MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  loglesqrt Structured version   Visualization version   GIF version

Theorem loglesqrt 25816
Description: An upper bound on the logarithm. (Contributed by Mario Carneiro, 2-May-2016.) (Proof shortened by AV, 2-Aug-2021.)
Assertion
Ref Expression
loglesqrt ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log‘(𝐴 + 1)) ≤ (√‘𝐴))

Proof of Theorem loglesqrt
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0re 10908 . . . 4 0 ∈ ℝ
21a1i 11 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ∈ ℝ)
3 simpl 482 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ)
4 elicc2 13073 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 ∈ (0[,]𝐴) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥𝐴)))
51, 3, 4sylancr 586 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥𝐴)))
65biimpa 476 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0[,]𝐴)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥𝐴))
76simp1d 1140 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0[,]𝐴)) → 𝑥 ∈ ℝ)
86simp2d 1141 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0[,]𝐴)) → 0 ≤ 𝑥)
97, 8ge0p1rpd 12731 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0[,]𝐴)) → (𝑥 + 1) ∈ ℝ+)
109fvresd 6776 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0[,]𝐴)) → ((log ↾ ℝ+)‘(𝑥 + 1)) = (log‘(𝑥 + 1)))
1110mpteq2dva 5170 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ ((log ↾ ℝ+)‘(𝑥 + 1))) = (𝑥 ∈ (0[,]𝐴) ↦ (log‘(𝑥 + 1))))
12 eqid 2738 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1312cnfldtopon 23852 . . . . . . 7 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
147ex 412 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) → 𝑥 ∈ ℝ))
1514ssrdv 3923 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0[,]𝐴) ⊆ ℝ)
16 ax-resscn 10859 . . . . . . . 8 ℝ ⊆ ℂ
1715, 16sstrdi 3929 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0[,]𝐴) ⊆ ℂ)
18 resttopon 22220 . . . . . . 7 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (0[,]𝐴) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (0[,]𝐴)) ∈ (TopOn‘(0[,]𝐴)))
1913, 17, 18sylancr 586 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((TopOpen‘ℂfld) ↾t (0[,]𝐴)) ∈ (TopOn‘(0[,]𝐴)))
209fmpttd 6971 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)):(0[,]𝐴)⟶ℝ+)
21 rpssre 12666 . . . . . . . . . 10 + ⊆ ℝ
2221, 16sstri 3926 . . . . . . . . 9 + ⊆ ℂ
2312addcn 23934 . . . . . . . . . . 11 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
2423a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
25 ssid 3939 . . . . . . . . . . 11 ℂ ⊆ ℂ
26 cncfmptid 23982 . . . . . . . . . . 11 (((0[,]𝐴) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (0[,]𝐴) ↦ 𝑥) ∈ ((0[,]𝐴)–cn→ℂ))
2717, 25, 26sylancl 585 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ 𝑥) ∈ ((0[,]𝐴)–cn→ℂ))
28 1cnd 10901 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 1 ∈ ℂ)
2925a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ℂ ⊆ ℂ)
30 cncfmptc 23981 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (0[,]𝐴) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (0[,]𝐴) ↦ 1) ∈ ((0[,]𝐴)–cn→ℂ))
3128, 17, 29, 30syl3anc 1369 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ 1) ∈ ((0[,]𝐴)–cn→ℂ))
3212, 24, 27, 31cncfmpt2f 23984 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)) ∈ ((0[,]𝐴)–cn→ℂ))
33 cncffvrn 23967 . . . . . . . . 9 ((ℝ+ ⊆ ℂ ∧ (𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)) ∈ ((0[,]𝐴)–cn→ℂ)) → ((𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)) ∈ ((0[,]𝐴)–cn→ℝ+) ↔ (𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)):(0[,]𝐴)⟶ℝ+))
