MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  loglesqrt Structured version   Visualization version   GIF version

Theorem loglesqrt 26696
Description: An upper bound on the logarithm. (Contributed by Mario Carneiro, 2-May-2016.) (Proof shortened by AV, 2-Aug-2021.)
Assertion
Ref Expression
loglesqrt ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log‘(𝐴 + 1)) ≤ (√‘𝐴))

Proof of Theorem loglesqrt
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0re 11111 . . . 4 0 ∈ ℝ
21a1i 11 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ∈ ℝ)
3 simpl 482 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ)
4 elicc2 13308 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 ∈ (0[,]𝐴) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥𝐴)))
51, 3, 4sylancr 587 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥𝐴)))
65biimpa 476 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0[,]𝐴)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥𝐴))
76simp1d 1142 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0[,]𝐴)) → 𝑥 ∈ ℝ)
86simp2d 1143 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0[,]𝐴)) → 0 ≤ 𝑥)
97, 8ge0p1rpd 12961 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0[,]𝐴)) → (𝑥 + 1) ∈ ℝ+)
109fvresd 6842 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0[,]𝐴)) → ((log ↾ ℝ+)‘(𝑥 + 1)) = (log‘(𝑥 + 1)))
1110mpteq2dva 5184 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ ((log ↾ ℝ+)‘(𝑥 + 1))) = (𝑥 ∈ (0[,]𝐴) ↦ (log‘(𝑥 + 1))))
12 eqid 2731 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1312cnfldtopon 24695 . . . . . . 7 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
147ex 412 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) → 𝑥 ∈ ℝ))
1514ssrdv 3940 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0[,]𝐴) ⊆ ℝ)
16 ax-resscn 11060 . . . . . . . 8 ℝ ⊆ ℂ
1715, 16sstrdi 3947 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0[,]𝐴) ⊆ ℂ)
18 resttopon 23074 . . . . . . 7 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (0[,]𝐴) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (0[,]𝐴)) ∈ (TopOn‘(0[,]𝐴)))
1913, 17, 18sylancr 587 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((TopOpen‘ℂfld) ↾t (0[,]𝐴)) ∈ (TopOn‘(0[,]𝐴)))
209fmpttd 7048 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)):(0[,]𝐴)⟶ℝ+)
21 rpssre 12895 . . . . . . . . . 10 + ⊆ ℝ
2221, 16sstri 3944 . . . . . . . . 9 + ⊆ ℂ
2312addcn 24779 . . . . . . . . . . 11 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
2423a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
25 ssid 3957 . . . . . . . . . . 11 ℂ ⊆ ℂ
26 cncfmptid 24831 . . . . . . . . . . 11 (((0[,]𝐴) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (0[,]𝐴) ↦ 𝑥) ∈ ((0[,]𝐴)–cn→ℂ))
2717, 25, 26sylancl 586 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ 𝑥) ∈ ((0[,]𝐴)–cn→ℂ))
28 1cnd 11104 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 1 ∈ ℂ)
2925a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ℂ ⊆ ℂ)
30 cncfmptc 24830 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (0[,]𝐴) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (0[,]𝐴) ↦ 1) ∈ ((0[,]𝐴)–cn→ℂ))
3128, 17, 29, 30syl3anc 1373 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ 1) ∈ ((0[,]𝐴)–cn→ℂ))
