (𝑥 + 1) ∈ ℝ)
6968recnd 11286 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → (𝑥 + 1) ∈ ℂ)
70 1cnd 11253 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ)
7116a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ℝ ⊆ ℂ)
7271sselda 3994 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
7353dvmptid 26009 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1))
74 0cnd 11251 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → 0 ∈ ℂ)
7553, 28dvmptc 26010 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ ↦ 1)) = (𝑥 ∈ ℝ ↦ 0))
7653, 72, 70, 73, 70, 74, 75dvmptadd 26012 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ ↦ (𝑥 + 1))) = (𝑥 ∈ ℝ ↦ (1 + 0)))
77 1p0e1 12387 . . . . . . . . 9 (1 + 0) = 1
7877mpteq2i 5252 . . . . . . . 8 (𝑥 ∈ ℝ ↦ (1 + 0)) = (𝑥 ∈ ℝ ↦ 1)
7976, 78eqtrdi 2790 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ ↦ (𝑥 + 1))) = (𝑥 ∈ ℝ ↦ 1))
8021a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ℝ+ ⊆ ℝ)
8112tgioo2 24838 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
82 ioorp 13461 . . . . . . . . 9 (0(,)+∞) = ℝ+
83 iooretop 24801 . . . . . . . . 9 (0(,)+∞) ∈ (topGen‘ran (,))
8482, 83eqeltrri 2835 . . . . . . . 8 + ∈ (topGen‘ran (,))
8584a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ℝ+ ∈ (topGen‘ran (,)))
8653, 69, 70, 79, 80, 81, 12, 85dvmptres 26015 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 + 1))) = (𝑥 ∈ ℝ+ ↦ 1))
87 relogf1o 26622 . . . . . . . . . . 11 (log ↾ ℝ+):ℝ+1-1-onto→ℝ
88 f1of 6848 . . . . . . . . . . 11 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ)
8987, 88mp1i 13 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log ↾ ℝ+):ℝ+⟶ℝ)
9089feqmptd 6976 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log ↾ ℝ+) = (𝑦 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑦)))
91 fvres 6925 . . . . . . . . . 10 (𝑦 ∈ ℝ+ → ((log ↾ ℝ+)‘𝑦) = (log‘𝑦))
9291mpteq2ia 5250 . . . . . . . . 9 (𝑦 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑦)) = (𝑦 ∈ ℝ+ ↦ (log‘𝑦))
9390, 92eqtrdi 2790 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log ↾ ℝ+) = (𝑦 ∈ ℝ+ ↦ (log‘𝑦)))
9493oveq2d 7446 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (log ↾ ℝ+)) = (ℝ D (𝑦 ∈ ℝ+ ↦ (log‘𝑦))))
95 dvrelog 26693 . . . . . . 7 (ℝ D (log ↾ ℝ+)) = (𝑦 ∈ ℝ+ ↦ (1 / 𝑦))
9694, 95eqtr3di 2789 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑦 ∈ ℝ+ ↦ (log‘𝑦))) = (𝑦 ∈ ℝ+ ↦ (1 / 𝑦)))
97 fveq2 6906 . . . . . 6 (𝑦 = (𝑥 + 1) → (log‘𝑦) = (log‘(𝑥 + 1)))
98 oveq2 7438 . . . . . 6 (𝑦 = (𝑥 + 1) → (1 / 𝑦) = (1 / (𝑥 + 1)))
9953, 53, 57, 61, 64, 66, 86, 96, 97, 98dvmptco 26024 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘(𝑥 + 1)))) = (𝑥 ∈ ℝ+ ↦ ((1 / (𝑥 + 1)) · 1)))
10060rpcnd 13076 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (1 / (𝑥 + 1)) ∈ ℂ)
101100mulridd 11275 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((1 / (𝑥 + 1)) · 1) = (1 / (𝑥 + 1)))
102101mpteq2dva 5247 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ ℝ+ ↦ ((1 / (𝑥 + 1)) · 1)) = (𝑥 ∈ ℝ+ ↦ (1 / (𝑥 + 1))))
10399, 102eqtrd 2774 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘(𝑥 + 1)))) = (𝑥 ∈ ℝ+ ↦ (1 / (𝑥 + 1))))
104 ioossicc 13469 . . . . . . . . 9 (0(,)𝐴) ⊆ (0[,]𝐴)
105104sseli 3990 . . . . . . . 8 (𝑥 ∈ (0(,)𝐴) → 𝑥 ∈ (0[,]𝐴))
106105, 7sylan2 593 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0(,)𝐴)) → 𝑥 ∈ ℝ)
107 eliooord 13442 . . . . . . . . 9 (𝑥 ∈ (0(,)𝐴) → (0 < 𝑥𝑥 < 𝐴))
108107simpld 494 . . . . . . . 8 (𝑥 ∈ (0(,)𝐴) → 0 < 𝑥)
109108adantl 481 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0(,)𝐴)) → 0 < 𝑥)
110106, 109elrpd 13071 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0(,)𝐴)) → 𝑥 ∈ ℝ+)
111110ex 412 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0(,)𝐴) → 𝑥 ∈ ℝ+))