3422, 32, 33sylancr 586 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)) ∈ ((0[,]𝐴)–cn→ℝ+) ↔ (𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)):(0[,]𝐴)⟶ℝ+))
3520, 34mpbird 256 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)) ∈ ((0[,]𝐴)–cn→ℝ+))
36 eqid 2738 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t (0[,]𝐴)) = ((TopOpen‘ℂfld) ↾t (0[,]𝐴))
37 eqid 2738 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t+) = ((TopOpen‘ℂfld) ↾t+)
3812, 36, 37cncfcn 23979 . . . . . . . 8 (((0[,]𝐴) ⊆ ℂ ∧ ℝ+ ⊆ ℂ) → ((0[,]𝐴)–cn→ℝ+) = (((TopOpen‘ℂfld) ↾t (0[,]𝐴)) Cn ((TopOpen‘ℂfld) ↾t+)))
3917, 22, 38sylancl 585 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((0[,]𝐴)–cn→ℝ+) = (((TopOpen‘ℂfld) ↾t (0[,]𝐴)) Cn ((TopOpen‘ℂfld) ↾t+)))
4035, 39eleqtrd 2841 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)) ∈ (((TopOpen‘ℂfld) ↾t (0[,]𝐴)) Cn ((TopOpen‘ℂfld) ↾t+)))
41 relogcn 25698 . . . . . . . 8 (log ↾ ℝ+) ∈ (ℝ+cn→ℝ)
42 eqid 2738 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t ℝ) = ((TopOpen‘ℂfld) ↾t ℝ)
4312, 37, 42cncfcn 23979 . . . . . . . . 9 ((ℝ+ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ+cn→ℝ) = (((TopOpen‘ℂfld) ↾t+) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
4422, 16, 43mp2an 688 . . . . . . . 8 (ℝ+cn→ℝ) = (((TopOpen‘ℂfld) ↾t+) Cn ((TopOpen‘ℂfld) ↾t ℝ))
4541, 44eleqtri 2837 . . . . . . 7 (log ↾ ℝ+) ∈ (((TopOpen‘ℂfld) ↾t+) Cn ((TopOpen‘ℂfld) ↾t ℝ))
4645a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log ↾ ℝ+) ∈ (((TopOpen‘ℂfld) ↾t+) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
4719, 40, 46cnmpt11f 22723 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ ((log ↾ ℝ+)‘(𝑥 + 1))) ∈ (((TopOpen‘ℂfld) ↾t (0[,]𝐴)) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
4812, 36, 42cncfcn 23979 . . . . . 6 (((0[,]𝐴) ⊆ ℂ ∧ ℝ ⊆ ℂ) → ((0[,]𝐴)–cn→ℝ) = (((TopOpen‘ℂfld) ↾t (0[,]𝐴)) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
4917, 16, 48sylancl 585 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((0[,]𝐴)–cn→ℝ) = (((TopOpen‘ℂfld) ↾t (0[,]𝐴)) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
5047, 49eleqtrrd 2842 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ ((log ↾ ℝ+)‘(𝑥 + 1))) ∈ ((0[,]𝐴)–cn→ℝ))
5111, 50eqeltrrd 2840 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ (log‘(𝑥 + 1))) ∈ ((0[,]𝐴)–cn→ℝ))
52 reelprrecn 10894 . . . . 5 ℝ ∈ {ℝ, ℂ}
5352a1i 11 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ℝ ∈ {ℝ, ℂ})
54 simpr 484 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
55 1rp 12663 . . . . . . 7 1 ∈ ℝ+
56 rpaddcl 12681 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ 1 ∈ ℝ+) → (𝑥 + 1) ∈ ℝ+)
5754, 55, 56sylancl 585 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (𝑥 + 1) ∈ ℝ+)
5857relogcld 25683 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (log‘(𝑥 + 1)) ∈ ℝ)
5958recnd 10934 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (log‘(𝑥 + 1)) ∈ ℂ)
6057rpreccld 12711 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (1 / (𝑥 + 1)) ∈ ℝ+)
61 1cnd 10901 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℂ)
62 relogcl 25636 . . . . . . . 8 (𝑦 ∈ ℝ+ → (log‘𝑦) ∈ ℝ)
6362adantl 481 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+) → (log‘𝑦) ∈ ℝ)
6463recnd 10934 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+) → (log‘𝑦) ∈ ℂ)
65 rpreccl 12685 . . . . . . 7 (𝑦 ∈ ℝ+ → (1 / 𝑦) ∈ ℝ+)
6665adantl 481 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+) → (1 / 𝑦) ∈ ℝ+)
67 peano2re 11078 . . . . . . . . 9 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
6867adantl 481 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → (𝑥 + 1) ∈ ℝ)
6968recnd 10934 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → (𝑥 + 1) ∈ ℂ)
