Step | Hyp | Ref
| Expression |
1 | | 0re 11212 |
. . . 4
β’ 0 β
β |
2 | 1 | a1i 11 |
. . 3
β’ ((π΄ β β β§ 0 β€
π΄) β 0 β
β) |
3 | | simpl 483 |
. . 3
β’ ((π΄ β β β§ 0 β€
π΄) β π΄ β β) |
4 | | elicc2 13385 |
. . . . . . . . . 10
β’ ((0
β β β§ π΄
β β) β (π₯
β (0[,]π΄) β
(π₯ β β β§ 0
β€ π₯ β§ π₯ β€ π΄))) |
5 | 1, 3, 4 | sylancr 587 |
. . . . . . . . 9
β’ ((π΄ β β β§ 0 β€
π΄) β (π₯ β (0[,]π΄) β (π₯ β β β§ 0 β€ π₯ β§ π₯ β€ π΄))) |
6 | 5 | biimpa 477 |
. . . . . . . 8
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β (0[,]π΄)) β (π₯ β β β§ 0 β€ π₯ β§ π₯ β€ π΄)) |
7 | 6 | simp1d 1142 |
. . . . . . 7
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β (0[,]π΄)) β π₯ β β) |
8 | 6 | simp2d 1143 |
. . . . . . 7
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β (0[,]π΄)) β 0 β€ π₯) |
9 | 7, 8 | ge0p1rpd 13042 |
. . . . . 6
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β (0[,]π΄)) β (π₯ + 1) β
β+) |
10 | 9 | fvresd 6908 |
. . . . 5
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β (0[,]π΄)) β ((log βΎ
β+)β(π₯ + 1)) = (logβ(π₯ + 1))) |
11 | 10 | mpteq2dva 5247 |
. . . 4
β’ ((π΄ β β β§ 0 β€
π΄) β (π₯ β (0[,]π΄) β¦ ((log βΎ
β+)β(π₯ + 1))) = (π₯ β (0[,]π΄) β¦ (logβ(π₯ + 1)))) |
12 | | eqid 2732 |
. . . . . . . 8
β’
(TopOpenββfld) =
(TopOpenββfld) |
13 | 12 | cnfldtopon 24290 |
. . . . . . 7
β’
(TopOpenββfld) β
(TopOnββ) |
14 | 7 | ex 413 |
. . . . . . . . 9
β’ ((π΄ β β β§ 0 β€
π΄) β (π₯ β (0[,]π΄) β π₯ β β)) |
15 | 14 | ssrdv 3987 |
. . . . . . . 8
β’ ((π΄ β β β§ 0 β€
π΄) β (0[,]π΄) β
β) |
16 | | ax-resscn 11163 |
. . . . . . . 8
β’ β
β β |
17 | 15, 16 | sstrdi 3993 |
. . . . . . 7
β’ ((π΄ β β β§ 0 β€
π΄) β (0[,]π΄) β
β) |
18 | | resttopon 22656 |
. . . . . . 7
β’
(((TopOpenββfld) β (TopOnββ)
β§ (0[,]π΄) β
β) β ((TopOpenββfld) βΎt
(0[,]π΄)) β
(TopOnβ(0[,]π΄))) |
19 | 13, 17, 18 | sylancr 587 |
. . . . . 6
β’ ((π΄ β β β§ 0 β€
π΄) β
((TopOpenββfld) βΎt (0[,]π΄)) β
(TopOnβ(0[,]π΄))) |
20 | 9 | fmpttd 7111 |
. . . . . . . 8
β’ ((π΄ β β β§ 0 β€
π΄) β (π₯ β (0[,]π΄) β¦ (π₯ + 1)):(0[,]π΄)βΆβ+) |
21 | | rpssre 12977 |
. . . . . . . . . 10
β’
β+ β β |
22 | 21, 16 | sstri 3990 |
. . . . . . . . 9
β’
β+ β β |
23 | 12 | addcn 24372 |
. . . . . . . . . . 11
β’ + β
(((TopOpenββfld) Γt
(TopOpenββfld)) Cn
(TopOpenββfld)) |
24 | 23 | a1i 11 |
. . . . . . . . . 10
β’ ((π΄ β β β§ 0 β€
π΄) β + β
(((TopOpenββfld) Γt
(TopOpenββfld)) Cn
(TopOpenββfld))) |