112111ssrdv 4000 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0(,)𝐴) ⊆ ℝ+)
113 iooretop 24801 . . . . 5 (0(,)𝐴) ∈ (topGen‘ran (,))
114113a1i 11 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0(,)𝐴) ∈ (topGen‘ran (,)))
11553, 59, 60, 103, 112, 81, 12, 114dvmptres 26015 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ (0(,)𝐴) ↦ (log‘(𝑥 + 1)))) = (𝑥 ∈ (0(,)𝐴) ↦ (1 / (𝑥 + 1))))
116 elrege0 13490 . . . . . . . . 9 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
1177, 8, 116sylanbrc 583 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0[,]𝐴)) → 𝑥 ∈ (0[,)+∞))
118117ex 412 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) → 𝑥 ∈ (0[,)+∞)))
119118ssrdv 4000 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0[,]𝐴) ⊆ (0[,)+∞))
120119resabs1d 6027 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√ ↾ (0[,)+∞)) ↾ (0[,]𝐴)) = (√ ↾ (0[,]𝐴)))
121 sqrtf 15398 . . . . . . 7 √:ℂ⟶ℂ
122121a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → √:ℂ⟶ℂ)
123122, 17feqresmpt 6977 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√ ↾ (0[,]𝐴)) = (𝑥 ∈ (0[,]𝐴) ↦ (√‘𝑥)))
124120, 123eqtrd 2774 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√ ↾ (0[,)+∞)) ↾ (0[,]𝐴)) = (𝑥 ∈ (0[,]𝐴) ↦ (√‘𝑥)))
125 resqrtcn 26806 . . . . 5 (√ ↾ (0[,)+∞)) ∈ ((0[,)+∞)–cn→ℝ)
126 rescncf 24936 . . . . 5 ((0[,]𝐴) ⊆ (0[,)+∞) → ((√ ↾ (0[,)+∞)) ∈ ((0[,)+∞)–cn→ℝ) → ((√ ↾ (0[,)+∞)) ↾ (0[,]𝐴)) ∈ ((0[,]𝐴)–cn→ℝ)))
127119, 125, 126mpisyl 21 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√ ↾ (0[,)+∞)) ↾ (0[,]𝐴)) ∈ ((0[,]𝐴)–cn→ℝ))
128124, 127eqeltrrd 2839 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ (√‘𝑥)) ∈ ((0[,]𝐴)–cn→ℝ))
129 rpcn 13042 . . . . . 6 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
130129adantl 481 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
131130sqrtcld 15472 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℂ)
132 2rp 13036 . . . . . 6 2 ∈ ℝ+
133 rpsqrtcl 15299 . . . . . . 7 (𝑥 ∈ ℝ+ → (√‘𝑥) ∈ ℝ+)
134133adantl 481 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ+)
135 rpmulcl 13055 . . . . . 6 ((2 ∈ ℝ+ ∧ (√‘𝑥) ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℝ+)
136132, 134, 135sylancr 587 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℝ+)
137136rpreccld 13084 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (1 / (2 · (√‘𝑥))) ∈ ℝ+)
138 dvsqrt 26798 . . . . 5 (ℝ D (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / (2 · (√‘𝑥))))
139138a1i 11 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / (2 · (√‘𝑥)))))
14053, 131, 137, 139, 112, 81, 12, 114dvmptres 26015 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ (0(,)𝐴) ↦ (√‘𝑥))) = (𝑥 ∈ (0(,)𝐴) ↦ (1 / (2 · (√‘𝑥)))))
141134rpred 13074 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ)
142 1re 11258 . . . . . . . . 9 1 ∈ ℝ
143 resubcl 11570 . . . . . . . . 9 (((√‘𝑥) ∈ ℝ ∧ 1 ∈ ℝ) → ((√‘𝑥) − 1) ∈ ℝ)
144141, 142, 143sylancl 586 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((√‘𝑥) − 1) ∈ ℝ)
145144sqge0d 14173 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 0 ≤ (((√‘𝑥) − 1)↑2))
146130sqsqrtd 15474 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((√‘𝑥)↑2) = 𝑥)
147146oveq1d 7445 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((√‘𝑥)↑2) − (2 · (√‘𝑥))) = (𝑥 − (2 · (√‘𝑥))))
148147oveq1d 7445 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((((√‘𝑥)↑2) − (2 · (√‘𝑥))) + 1) = ((𝑥 − (2 · (√‘𝑥))) + 1))
149 binom2sub1 14256 . . . . . . . . 9 ((√‘𝑥) ∈ ℂ → (((√‘𝑥) − 1)↑2) = ((((√‘𝑥)↑2) − (2 · (√‘𝑥))) + 1))
150131, 149syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((√‘𝑥) − 1)↑2) = ((((√‘𝑥)↑2) − (2 · (√‘𝑥))) + 1))
151136rpcnd 13076 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℂ)
152130, 61, 151addsubd 11638 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((𝑥 + 1) − (2 · (√‘𝑥))) = ((𝑥 − (2 · (√‘𝑥))) + 1))