3212, 24, 27, 31cncfmpt2f 24833 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)) ∈ ((0[,]𝐴)–cn→ℂ))
33 cncfcdm 24816 . . . . . . . . 9 ((ℝ+ ⊆ ℂ ∧ (𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)) ∈ ((0[,]𝐴)–cn→ℂ)) → ((𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)) ∈ ((0[,]𝐴)–cn→ℝ+) ↔ (𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)):(0[,]𝐴)⟶ℝ+))
3422, 32, 33sylancr 587 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)) ∈ ((0[,]𝐴)–cn→ℝ+) ↔ (𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)):(0[,]𝐴)⟶ℝ+))
3520, 34mpbird 257 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)) ∈ ((0[,]𝐴)–cn→ℝ+))
36 eqid 2731 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t (0[,]𝐴)) = ((TopOpen‘ℂfld) ↾t (0[,]𝐴))
37 eqid 2731 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t+) = ((TopOpen‘ℂfld) ↾t+)
3812, 36, 37cncfcn 24828 . . . . . . . 8 (((0[,]𝐴) ⊆ ℂ ∧ ℝ+ ⊆ ℂ) → ((0[,]𝐴)–cn→ℝ+) = (((TopOpen‘ℂfld) ↾t (0[,]𝐴)) Cn ((TopOpen‘ℂfld) ↾t+)))
3917, 22, 38sylancl 586 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((0[,]𝐴)–cn→ℝ+) = (((TopOpen‘ℂfld) ↾t (0[,]𝐴)) Cn ((TopOpen‘ℂfld) ↾t+)))
4035, 39eleqtrd 2833 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)) ∈ (((TopOpen‘ℂfld) ↾t (0[,]𝐴)) Cn ((TopOpen‘ℂfld) ↾t+)))
41 relogcn 26572 . . . . . . . 8 (log ↾ ℝ+) ∈ (ℝ+cn→ℝ)
42 eqid 2731 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t ℝ) = ((TopOpen‘ℂfld) ↾t ℝ)
4312, 37, 42cncfcn 24828 . . . . . . . . 9 ((ℝ+ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ+cn→ℝ) = (((TopOpen‘ℂfld) ↾t+) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
4422, 16, 43mp2an 692 . . . . . . . 8 (ℝ+cn→ℝ) = (((TopOpen‘ℂfld) ↾t+) Cn ((TopOpen‘ℂfld) ↾t ℝ))
4541, 44eleqtri 2829 . . . . . . 7 (log ↾ ℝ+) ∈ (((TopOpen‘ℂfld) ↾t+) Cn ((TopOpen‘ℂfld) ↾t ℝ))
4645a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log ↾ ℝ+) ∈ (((TopOpen‘ℂfld) ↾t+) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
4719, 40, 46cnmpt11f 23577 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ ((log ↾ ℝ+)‘(𝑥 + 1))) ∈ (((TopOpen‘ℂfld) ↾t (0[,]𝐴)) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
4812, 36, 42cncfcn 24828 . . . . . 6 (((0[,]𝐴) ⊆ ℂ ∧ ℝ ⊆ ℂ) → ((0[,]𝐴)–cn→ℝ) = (((TopOpen‘ℂfld) ↾t (0[,]𝐴)) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
4917, 16, 48sylancl 586 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((0[,]𝐴)–cn→ℝ) = (((TopOpen‘ℂfld) ↾t (0[,]𝐴)) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
5047, 49eleqtrrd 2834 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ ((log ↾ ℝ+)‘(𝑥 + 1))) ∈ ((0[,]𝐴)–cn→ℝ))
5111, 50eqeltrrd 2832 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ (log‘(𝑥 + 1))) ∈ ((0[,]𝐴)–cn→ℝ))
52 reelprrecn 11095 . . . . 5 ℝ ∈ {ℝ, ℂ}
5352a1i 11 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ℝ ∈ {ℝ, ℂ})
54 simpr 484 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
55 1rp 12891 . . . . . . 7 1 ∈ ℝ+
56 rpaddcl 12911 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ 1 ∈ ℝ+) → (𝑥 + 1) ∈ ℝ+)
5754, 55, 56sylancl 586 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (𝑥 + 1) ∈ ℝ+)
5857relogcld 26557 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (log‘(𝑥 + 1)) ∈ ℝ)
5958recnd 11137 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (log‘(𝑥 + 1)) ∈ ℂ)