25 | | ssid 4003 |
. . . . . . . . . . 11
β’ β
β β |
26 | | cncfmptid 24420 |
. . . . . . . . . . 11
β’
(((0[,]π΄) β
β β§ β β β) β (π₯ β (0[,]π΄) β¦ π₯) β ((0[,]π΄)βcnββ)) |
27 | 17, 25, 26 | sylancl 586 |
. . . . . . . . . 10
β’ ((π΄ β β β§ 0 β€
π΄) β (π₯ β (0[,]π΄) β¦ π₯) β ((0[,]π΄)βcnββ)) |
28 | | 1cnd 11205 |
. . . . . . . . . . 11
β’ ((π΄ β β β§ 0 β€
π΄) β 1 β
β) |
29 | 25 | a1i 11 |
. . . . . . . . . . 11
β’ ((π΄ β β β§ 0 β€
π΄) β β β
β) |
30 | | cncfmptc 24419 |
. . . . . . . . . . 11
β’ ((1
β β β§ (0[,]π΄) β β β§ β β
β) β (π₯ β
(0[,]π΄) β¦ 1) β
((0[,]π΄)βcnββ)) |
31 | 28, 17, 29, 30 | syl3anc 1371 |
. . . . . . . . . 10
β’ ((π΄ β β β§ 0 β€
π΄) β (π₯ β (0[,]π΄) β¦ 1) β ((0[,]π΄)βcnββ)) |
32 | 12, 24, 27, 31 | cncfmpt2f 24422 |
. . . . . . . . 9
β’ ((π΄ β β β§ 0 β€
π΄) β (π₯ β (0[,]π΄) β¦ (π₯ + 1)) β ((0[,]π΄)βcnββ)) |
33 | | cncfcdm 24405 |
. . . . . . . . 9
β’
((β+ β β β§ (π₯ β (0[,]π΄) β¦ (π₯ + 1)) β ((0[,]π΄)βcnββ)) β ((π₯ β (0[,]π΄) β¦ (π₯ + 1)) β ((0[,]π΄)βcnββ+) β (π₯ β (0[,]π΄) β¦ (π₯ + 1)):(0[,]π΄)βΆβ+)) |
34 | 22, 32, 33 | sylancr 587 |
. . . . . . . 8
β’ ((π΄ β β β§ 0 β€
π΄) β ((π₯ β (0[,]π΄) β¦ (π₯ + 1)) β ((0[,]π΄)βcnββ+) β (π₯ β (0[,]π΄) β¦ (π₯ + 1)):(0[,]π΄)βΆβ+)) |
35 | 20, 34 | mpbird 256 |
. . . . . . 7
β’ ((π΄ β β β§ 0 β€
π΄) β (π₯ β (0[,]π΄) β¦ (π₯ + 1)) β ((0[,]π΄)βcnββ+)) |
36 | | eqid 2732 |
. . . . . . . . 9
β’
((TopOpenββfld) βΎt (0[,]π΄)) =
((TopOpenββfld) βΎt (0[,]π΄)) |
37 | | eqid 2732 |
. . . . . . . . 9
β’
((TopOpenββfld) βΎt
β+) = ((TopOpenββfld)
βΎt β+) |
38 | 12, 36, 37 | cncfcn 24417 |
. . . . . . . 8
β’
(((0[,]π΄) β
β β§ β+ β β) β ((0[,]π΄)βcnββ+) =
(((TopOpenββfld) βΎt (0[,]π΄)) Cn
((TopOpenββfld) βΎt
β+))) |
39 | 17, 22, 38 | sylancl 586 |
. . . . . . 7
β’ ((π΄ β β β§ 0 β€
π΄) β ((0[,]π΄)βcnββ+) =
(((TopOpenββfld) βΎt (0[,]π΄)) Cn
((TopOpenββfld) βΎt
β+))) |
40 | 35, 39 | eleqtrd 2835 |
. . . . . 6
β’ ((π΄ β β β§ 0 β€
π΄) β (π₯ β (0[,]π΄) β¦ (π₯ + 1)) β
(((TopOpenββfld) βΎt (0[,]π΄)) Cn
((TopOpenββfld) βΎt
β+))) |
41 | | relogcn 26137 |
. . . . . . . 8
β’ (log
βΎ β+) β (β+βcnββ) |
42 | | eqid 2732 |
. . . . . . . . . 10
β’
((TopOpenββfld) βΎt β) =
((TopOpenββfld) βΎt
β) |
43 | 12, 37, 42 | cncfcn 24417 |
. . . . . . . . 9
β’
((β+ β β β§ β β β)
β (β+βcnββ) =
(((TopOpenββfld) βΎt
β+) Cn ((TopOpenββfld)
βΎt β))) |
44 | 22, 16, 43 | mp2an 690 |
. . . . . . . 8
β’
(β+βcnββ) =
(((TopOpenββfld) βΎt
β+) Cn ((TopOpenββfld)