70 1cnd 10901 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ)
7116a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ℝ ⊆ ℂ)
7271sselda 3917 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
7353dvmptid 25026 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1))
74 0cnd 10899 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → 0 ∈ ℂ)
7553, 28dvmptc 25027 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ ↦ 1)) = (𝑥 ∈ ℝ ↦ 0))
7653, 72, 70, 73, 70, 74, 75dvmptadd 25029 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ ↦ (𝑥 + 1))) = (𝑥 ∈ ℝ ↦ (1 + 0)))
77 1p0e1 12027 . . . . . . . . 9 (1 + 0) = 1
7877mpteq2i 5175 . . . . . . . 8 (𝑥 ∈ ℝ ↦ (1 + 0)) = (𝑥 ∈ ℝ ↦ 1)
7976, 78eqtrdi 2795 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ ↦ (𝑥 + 1))) = (𝑥 ∈ ℝ ↦ 1))
8021a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ℝ+ ⊆ ℝ)
8112tgioo2 23872 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
82 ioorp 13086 . . . . . . . . 9 (0(,)+∞) = ℝ+
83 iooretop 23835 . . . . . . . . 9 (0(,)+∞) ∈ (topGen‘ran (,))
8482, 83eqeltrri 2836 . . . . . . . 8 + ∈ (topGen‘ran (,))
8584a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ℝ+ ∈ (topGen‘ran (,)))
8653, 69, 70, 79, 80, 81, 12, 85dvmptres 25032 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 + 1))) = (𝑥 ∈ ℝ+ ↦ 1))
87 relogf1o 25627 . . . . . . . . . . 11 (log ↾ ℝ+):ℝ+1-1-onto→ℝ
88 f1of 6700 . . . . . . . . . . 11 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ)
8987, 88mp1i 13 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log ↾ ℝ+):ℝ+⟶ℝ)
9089feqmptd 6819 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log ↾ ℝ+) = (𝑦 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑦)))
91 fvres 6775 . . . . . . . . . 10 (𝑦 ∈ ℝ+ → ((log ↾ ℝ+)‘𝑦) = (log‘𝑦))
9291mpteq2ia 5173 . . . . . . . . 9 (𝑦 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑦)) = (𝑦 ∈ ℝ+ ↦ (log‘𝑦))
9390, 92eqtrdi 2795 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log ↾ ℝ+) = (𝑦 ∈ ℝ+ ↦ (log‘𝑦)))
9493oveq2d 7271 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (log ↾ ℝ+)) = (ℝ D (𝑦 ∈ ℝ+ ↦ (log‘𝑦))))
95 dvrelog 25697 . . . . . . 7 (ℝ D (log ↾ ℝ+)) = (𝑦 ∈ ℝ+ ↦ (1 / 𝑦))
9694, 95eqtr3di 2794 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑦 ∈ ℝ+ ↦ (log‘𝑦))) = (𝑦 ∈ ℝ+ ↦ (1 / 𝑦)))
97 fveq2 6756 . . . . . 6 (𝑦 = (𝑥 + 1) → (log‘𝑦) = (log‘(𝑥 + 1)))
98 oveq2 7263 . . . . . 6 (𝑦 = (𝑥 + 1) → (1 / 𝑦) = (1 / (𝑥 + 1)))
9953, 53, 57, 61, 64, 66, 86, 96, 97, 98dvmptco 25041 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘(𝑥 + 1)))) = (𝑥 ∈ ℝ+ ↦ ((1 / (𝑥 + 1)) · 1)))
10060rpcnd 12703 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (1 / (𝑥 + 1)) ∈ ℂ)
101100mulid1d 10923 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((1 / (𝑥 + 1)) · 1) = (1 / (𝑥 + 1)))
102101mpteq2dva 5170 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ ℝ+ ↦ ((1 / (𝑥 + 1)) · 1)) = (𝑥 ∈ ℝ+ ↦ (1 / (𝑥 + 1))))
10399, 102eqtrd 2778 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘(𝑥 + 1)))) = (𝑥 ∈ ℝ+ ↦ (1 / (𝑥 + 1))))
104 ioossicc 13094 . . . . . . . . 9 (0(,)𝐴) ⊆ (0[,]𝐴)
105104sseli 3913 . . . . . . . 8 (𝑥 ∈ (0(,)𝐴) → 𝑥 ∈ (0[,]𝐴))
106105, 7sylan2 592 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0(,)𝐴)) → 𝑥 ∈ ℝ)
107 eliooord 13067 . . . . . . . . 9 (𝑥 ∈ (0(,)𝐴) → (0 < 𝑥𝑥 < 𝐴))
108107simpld 494 . . . . . . . 8 (𝑥 ∈ (0(,)𝐴) → 0 < 𝑥)
109108adantl 481 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0(,)𝐴)) → 0 < 𝑥)
110106, 109elrpd 12698 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0(,)𝐴)) → 𝑥 ∈ ℝ+)
111110ex 412 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0(,)𝐴) → 𝑥 ∈ ℝ+))