6057rpreccld 12941 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (1 / (𝑥 + 1)) ∈ ℝ+)
61 1cnd 11104 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℂ)
62 relogcl 26509 . . . . . . . 8 (𝑦 ∈ ℝ+ → (log‘𝑦) ∈ ℝ)
6362adantl 481 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+) → (log‘𝑦) ∈ ℝ)
6463recnd 11137 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+) → (log‘𝑦) ∈ ℂ)
65 rpreccl 12915 . . . . . . 7 (𝑦 ∈ ℝ+ → (1 / 𝑦) ∈ ℝ+)
6665adantl 481 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+) → (1 / 𝑦) ∈ ℝ+)
67 peano2re 11283 . . . . . . . . 9 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
6867adantl 481 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → (𝑥 + 1) ∈ ℝ)
6968recnd 11137 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → (𝑥 + 1) ∈ ℂ)
70 1cnd 11104 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ)
7116a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ℝ ⊆ ℂ)
7271sselda 3934 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
7353dvmptid 25886 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1))
74 0cnd 11102 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → 0 ∈ ℂ)
7553, 28dvmptc 25887 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ ↦ 1)) = (𝑥 ∈ ℝ ↦ 0))
7653, 72, 70, 73, 70, 74, 75dvmptadd 25889 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ ↦ (𝑥 + 1))) = (𝑥 ∈ ℝ ↦ (1 + 0)))
77 1p0e1 12241 . . . . . . . . 9 (1 + 0) = 1
7877mpteq2i 5187 . . . . . . . 8 (𝑥 ∈ ℝ ↦ (1 + 0)) = (𝑥 ∈ ℝ ↦ 1)
7976, 78eqtrdi 2782 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ ↦ (𝑥 + 1))) = (𝑥 ∈ ℝ ↦ 1))
8021a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ℝ+ ⊆ ℝ)
81 tgioo4 24718 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
82 ioorp 13322 . . . . . . . . 9 (0(,)+∞) = ℝ+
83 iooretop 24678 . . . . . . . . 9 (0(,)+∞) ∈ (topGen‘ran (,))
8482, 83eqeltrri 2828 . . . . . . . 8 + ∈ (topGen‘ran (,))
8584a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ℝ+ ∈ (topGen‘ran (,)))
8653, 69, 70, 79, 80, 81, 12, 85dvmptres 25892 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 + 1))) = (𝑥 ∈ ℝ+ ↦ 1))
87 relogf1o 26500 . . . . . . . . . . 11 (log ↾ ℝ+):ℝ+1-1-onto→ℝ
88 f1of 6763 . . . . . . . . . . 11 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ)
8987, 88mp1i 13 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log ↾ ℝ+):ℝ+⟶ℝ)
9089feqmptd 6890 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log ↾ ℝ+) = (𝑦 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑦)))
91 fvres 6841 . . . . . . . . . 10 (𝑦 ∈ ℝ+ → ((log ↾ ℝ+)‘𝑦) = (log‘𝑦))
9291mpteq2ia 5186 . . . . . . . . 9 (𝑦 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑦)) = (𝑦 ∈ ℝ+ ↦ (log‘𝑦))
9390, 92eqtrdi 2782 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log ↾ ℝ+) = (𝑦 ∈ ℝ+ ↦ (log‘𝑦)))
9493oveq2d 7362 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (log ↾ ℝ+)) = (ℝ D (𝑦 ∈ ℝ+ ↦ (log‘𝑦))))
95 dvrelog 26571 . . . . . . 7 (ℝ D (log ↾ ℝ+)) = (𝑦 ∈ ℝ+ ↦ (1 / 𝑦))
9694, 95eqtr3di 2781 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑦 ∈ ℝ+ ↦ (log‘𝑦))) = (𝑦 ∈ ℝ+ ↦ (1 / 𝑦)))
97 fveq2 6822 . . . . . 6 (𝑦 = (𝑥 + 1) → (log‘𝑦) = (log‘(𝑥 + 1)))
98 oveq2 7354 . . . . . 6 (𝑦 = (𝑥 + 1) → (1 / 𝑦) = (1 / (𝑥 + 1)))
9953, 53, 57, 61, 64, 66, 86, 96, 97, 98dvmptco 25901 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘(𝑥 + 1)))) = (𝑥 ∈ ℝ+ ↦ ((1 / (𝑥 + 1)) · 1)))