βΎt β)) |
45 | 41, 44 | eleqtri 2831 |
. . . . . . 7
β’ (log
βΎ β+) β (((TopOpenββfld)
βΎt β+) Cn
((TopOpenββfld) βΎt
β)) |
46 | 45 | a1i 11 |
. . . . . 6
β’ ((π΄ β β β§ 0 β€
π΄) β (log βΎ
β+) β (((TopOpenββfld)
βΎt β+) Cn
((TopOpenββfld) βΎt
β))) |
47 | 19, 40, 46 | cnmpt11f 23159 |
. . . . 5
β’ ((π΄ β β β§ 0 β€
π΄) β (π₯ β (0[,]π΄) β¦ ((log βΎ
β+)β(π₯ + 1))) β
(((TopOpenββfld) βΎt (0[,]π΄)) Cn
((TopOpenββfld) βΎt
β))) |
48 | 12, 36, 42 | cncfcn 24417 |
. . . . . 6
β’
(((0[,]π΄) β
β β§ β β β) β ((0[,]π΄)βcnββ) =
(((TopOpenββfld) βΎt (0[,]π΄)) Cn
((TopOpenββfld) βΎt
β))) |
49 | 17, 16, 48 | sylancl 586 |
. . . . 5
β’ ((π΄ β β β§ 0 β€
π΄) β ((0[,]π΄)βcnββ) =
(((TopOpenββfld) βΎt (0[,]π΄)) Cn
((TopOpenββfld) βΎt
β))) |
50 | 47, 49 | eleqtrrd 2836 |
. . . 4
β’ ((π΄ β β β§ 0 β€
π΄) β (π₯ β (0[,]π΄) β¦ ((log βΎ
β+)β(π₯ + 1))) β ((0[,]π΄)βcnββ)) |
51 | 11, 50 | eqeltrrd 2834 |
. . 3
β’ ((π΄ β β β§ 0 β€
π΄) β (π₯ β (0[,]π΄) β¦ (logβ(π₯ + 1))) β ((0[,]π΄)βcnββ)) |
52 | | reelprrecn 11198 |
. . . . 5
β’ β
β {β, β} |
53 | 52 | a1i 11 |
. . . 4
β’ ((π΄ β β β§ 0 β€
π΄) β β β
{β, β}) |
54 | | simpr 485 |
. . . . . . 7
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β β+) β π₯ β
β+) |
55 | | 1rp 12974 |
. . . . . . 7
β’ 1 β
β+ |
56 | | rpaddcl 12992 |
. . . . . . 7
β’ ((π₯ β β+
β§ 1 β β+) β (π₯ + 1) β
β+) |
57 | 54, 55, 56 | sylancl 586 |
. . . . . 6
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β β+) β (π₯ + 1) β
β+) |
58 | 57 | relogcld 26122 |
. . . . 5
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β β+) β
(logβ(π₯ + 1)) β
β) |
59 | 58 | recnd 11238 |
. . . 4
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β β+) β
(logβ(π₯ + 1)) β
β) |
60 | 57 | rpreccld 13022 |
. . . 4
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β β+) β (1 /
(π₯ + 1)) β
β+) |
61 | | 1cnd 11205 |
. . . . . 6
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β β+) β 1 β
β) |
62 | | relogcl 26075 |
. . . . . . . 8
β’ (π¦ β β+
β (logβπ¦) β
β) |
63 | 62 | adantl 482 |
. . . . . . 7
β’ (((π΄ β β β§ 0 β€
π΄) β§ π¦ β β+) β
(logβπ¦) β
β) |
64 | 63 | recnd 11238 |
. . . . . 6
β’ (((π΄ β β β§ 0 β€
π΄) β§ π¦ β β+) β
(logβπ¦) β
β) |
65 | | rpreccl 12996 |
. . . . . . 7
β’ (π¦ β β+
β (1 / π¦) β
β+) |
66 | 65 | adantl 482 |
. . . . . 6
β’ (((π΄ β β β§ 0 β€
π΄) β§ π¦ β β+) β (1 /
π¦) β
β+) |
67 | | peano2re 11383 |
. . . . . . . . 9
β’ (π₯ β β β (π₯ + 1) β
β) |
68 | 67 | adantl 482 |