153148, 150, 1523eqtr4d 2784 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((√‘𝑥) − 1)↑2) = ((𝑥 + 1) − (2 · (√‘𝑥))))
154145, 153breqtrd 5173 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 0 ≤ ((𝑥 + 1) − (2 · (√‘𝑥))))
15557rpred 13074 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (𝑥 + 1) ∈ ℝ)
156136rpred 13074 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℝ)
157155, 156subge0d 11850 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (0 ≤ ((𝑥 + 1) − (2 · (√‘𝑥))) ↔ (2 · (√‘𝑥)) ≤ (𝑥 + 1)))
158154, 157mpbid 232 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 · (√‘𝑥)) ≤ (𝑥 + 1))
159136, 57lerecd 13093 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((2 · (√‘𝑥)) ≤ (𝑥 + 1) ↔ (1 / (𝑥 + 1)) ≤ (1 / (2 · (√‘𝑥)))))
160158, 159mpbid 232 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (1 / (𝑥 + 1)) ≤ (1 / (2 · (√‘𝑥))))
161110, 160syldan 591 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0(,)𝐴)) → (1 / (𝑥 + 1)) ≤ (1 / (2 · (√‘𝑥))))
162 rexr 11304 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
163 0xr 11305 . . . . 5 0 ∈ ℝ*
164 lbicc2 13500 . . . . 5 ((0 ∈ ℝ*𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 0 ∈ (0[,]𝐴))
165163, 164mp3an1 1447 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 0 ∈ (0[,]𝐴))
166162, 165sylan 580 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ∈ (0[,]𝐴))
167 ubicc2 13501 . . . . 5 ((0 ∈ ℝ*𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ∈ (0[,]𝐴))
168163, 167mp3an1 1447 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ∈ (0[,]𝐴))
169162, 168sylan 580 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ (0[,]𝐴))
170 simpr 484 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ 𝐴)
171 fv0p1e1 12386 . . . 4 (𝑥 = 0 → (log‘(𝑥 + 1)) = (log‘1))
172 log1 26641 . . . 4 (log‘1) = 0
173171, 172eqtrdi 2790 . . 3 (𝑥 = 0 → (log‘(𝑥 + 1)) = 0)
174 fveq2 6906 . . . 4 (𝑥 = 0 → (√‘𝑥) = (√‘0))
175 sqrt0 15276 . . . 4 (√‘0) = 0
176174, 175eqtrdi 2790 . . 3 (𝑥 = 0 → (√‘𝑥) = 0)
177 fvoveq1 7453 . . 3 (𝑥 = 𝐴 → (log‘(𝑥 + 1)) = (log‘(𝐴 + 1)))
178 fveq2 6906 . . 3 (𝑥 = 𝐴 → (√‘𝑥) = (√‘𝐴))
1792, 3, 51, 115, 128, 140, 161, 166, 169, 170, 173, 176, 177, 178dvle 26060 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((log‘(𝐴 + 1)) − 0) ≤ ((√‘𝐴) − 0))
180 ge0p1rp 13063 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 + 1) ∈ ℝ+)
181180relogcld 26679 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log‘(𝐴 + 1)) ∈ ℝ)
182 resqrtcl 15288 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ)
183181, 182, 2lesub1d 11867 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((log‘(𝐴 + 1)) ≤ (√‘𝐴) ↔ ((log‘(𝐴 + 1)) − 0) ≤ ((√‘𝐴) − 0)))
184179, 183mpbird 257 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log‘(𝐴 + 1)) ≤ (√‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wss 3962  {cpr 4632   class class class wbr 5147  cmpt 5230  ran crn 5689  cres 5690  wf 6558  1-1-ontowf1o 6561  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157  +∞cpnf 11289  *cxr 11291   < clt 11292  cle 11293  cmin 11489   / cdiv 11917  2c2 12318  +crp 13031  (,)cioo 13383  [,)cico 13385  [,]cicc 13386  cexp 14098  csqrt 15268  t crest 17466  TopOpenctopn 17467  topGenctg 17483  fldccnfld 21381  TopOnctopon 22931   Cn ccn 23247   ×t ctx 23583  cnccncf 24915   D cdv 25912  logclog 26610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-ef 16099  df-sin 16101  df-cos 16102  df-tan 16103  df-pi 16104  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-cmp 23410  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-limc 25915  df-dv 25916  df-log 26612  df-cxp 26613
This theorem is referenced by:  rplogsumlem1  27542
  Copyright terms: Public domain W3C validator