10060rpcnd 12933 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (1 / (𝑥 + 1)) ∈ ℂ)
101100mulridd 11126 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((1 / (𝑥 + 1)) · 1) = (1 / (𝑥 + 1)))
102101mpteq2dva 5184 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ ℝ+ ↦ ((1 / (𝑥 + 1)) · 1)) = (𝑥 ∈ ℝ+ ↦ (1 / (𝑥 + 1))))
10399, 102eqtrd 2766 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘(𝑥 + 1)))) = (𝑥 ∈ ℝ+ ↦ (1 / (𝑥 + 1))))
104 ioossicc 13330 . . . . . . . . 9 (0(,)𝐴) ⊆ (0[,]𝐴)
105104sseli 3930 . . . . . . . 8 (𝑥 ∈ (0(,)𝐴) → 𝑥 ∈ (0[,]𝐴))
106105, 7sylan2 593 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0(,)𝐴)) → 𝑥 ∈ ℝ)
107 eliooord 13302 . . . . . . . . 9 (𝑥 ∈ (0(,)𝐴) → (0 < 𝑥𝑥 < 𝐴))
108107simpld 494 . . . . . . . 8 (𝑥 ∈ (0(,)𝐴) → 0 < 𝑥)
109108adantl 481 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0(,)𝐴)) → 0 < 𝑥)
110106, 109elrpd 12928 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0(,)𝐴)) → 𝑥 ∈ ℝ+)
111110ex 412 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0(,)𝐴) → 𝑥 ∈ ℝ+))
112111ssrdv 3940 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0(,)𝐴) ⊆ ℝ+)
113 iooretop 24678 . . . . 5 (0(,)𝐴) ∈ (topGen‘ran (,))
114113a1i 11 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0(,)𝐴) ∈ (topGen‘ran (,)))
11553, 59, 60, 103, 112, 81, 12, 114dvmptres 25892 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ (0(,)𝐴) ↦ (log‘(𝑥 + 1)))) = (𝑥 ∈ (0(,)𝐴) ↦ (1 / (𝑥 + 1))))
116 elrege0 13351 . . . . . . . . 9 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
1177, 8, 116sylanbrc 583 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0[,]𝐴)) → 𝑥 ∈ (0[,)+∞))
118117ex 412 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) → 𝑥 ∈ (0[,)+∞)))
119118ssrdv 3940 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0[,]𝐴) ⊆ (0[,)+∞))
120119resabs1d 5957 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√ ↾ (0[,)+∞)) ↾ (0[,]𝐴)) = (√ ↾ (0[,]𝐴)))
121 sqrtf 15268 . . . . . . 7 √:ℂ⟶ℂ
122121a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → √:ℂ⟶ℂ)
123122, 17feqresmpt 6891 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√ ↾ (0[,]𝐴)) = (𝑥 ∈ (0[,]𝐴) ↦ (√‘𝑥)))
124120, 123eqtrd 2766 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√ ↾ (0[,)+∞)) ↾ (0[,]𝐴)) = (𝑥 ∈ (0[,]𝐴) ↦ (√‘𝑥)))
125 resqrtcn 26684 . . . . 5 (√ ↾ (0[,)+∞)) ∈ ((0[,)+∞)–cn→ℝ)
126 rescncf 24815 . . . . 5 ((0[,]𝐴) ⊆ (0[,)+∞) → ((√ ↾ (0[,)+∞)) ∈ ((0[,)+∞)–cn→ℝ) → ((√ ↾ (0[,)+∞)) ↾ (0[,]𝐴)) ∈ ((0[,]𝐴)–cn→ℝ)))
127119, 125, 126mpisyl 21 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√ ↾ (0[,)+∞)) ↾ (0[,]𝐴)) ∈ ((0[,]𝐴)–cn→ℝ))
128124, 127eqeltrrd 2832 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ (√‘𝑥)) ∈ ((0[,]𝐴)–cn→ℝ))
129 rpcn 12898 . . . . . 6 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
130129adantl 481 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
131130sqrtcld 15344 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℂ)
132 2rp 12892 . . . . . 6 2 ∈ ℝ+
133 rpsqrtcl 15168 . . . . . . 7 (𝑥 ∈ ℝ+ → (√‘𝑥) ∈ ℝ+)
134133adantl 481 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ+)
135 rpmulcl 12912 . . . . . 6 ((2 ∈ ℝ+ ∧ (√‘𝑥) ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℝ+)