. . . . . . . 8
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β β) β (π₯ + 1) β β) |
69 | 68 | recnd 11238 |
. . . . . . 7
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β β) β (π₯ + 1) β β) |
70 | | 1cnd 11205 |
. . . . . . 7
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β β) β 1 β
β) |
71 | 16 | a1i 11 |
. . . . . . . . . 10
β’ ((π΄ β β β§ 0 β€
π΄) β β β
β) |
72 | 71 | sselda 3981 |
. . . . . . . . 9
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β β) β π₯ β β) |
73 | 53 | dvmptid 25465 |
. . . . . . . . 9
β’ ((π΄ β β β§ 0 β€
π΄) β (β D (π₯ β β β¦ π₯)) = (π₯ β β β¦ 1)) |
74 | | 0cnd 11203 |
. . . . . . . . 9
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β β) β 0 β
β) |
75 | 53, 28 | dvmptc 25466 |
. . . . . . . . 9
β’ ((π΄ β β β§ 0 β€
π΄) β (β D (π₯ β β β¦ 1)) =
(π₯ β β β¦
0)) |
76 | 53, 72, 70, 73, 70, 74, 75 | dvmptadd 25468 |
. . . . . . . 8
β’ ((π΄ β β β§ 0 β€
π΄) β (β D (π₯ β β β¦ (π₯ + 1))) = (π₯ β β β¦ (1 +
0))) |
77 | | 1p0e1 12332 |
. . . . . . . . 9
β’ (1 + 0) =
1 |
78 | 77 | mpteq2i 5252 |
. . . . . . . 8
β’ (π₯ β β β¦ (1 + 0))
= (π₯ β β β¦
1) |
79 | 76, 78 | eqtrdi 2788 |
. . . . . . 7
β’ ((π΄ β β β§ 0 β€
π΄) β (β D (π₯ β β β¦ (π₯ + 1))) = (π₯ β β β¦ 1)) |
80 | 21 | a1i 11 |
. . . . . . 7
β’ ((π΄ β β β§ 0 β€
π΄) β
β+ β β) |
81 | 12 | tgioo2 24310 |
. . . . . . 7
β’
(topGenβran (,)) = ((TopOpenββfld)
βΎt β) |
82 | | ioorp 13398 |
. . . . . . . . 9
β’
(0(,)+β) = β+ |
83 | | iooretop 24273 |
. . . . . . . . 9
β’
(0(,)+β) β (topGenβran (,)) |
84 | 82, 83 | eqeltrri 2830 |
. . . . . . . 8
β’
β+ β (topGenβran (,)) |
85 | 84 | a1i 11 |
. . . . . . 7
β’ ((π΄ β β β§ 0 β€
π΄) β
β+ β (topGenβran (,))) |
86 | 53, 69, 70, 79, 80, 81, 12, 85 | dvmptres 25471 |
. . . . . 6
β’ ((π΄ β β β§ 0 β€
π΄) β (β D (π₯ β β+
β¦ (π₯ + 1))) = (π₯ β β+
β¦ 1)) |
87 | | relogf1o 26066 |
. . . . . . . . . . 11
β’ (log
βΎ β+):β+β1-1-ontoββ |
88 | | f1of 6830 |
. . . . . . . . . . 11
β’ ((log
βΎ β+):β+β1-1-ontoββ β (log βΎ
β+):β+βΆβ) |
89 | 87, 88 | mp1i 13 |
. . . . . . . . . 10
β’ ((π΄ β β β§ 0 β€
π΄) β (log βΎ
β+):β+βΆβ) |
90 | 89 | feqmptd 6957 |
. . . . . . . . 9
β’ ((π΄ β β β§ 0 β€
π΄) β (log βΎ
β+) = (π¦
β β+ β¦ ((log βΎ
β+)βπ¦))) |
91 | | fvres 6907 |
. . . . . . . . . 10
β’ (π¦ β β+
β ((log βΎ β+)βπ¦) = (logβπ¦)) |
92 | 91 | mpteq2ia 5250 |
. . . . . . . . 9
β’ (π¦ β β+
β¦ ((log βΎ β+)βπ¦)) = (π¦ β β+ β¦
(logβπ¦)) |