112111ssrdv 3923 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0(,)𝐴) ⊆ ℝ+)
113 iooretop 23835 . . . . 5 (0(,)𝐴) ∈ (topGen‘ran (,))
114113a1i 11 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0(,)𝐴) ∈ (topGen‘ran (,)))
11553, 59, 60, 103, 112, 81, 12, 114dvmptres 25032 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ (0(,)𝐴) ↦ (log‘(𝑥 + 1)))) = (𝑥 ∈ (0(,)𝐴) ↦ (1 / (𝑥 + 1))))
116 elrege0 13115 . . . . . . . . 9 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
1177, 8, 116sylanbrc 582 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0[,]𝐴)) → 𝑥 ∈ (0[,)+∞))
118117ex 412 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) → 𝑥 ∈ (0[,)+∞)))
119118ssrdv 3923 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0[,]𝐴) ⊆ (0[,)+∞))
120119resabs1d 5911 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√ ↾ (0[,)+∞)) ↾ (0[,]𝐴)) = (√ ↾ (0[,]𝐴)))
121 sqrtf 15003 . . . . . . 7 √:ℂ⟶ℂ
122121a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → √:ℂ⟶ℂ)
123122, 17feqresmpt 6820 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√ ↾ (0[,]𝐴)) = (𝑥 ∈ (0[,]𝐴) ↦ (√‘𝑥)))
124120, 123eqtrd 2778 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√ ↾ (0[,)+∞)) ↾ (0[,]𝐴)) = (𝑥 ∈ (0[,]𝐴) ↦ (√‘𝑥)))
125 resqrtcn 25807 . . . . 5 (√ ↾ (0[,)+∞)) ∈ ((0[,)+∞)–cn→ℝ)
126 rescncf 23966 . . . . 5 ((0[,]𝐴) ⊆ (0[,)+∞) → ((√ ↾ (0[,)+∞)) ∈ ((0[,)+∞)–cn→ℝ) → ((√ ↾ (0[,)+∞)) ↾ (0[,]𝐴)) ∈ ((0[,]𝐴)–cn→ℝ)))
127119, 125, 126mpisyl 21 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√ ↾ (0[,)+∞)) ↾ (0[,]𝐴)) ∈ ((0[,]𝐴)–cn→ℝ))
128124, 127eqeltrrd 2840 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ (√‘𝑥)) ∈ ((0[,]𝐴)–cn→ℝ))
129 rpcn 12669 . . . . . 6 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
130129adantl 481 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
131130sqrtcld 15077 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℂ)
132 2rp 12664 . . . . . 6 2 ∈ ℝ+
133 rpsqrtcl 14904 . . . . . . 7 (𝑥 ∈ ℝ+ → (√‘𝑥) ∈ ℝ+)
134133adantl 481 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ+)
135 rpmulcl 12682 . . . . . 6 ((2 ∈ ℝ+ ∧ (√‘𝑥) ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℝ+)
136132, 134, 135sylancr 586 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℝ+)
137136rpreccld 12711 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (1 / (2 · (√‘𝑥))) ∈ ℝ+)
138 dvsqrt 25800 . . . . 5 (ℝ D (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / (2 · (√‘𝑥))))
139138a1i 11 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / (2 · (√‘𝑥)))))
14053, 131, 137, 139, 112, 81, 12, 114dvmptres 25032 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ (0(,)𝐴) ↦ (√‘𝑥))) = (𝑥 ∈ (0(,)𝐴) ↦ (1 / (2 · (√‘𝑥)))))
141134rpred 12701 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ)
142 1re 10906 . . . . . . . . 9 1 ∈ ℝ
143 resubcl 11215 . . . . . . . . 9 (((√‘𝑥) ∈ ℝ ∧ 1 ∈ ℝ) → ((√‘𝑥) − 1) ∈ ℝ)
144141, 142, 143sylancl 585 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((√‘𝑥) − 1) ∈ ℝ)
145144sqge0d 13894 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 0 ≤ (((√‘𝑥) − 1)↑2))
146130sqsqrtd 15079 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((√‘𝑥)↑2) = 𝑥)
147146oveq1d 7270 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((√‘𝑥)↑2) − (2 · (√‘𝑥))) = (𝑥 − (2 · (√‘𝑥))))
148147oveq1d 7270 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((((√‘𝑥)↑2) − (2 · (√‘𝑥))) + 1) = ((𝑥 − (2 · (√‘𝑥))) + 1))
149 binom2sub1 13864 . . . . . . . . 9 ((√‘𝑥) ∈ ℂ → (((√‘𝑥) − 1)↑2) = ((((√‘𝑥)↑2) − (2 · (√‘𝑥))) + 1))
150131, 149syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((√‘𝑥) − 1)↑2) = ((((√‘𝑥)↑2) − (2 · (√‘𝑥))) + 1))