136132, 134, 135sylancr 587 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℝ+)
137136rpreccld 12941 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (1 / (2 · (√‘𝑥))) ∈ ℝ+)
138 dvsqrt 26676 . . . . 5 (ℝ D (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / (2 · (√‘𝑥))))
139138a1i 11 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / (2 · (√‘𝑥)))))
14053, 131, 137, 139, 112, 81, 12, 114dvmptres 25892 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ (0(,)𝐴) ↦ (√‘𝑥))) = (𝑥 ∈ (0(,)𝐴) ↦ (1 / (2 · (√‘𝑥)))))
141134rpred 12931 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ)
142 1re 11109 . . . . . . . . 9 1 ∈ ℝ
143 resubcl 11422 . . . . . . . . 9 (((√‘𝑥) ∈ ℝ ∧ 1 ∈ ℝ) → ((√‘𝑥) − 1) ∈ ℝ)
144141, 142, 143sylancl 586 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((√‘𝑥) − 1) ∈ ℝ)
145144sqge0d 14041 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 0 ≤ (((√‘𝑥) − 1)↑2))
146130sqsqrtd 15346 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((√‘𝑥)↑2) = 𝑥)
147146oveq1d 7361 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((√‘𝑥)↑2) − (2 · (√‘𝑥))) = (𝑥 − (2 · (√‘𝑥))))
148147oveq1d 7361 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((((√‘𝑥)↑2) − (2 · (√‘𝑥))) + 1) = ((𝑥 − (2 · (√‘𝑥))) + 1))
149 binom2sub1 14125 . . . . . . . . 9 ((√‘𝑥) ∈ ℂ → (((√‘𝑥) − 1)↑2) = ((((√‘𝑥)↑2) − (2 · (√‘𝑥))) + 1))
150131, 149syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((√‘𝑥) − 1)↑2) = ((((√‘𝑥)↑2) − (2 · (√‘𝑥))) + 1))
151136rpcnd 12933 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℂ)
152130, 61, 151addsubd 11490 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((𝑥 + 1) − (2 · (√‘𝑥))) = ((𝑥 − (2 · (√‘𝑥))) + 1))
153148, 150, 1523eqtr4d 2776 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((√‘𝑥) − 1)↑2) = ((𝑥 + 1) − (2 · (√‘𝑥))))
154145, 153breqtrd 5117 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 0 ≤ ((𝑥 + 1) − (2 · (√‘𝑥))))
15557rpred 12931 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (𝑥 + 1) ∈ ℝ)
156136rpred 12931 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℝ)
157155, 156subge0d 11704 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (0 ≤ ((𝑥 + 1) − (2 · (√‘𝑥))) ↔ (2 · (√‘𝑥)) ≤ (𝑥 + 1)))
158154, 157mpbid 232 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 · (√‘𝑥)) ≤ (𝑥 + 1))
159136, 57lerecd 12950 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((2 · (√‘𝑥)) ≤ (𝑥 + 1) ↔ (1 / (𝑥 + 1)) ≤ (1 / (2 · (√‘𝑥)))))
160158, 159mpbid 232 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (1 / (𝑥 + 1)) ≤ (1 / (2 · (√‘𝑥))))
161110, 160syldan 591 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0(,)𝐴)) → (1 / (𝑥 + 1)) ≤ (1 / (2 · (√‘𝑥))))
162 rexr 11155 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
163 0xr 11156 . . . . 5 0 ∈ ℝ*
164 lbicc2 13361 . . . . 5 ((0 ∈ ℝ*𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 0 ∈ (0[,]𝐴))
165163, 164mp3an1 1450 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 0 ∈ (0[,]𝐴))
166162, 165sylan 580 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ∈ (0[,]𝐴))
167 ubicc2 13362 . . . . 5 ((0 ∈ ℝ*𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ∈ (0[,]𝐴))
168163, 167mp3an1 1450 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ∈ (0[,]𝐴))
169162, 168sylan 580 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ (0[,]𝐴))