93 | 90, 92 | eqtrdi 2788 |
. . . . . . . 8
β’ ((π΄ β β β§ 0 β€
π΄) β (log βΎ
β+) = (π¦
β β+ β¦ (logβπ¦))) |
94 | 93 | oveq2d 7421 |
. . . . . . 7
β’ ((π΄ β β β§ 0 β€
π΄) β (β D (log
βΎ β+)) = (β D (π¦ β β+ β¦
(logβπ¦)))) |
95 | | dvrelog 26136 |
. . . . . . 7
β’ (β
D (log βΎ β+)) = (π¦ β β+ β¦ (1 /
π¦)) |
96 | 94, 95 | eqtr3di 2787 |
. . . . . 6
β’ ((π΄ β β β§ 0 β€
π΄) β (β D (π¦ β β+
β¦ (logβπ¦))) =
(π¦ β
β+ β¦ (1 / π¦))) |
97 | | fveq2 6888 |
. . . . . 6
β’ (π¦ = (π₯ + 1) β (logβπ¦) = (logβ(π₯ + 1))) |
98 | | oveq2 7413 |
. . . . . 6
β’ (π¦ = (π₯ + 1) β (1 / π¦) = (1 / (π₯ + 1))) |
99 | 53, 53, 57, 61, 64, 66, 86, 96, 97, 98 | dvmptco 25480 |
. . . . 5
β’ ((π΄ β β β§ 0 β€
π΄) β (β D (π₯ β β+
β¦ (logβ(π₯ +
1)))) = (π₯ β
β+ β¦ ((1 / (π₯ + 1)) Β· 1))) |
100 | 60 | rpcnd 13014 |
. . . . . . 7
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β β+) β (1 /
(π₯ + 1)) β
β) |
101 | 100 | mulridd 11227 |
. . . . . 6
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β β+) β ((1 /
(π₯ + 1)) Β· 1) = (1 /
(π₯ + 1))) |
102 | 101 | mpteq2dva 5247 |
. . . . 5
β’ ((π΄ β β β§ 0 β€
π΄) β (π₯ β β+
β¦ ((1 / (π₯ + 1))
Β· 1)) = (π₯ β
β+ β¦ (1 / (π₯ + 1)))) |
103 | 99, 102 | eqtrd 2772 |
. . . 4
β’ ((π΄ β β β§ 0 β€
π΄) β (β D (π₯ β β+
β¦ (logβ(π₯ +
1)))) = (π₯ β
β+ β¦ (1 / (π₯ + 1)))) |
104 | | ioossicc 13406 |
. . . . . . . . 9
β’
(0(,)π΄) β
(0[,]π΄) |
105 | 104 | sseli 3977 |
. . . . . . . 8
β’ (π₯ β (0(,)π΄) β π₯ β (0[,]π΄)) |
106 | 105, 7 | sylan2 593 |
. . . . . . 7
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β (0(,)π΄)) β π₯ β β) |
107 | | eliooord 13379 |
. . . . . . . . 9
β’ (π₯ β (0(,)π΄) β (0 < π₯ β§ π₯ < π΄)) |
108 | 107 | simpld 495 |
. . . . . . . 8
β’ (π₯ β (0(,)π΄) β 0 < π₯) |
109 | 108 | adantl 482 |
. . . . . . 7
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β (0(,)π΄)) β 0 < π₯) |
110 | 106, 109 | elrpd 13009 |
. . . . . 6
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β (0(,)π΄)) β π₯ β β+) |
111 | 110 | ex 413 |
. . . . 5
β’ ((π΄ β β β§ 0 β€
π΄) β (π₯ β (0(,)π΄) β π₯ β
β+)) |
112 | 111 | ssrdv 3987 |
. . . 4
β’ ((π΄ β β β§ 0 β€
π΄) β (0(,)π΄) β
β+) |
113 | | iooretop 24273 |
. . . . 5
β’
(0(,)π΄) β
(topGenβran (,)) |
114 | 113 | a1i 11 |
. . . 4
β’ ((π΄ β β β§ 0 β€
π΄) β (0(,)π΄) β (topGenβran
(,))) |
115 | 53, 59, 60, 103, 112, 81, 12, 114 | dvmptres 25471 |
. . 3
β’ ((π΄ β β β§ 0 β€
π΄) β (β D (π₯ β (0(,)π΄) β¦ (logβ(π₯ + 1)))) = (π₯ β (0(,)π΄) β¦ (1 / (π₯ + 1)))) |