151136rpcnd 12703 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℂ)
152130, 61, 151addsubd 11283 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((𝑥 + 1) − (2 · (√‘𝑥))) = ((𝑥 − (2 · (√‘𝑥))) + 1))
153148, 150, 1523eqtr4d 2788 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((√‘𝑥) − 1)↑2) = ((𝑥 + 1) − (2 · (√‘𝑥))))
154145, 153breqtrd 5096 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 0 ≤ ((𝑥 + 1) − (2 · (√‘𝑥))))
15557rpred 12701 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (𝑥 + 1) ∈ ℝ)
156136rpred 12701 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℝ)
157155, 156subge0d 11495 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (0 ≤ ((𝑥 + 1) − (2 · (√‘𝑥))) ↔ (2 · (√‘𝑥)) ≤ (𝑥 + 1)))
158154, 157mpbid 231 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 · (√‘𝑥)) ≤ (𝑥 + 1))
159136, 57lerecd 12720 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((2 · (√‘𝑥)) ≤ (𝑥 + 1) ↔ (1 / (𝑥 + 1)) ≤ (1 / (2 · (√‘𝑥)))))
160158, 159mpbid 231 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (1 / (𝑥 + 1)) ≤ (1 / (2 · (√‘𝑥))))
161110, 160syldan 590 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0(,)𝐴)) → (1 / (𝑥 + 1)) ≤ (1 / (2 · (√‘𝑥))))
162 rexr 10952 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
163 0xr 10953 . . . . 5 0 ∈ ℝ*
164 lbicc2 13125 . . . . 5 ((0 ∈ ℝ*𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 0 ∈ (0[,]𝐴))
165163, 164mp3an1 1446 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 0 ∈ (0[,]𝐴))
166162, 165sylan 579 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ∈ (0[,]𝐴))
167 ubicc2 13126 . . . . 5 ((0 ∈ ℝ*𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ∈ (0[,]𝐴))
168163, 167mp3an1 1446 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ∈ (0[,]𝐴))
169162, 168sylan 579 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ (0[,]𝐴))
170 simpr 484 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ 𝐴)
171 fv0p1e1 12026 . . . 4 (𝑥 = 0 → (log‘(𝑥 + 1)) = (log‘1))
172 log1 25646 . . . 4 (log‘1) = 0
173171, 172eqtrdi 2795 . . 3 (𝑥 = 0 → (log‘(𝑥 + 1)) = 0)
174 fveq2 6756 . . . 4 (𝑥 = 0 → (√‘𝑥) = (√‘0))
175 sqrt0 14881 . . . 4 (√‘0) = 0
176174, 175eqtrdi 2795 . . 3 (𝑥 = 0 → (√‘𝑥) = 0)
177 fvoveq1 7278 . . 3 (𝑥 = 𝐴 → (log‘(𝑥 + 1)) = (log‘(𝐴 + 1)))
178 fveq2 6756 . . 3 (𝑥 = 𝐴 → (√‘𝑥) = (√‘𝐴))
1792, 3, 51, 115, 128, 140, 161, 166, 169, 170, 173, 176, 177, 178dvle 25076 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((log‘(𝐴 + 1)) − 0) ≤ ((√‘𝐴) − 0))
180 ge0p1rp 12690 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 + 1) ∈ ℝ+)
181180relogcld 25683 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log‘(𝐴 + 1)) ∈ ℝ)
182 resqrtcl 14893 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ)
183181, 182, 2lesub1d 11512 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((log‘(𝐴 + 1)) ≤ (√‘𝐴) ↔ ((log‘(𝐴 + 1)) − 0) ≤ ((√‘𝐴) − 0)))
184179, 183mpbird 256 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log‘(𝐴 + 1)) ≤ (√‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wss 3883  {cpr 4560   class class class wbr 5070  cmpt 5153  ran crn 5581  cres 5582  wf 6414  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  2c2 11958  +crp 12659  (,)cioo 13008  [,)cico 13010  [,]cicc 13011  cexp 13710  csqrt 14872  t crest 17048  TopOpenctopn 17049  topGenctg 17065  fldccnfld 20510  TopOnctopon 21967   Cn ccn 22283   ×t ctx 22619  cnccncf 23945   D cdv 24932  logclog 25615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-tan 15709  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617  df-cxp 25618
This theorem is referenced by:  rplogsumlem1  26537
  Copyright terms: Public domain W3C validator