170 simpr 484 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ 𝐴)
171 fv0p1e1 12240 . . . 4 (𝑥 = 0 → (log‘(𝑥 + 1)) = (log‘1))
172 log1 26519 . . . 4 (log‘1) = 0
173171, 172eqtrdi 2782 . . 3 (𝑥 = 0 → (log‘(𝑥 + 1)) = 0)
174 fveq2 6822 . . . 4 (𝑥 = 0 → (√‘𝑥) = (√‘0))
175 sqrt0 15145 . . . 4 (√‘0) = 0
176174, 175eqtrdi 2782 . . 3 (𝑥 = 0 → (√‘𝑥) = 0)
177 fvoveq1 7369 . . 3 (𝑥 = 𝐴 → (log‘(𝑥 + 1)) = (log‘(𝐴 + 1)))
178 fveq2 6822 . . 3 (𝑥 = 𝐴 → (√‘𝑥) = (√‘𝐴))
1792, 3, 51, 115, 128, 140, 161, 166, 169, 170, 173, 176, 177, 178dvle 25937 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((log‘(𝐴 + 1)) − 0) ≤ ((√‘𝐴) − 0))
180 ge0p1rp 12920 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 + 1) ∈ ℝ+)
181180relogcld 26557 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log‘(𝐴 + 1)) ∈ ℝ)
182 resqrtcl 15157 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ)
183181, 182, 2lesub1d 11721 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((log‘(𝐴 + 1)) ≤ (√‘𝐴) ↔ ((log‘(𝐴 + 1)) − 0) ≤ ((√‘𝐴) − 0)))
184179, 183mpbird 257 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log‘(𝐴 + 1)) ≤ (√‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wss 3902  {cpr 4578   class class class wbr 5091  cmpt 5172  ran crn 5617  cres 5618  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  cc 11001  cr 11002  0cc0 11003  1c1 11004   + caddc 11006   · cmul 11008  +∞cpnf 11140  *cxr 11142   < clt 11143  cle 11144  cmin 11341   / cdiv 11771  2c2 12177  +crp 12887  (,)cioo 13242  [,)cico 13244  [,]cicc 13245  cexp 13965  csqrt 15137  t crest 17321  TopOpenctopn 17322  topGenctg 17338  fldccnfld 21289  TopOnctopon 22823   Cn ccn 23137   ×t ctx 23473  cnccncf 24794   D cdv 25789  logclog 26488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081  ax-addf 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-ioo 13246  df-ioc 13247  df-ico 13248  df-icc 13249  df-fz 13405  df-fzo 13552  df-fl 13693  df-mod 13771  df-seq 13906  df-exp 13966  df-fac 14178  df-bc 14207  df-hash 14235  df-shft 14971  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-limsup 15375  df-clim 15392  df-rlim 15393  df-sum 15591  df-ef 15971  df-sin 15973  df-cos 15974  df-tan 15975  df-pi 15976  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-starv 17173  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-unif 17181  df-hom 17182  df-cco 17183  df-rest 17323  df-topn 17324  df-0g 17342  df-gsum 17343  df-topgen 17344  df-pt 17345  df-prds 17348  df-xrs 17403  df-qtop 17408  df-imas 17409  df-xps 17411  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-submnd 18689  df-mulg 18978  df-cntz 19227  df-cmn 19692  df-psmet 21281  df-xmet 21282  df-met 21283  df-bl 21284  df-mopn 21285  df-fbas 21286  df-fg 21287  df-cnfld 21290  df-top 22807  df-topon 22824  df-topsp 22846  df-bases 22859  df-cld 22932  df-ntr 22933  df-cls 22934  df-nei 23011  df-lp 23049  df-perf 23050  df-cn 23140  df-cnp 23141  df-haus 23228  df-cmp 23300  df-tx 23475  df-hmeo 23668  df-fil 23759  df-fm 23851  df-flim 23852  df-flf 23853  df-xms 24233  df-ms 24234  df-tms 24235  df-cncf 24796  df-limc 25792  df-dv 25793  df-log 26490  df-cxp 26491
This theorem is referenced by:  rplogsumlem1  27420
  Copyright terms: Public domain W3C validator