116 | | elrege0 13427 |
. . . . . . . . 9
β’ (π₯ β (0[,)+β) β
(π₯ β β β§ 0
β€ π₯)) |
117 | 7, 8, 116 | sylanbrc 583 |
. . . . . . . 8
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β (0[,]π΄)) β π₯ β (0[,)+β)) |
118 | 117 | ex 413 |
. . . . . . 7
β’ ((π΄ β β β§ 0 β€
π΄) β (π₯ β (0[,]π΄) β π₯ β (0[,)+β))) |
119 | 118 | ssrdv 3987 |
. . . . . 6
β’ ((π΄ β β β§ 0 β€
π΄) β (0[,]π΄) β
(0[,)+β)) |
120 | 119 | resabs1d 6010 |
. . . . 5
β’ ((π΄ β β β§ 0 β€
π΄) β ((β βΎ
(0[,)+β)) βΎ (0[,]π΄)) = (β βΎ (0[,]π΄))) |
121 | | sqrtf 15306 |
. . . . . . 7
β’
β:ββΆβ |
122 | 121 | a1i 11 |
. . . . . 6
β’ ((π΄ β β β§ 0 β€
π΄) β
β:ββΆβ) |
123 | 122, 17 | feqresmpt 6958 |
. . . . 5
β’ ((π΄ β β β§ 0 β€
π΄) β (β βΎ
(0[,]π΄)) = (π₯ β (0[,]π΄) β¦ (ββπ₯))) |
124 | 120, 123 | eqtrd 2772 |
. . . 4
β’ ((π΄ β β β§ 0 β€
π΄) β ((β βΎ
(0[,)+β)) βΎ (0[,]π΄)) = (π₯ β (0[,]π΄) β¦ (ββπ₯))) |
125 | | resqrtcn 26246 |
. . . . 5
β’ (β
βΎ (0[,)+β)) β ((0[,)+β)βcnββ) |
126 | | rescncf 24404 |
. . . . 5
β’
((0[,]π΄) β
(0[,)+β) β ((β βΎ (0[,)+β)) β
((0[,)+β)βcnββ)
β ((β βΎ (0[,)+β)) βΎ (0[,]π΄)) β ((0[,]π΄)βcnββ))) |
127 | 119, 125,
126 | mpisyl 21 |
. . . 4
β’ ((π΄ β β β§ 0 β€
π΄) β ((β βΎ
(0[,)+β)) βΎ (0[,]π΄)) β ((0[,]π΄)βcnββ)) |
128 | 124, 127 | eqeltrrd 2834 |
. . 3
β’ ((π΄ β β β§ 0 β€
π΄) β (π₯ β (0[,]π΄) β¦ (ββπ₯)) β ((0[,]π΄)βcnββ)) |
129 | | rpcn 12980 |
. . . . . 6
β’ (π₯ β β+
β π₯ β
β) |
130 | 129 | adantl 482 |
. . . . 5
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β β+) β π₯ β
β) |
131 | 130 | sqrtcld 15380 |
. . . 4
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β β+) β
(ββπ₯) β
β) |
132 | | 2rp 12975 |
. . . . . 6
β’ 2 β
β+ |
133 | | rpsqrtcl 15207 |
. . . . . . 7
β’ (π₯ β β+
β (ββπ₯)
β β+) |
134 | 133 | adantl 482 |
. . . . . 6
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β β+) β
(ββπ₯) β
β+) |
135 | | rpmulcl 12993 |
. . . . . 6
β’ ((2
β β+ β§ (ββπ₯) β β+) β (2
Β· (ββπ₯))
β β+) |
136 | 132, 134,
135 | sylancr 587 |
. . . . 5
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β β+) β (2
Β· (ββπ₯))
β β+) |
137 | 136 | rpreccld 13022 |
. . . 4
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β β+) β (1 / (2
Β· (ββπ₯))) β
β+) |
138 | | dvsqrt 26239 |
. . . . 5
β’ (β
D (π₯ β
β+ β¦ (ββπ₯))) = (π₯ β β+ β¦ (1 / (2
Β· (ββπ₯)))) |
139 | 138 | a1i 11 |
. . . 4
β’ ((π΄ β β β§ 0 β€
π΄) β (β D (π₯ β β+
β¦ (ββπ₯)))
= (π₯ β
β+ β¦ (1 / (2 Β· (ββπ₯))))) |
140 | 53, 131, 137, 139, 112, 81, 12, 114 | dvmptres 25471 |
. . 3
β’ ((π΄ β β β§ 0 β€
π΄) β (β D (π₯ β (0(,)π΄) β¦ (ββπ₯))) = (π₯ β (0(,)π΄) β¦ (1 / (2 Β·
(ββπ₯))))) |
141 | 134 | rpred 13012 |
. . . . . . . . 9
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β β+) β
(ββπ₯) β
β) |
142 | | 1re 11210 |
. . . . . . . . 9
β’ 1 β
β |
143 | | resubcl 11520 |
. . . . . . . . 9
β’
(((ββπ₯)
β β β§ 1 β β) β ((ββπ₯) β 1) β
β) |
144 | 141, 142,
143 | sylancl 586 |
. . . . . . . 8
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β β+) β
((ββπ₯) β
1) β β) |
145 | 144 | sqge0d 14098 |
. . . . . . 7
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β β+) β 0 β€
(((ββπ₯) β
1)β2)) |
146 | 130 | sqsqrtd 15382 |
. . . . . . . . . 10
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β β+) β
((ββπ₯)β2)
= π₯) |
147 | 146 | oveq1d 7420 |
. . . . . . . . 9
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β β+) β
(((ββπ₯)β2)
β (2 Β· (ββπ₯))) = (π₯ β (2 Β· (ββπ₯)))) |
148 | 147 | oveq1d 7420 |
. . . . . . . 8
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β β+) β
((((ββπ₯)β2) β (2 Β·
(ββπ₯))) + 1) =
((π₯ β (2 Β·
(ββπ₯))) +
1)) |
149 | | binom2sub1 14180 |
. . . . . . . . 9
β’
((ββπ₯)
β β β (((ββπ₯) β 1)β2) =
((((ββπ₯)β2) β (2 Β·
(ββπ₯))) +
1)) |
150 | 131, 149 | syl 17 |
. . . . . . . 8
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β β+) β
(((ββπ₯) β
1)β2) = ((((ββπ₯)β2) β (2 Β·
(ββπ₯))) +
1)) |
151 | 136 | rpcnd 13014 |
. . . . . . . . 9
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β β+) β (2
Β· (ββπ₯))
β β) |
152 | 130, 61, 151 | addsubd 11588 |
. . . . . . . 8
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β β+) β ((π₯ + 1) β (2 Β·
(ββπ₯))) =
((π₯ β (2 Β·
(ββπ₯))) +
1)) |
153 | 148, 150,
152 | 3eqtr4d 2782 |
. . . . . . 7
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β β+) β
(((ββπ₯) β
1)β2) = ((π₯ + 1)
β (2 Β· (ββπ₯)))) |
154 | 145, 153 | breqtrd 5173 |
. . . . . 6
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β β+) β 0 β€
((π₯ + 1) β (2
Β· (ββπ₯)))) |
155 | 57 | rpred 13012 |
. . . . . . 7
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β β+) β (π₯ + 1) β
β) |
156 | 136 | rpred 13012 |
. . . . . . 7
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β β+) β (2
Β· (ββπ₯))
β β) |
157 | 155, 156 | subge0d 11800 |
. . . . . 6
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β β+) β (0 β€
((π₯ + 1) β (2
Β· (ββπ₯))) β (2 Β· (ββπ₯)) β€ (π₯ + 1))) |
158 | 154, 157 | mpbid 231 |
. . . . 5
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β β+) β (2
Β· (ββπ₯))
β€ (π₯ +
1)) |
159 | 136, 57 | lerecd 13031 |
. . . . 5
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β β+) β ((2
Β· (ββπ₯))
β€ (π₯ + 1) β (1 /
(π₯ + 1)) β€ (1 / (2
Β· (ββπ₯))))) |
160 | 158, 159 | mpbid 231 |
. . . 4
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β β+) β (1 /
(π₯ + 1)) β€ (1 / (2
Β· (ββπ₯)))) |
161 | 110, 160 | syldan 591 |
. . 3
β’ (((π΄ β β β§ 0 β€
π΄) β§ π₯ β (0(,)π΄)) β (1 / (π₯ + 1)) β€ (1 / (2 Β·
(ββπ₯)))) |
162 | | rexr 11256 |
. . . 4
β’ (π΄ β β β π΄ β
β*) |
163 | | 0xr 11257 |
. . . . 5
β’ 0 β
β* |
164 | | lbicc2 13437 |
. . . . 5
β’ ((0
β β* β§ π΄ β β* β§ 0 β€
π΄) β 0 β
(0[,]π΄)) |
165 | 163, 164 | mp3an1 1448 |
. . . 4
β’ ((π΄ β β*
β§ 0 β€ π΄) β 0
β (0[,]π΄)) |
166 | 162, 165 | sylan 580 |
. . 3
β’ ((π΄ β β β§ 0 β€
π΄) β 0 β
(0[,]π΄)) |
167 | | ubicc2 13438 |
. . . . 5
β’ ((0
β β* β§ π΄ β β* β§ 0 β€
π΄) β π΄ β (0[,]π΄)) |
168 | 163, 167 | mp3an1 1448 |
. . . 4
β’ ((π΄ β β*
β§ 0 β€ π΄) β
π΄ β (0[,]π΄)) |
169 | 162, 168 | sylan 580 |
. . 3
β’ ((π΄ β β β§ 0 β€
π΄) β π΄ β (0[,]π΄)) |
170 | | simpr 485 |
. . 3
β’ ((π΄ β β β§ 0 β€
π΄) β 0 β€ π΄) |
171 | | fv0p1e1 12331 |
. . . 4
β’ (π₯ = 0 β (logβ(π₯ + 1)) =
(logβ1)) |
172 | | log1 26085 |
. . . 4
β’
(logβ1) = 0 |
173 | 171, 172 | eqtrdi 2788 |
. . 3
β’ (π₯ = 0 β (logβ(π₯ + 1)) = 0) |
174 | | fveq2 6888 |
. . . 4
β’ (π₯ = 0 β (ββπ₯) =
(ββ0)) |
175 | | sqrt0 15184 |
. . . 4
β’
(ββ0) = 0 |
176 | 174, 175 | eqtrdi 2788 |
. . 3
β’ (π₯ = 0 β (ββπ₯) = 0) |
177 | | fvoveq1 7428 |
. . 3
β’ (π₯ = π΄ β (logβ(π₯ + 1)) = (logβ(π΄ + 1))) |
178 | | fveq2 6888 |
. . 3
β’ (π₯ = π΄ β (ββπ₯) = (ββπ΄)) |
179 | 2, 3, 51, 115, 128, 140, 161, 166, 169, 170, 173, 176, 177, 178 | dvle 25515 |
. 2
β’ ((π΄ β β β§ 0 β€
π΄) β
((logβ(π΄ + 1))
β 0) β€ ((ββπ΄) β 0)) |
180 | | ge0p1rp 13001 |
. . . 4
β’ ((π΄ β β β§ 0 β€
π΄) β (π΄ + 1) β
β+) |
181 | 180 | relogcld 26122 |
. . 3
β’ ((π΄ β β β§ 0 β€
π΄) β (logβ(π΄ + 1)) β
β) |
182 | | resqrtcl 15196 |
. . 3
β’ ((π΄ β β β§ 0 β€
π΄) β
(ββπ΄) β
β) |
183 | 181, 182,
2 | lesub1d 11817 |
. 2
β’ ((π΄ β β β§ 0 β€
π΄) β
((logβ(π΄ + 1)) β€
(ββπ΄) β
((logβ(π΄ + 1))
β 0) β€ ((ββπ΄) β 0))) |
184 | 179, 183 | mpbird 256 |
1
β’ ((π΄ β β β§ 0 β€
π΄) β (logβ(π΄ + 1)) β€ (ββπ΄)) |