MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcorevcl Structured version   Visualization version   GIF version

Theorem pcorevcl 24470
Description: Closure for a reversed path. (Contributed by Mario Carneiro, 12-Feb-2015.)
Hypothesis
Ref Expression
pcorev.1 𝐺 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
Assertion
Ref Expression
pcorevcl (𝐹 ∈ (II Cn 𝐽) → (𝐺 ∈ (II Cn 𝐽) ∧ (𝐺‘0) = (𝐹‘1) ∧ (𝐺‘1) = (𝐹‘0)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem pcorevcl
StepHypRef Expression
1 pcorev.1 . . 3 𝐺 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
2 iitopon 24324 . . . . 5 II ∈ (TopOn‘(0[,]1))
32a1i 11 . . . 4 (𝐹 ∈ (II Cn 𝐽) → II ∈ (TopOn‘(0[,]1)))
4 iirevcn 24375 . . . . 5 (𝑥 ∈ (0[,]1) ↦ (1 − 𝑥)) ∈ (II Cn II)
54a1i 11 . . . 4 (𝐹 ∈ (II Cn 𝐽) → (𝑥 ∈ (0[,]1) ↦ (1 − 𝑥)) ∈ (II Cn II))
6 id 22 . . . 4 (𝐹 ∈ (II Cn 𝐽) → 𝐹 ∈ (II Cn 𝐽))
73, 5, 6cnmpt11f 23097 . . 3 (𝐹 ∈ (II Cn 𝐽) → (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) ∈ (II Cn 𝐽))
81, 7eqeltrid 2836 . 2 (𝐹 ∈ (II Cn 𝐽) → 𝐺 ∈ (II Cn 𝐽))
9 0elunit 13428 . . 3 0 ∈ (0[,]1)
10 oveq2 7401 . . . . . 6 (𝑥 = 0 → (1 − 𝑥) = (1 − 0))
11 1m0e1 12315 . . . . . 6 (1 − 0) = 1
1210, 11eqtrdi 2787 . . . . 5 (𝑥 = 0 → (1 − 𝑥) = 1)
1312fveq2d 6882 . . . 4 (𝑥 = 0 → (𝐹‘(1 − 𝑥)) = (𝐹‘1))
14 fvex 6891 . . . 4 (𝐹‘1) ∈ V
1513, 1, 14fvmpt 6984 . . 3 (0 ∈ (0[,]1) → (𝐺‘0) = (𝐹‘1))
169, 15mp1i 13 . 2 (𝐹 ∈ (II Cn 𝐽) → (𝐺‘0) = (𝐹‘1))
17 1elunit 13429 . . 3 1 ∈ (0[,]1)
18 oveq2 7401 . . . . . 6 (𝑥 = 1 → (1 − 𝑥) = (1 − 1))
19 1m1e0 12266 . . . . . 6 (1 − 1) = 0
2018, 19eqtrdi 2787 . . . . 5 (𝑥 = 1 → (1 − 𝑥) = 0)
2120fveq2d 6882 . . . 4 (𝑥 = 1 → (𝐹‘(1 − 𝑥)) = (𝐹‘0))
22 fvex 6891 . . . 4 (𝐹‘0) ∈ V
2321, 1, 22fvmpt 6984 . . 3 (1 ∈ (0[,]1) → (𝐺‘1) = (𝐹‘0))
2417, 23mp1i 13 . 2 (𝐹 ∈ (II Cn 𝐽) → (𝐺‘1) = (𝐹‘0))
258, 16, 243jca 1128 1 (𝐹 ∈ (II Cn 𝐽) → (𝐺 ∈ (II Cn 𝐽) ∧ (𝐺‘0) = (𝐹‘1) ∧ (𝐺‘1) = (𝐹‘0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1541  wcel 2106  cmpt 5224  cfv 6532  (class class class)co 7393  0cc0 11092  1c1 11093  cmin 11426  [,]cicc 13309  TopOnctopon 22341   Cn ccn 22657  IIcii 24320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-pre-sup 11170
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-isom 6541  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-of 7653  df-om 7839  df-1st 7957  df-2nd 7958  df-supp 8129  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-2o 8449  df-er 8686  df-map 8805  df-ixp 8875  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-fsupp 9345  df-fi 9388  df-sup 9419  df-inf 9420  df-oi 9487  df-card 9916  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-div 11854  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-5 12260  df-6 12261  df-7 12262  df-8 12263  df-9 12264  df-n0 12455  df-z 12541  df-dec 12660  df-uz 12805  df-q 12915  df-rp 12957  df-xneg 13074  df-xadd 13075  df-xmul 13076  df-ioo 13310  df-icc 13313  df-fz 13467  df-fzo 13610  df-seq 13949  df-exp 14010  df-hash 14273  df-cj 15028  df-re 15029  df-im 15030  df-sqrt 15164  df-abs 15165  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17127  df-ress 17156  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17350  df-topn 17351  df-0g 17369  df-gsum 17370  df-topgen 17371  df-pt 17372  df-prds 17375  df-xrs 17430  df-qtop 17435  df-imas 17436  df-xps 17438  df-mre 17512  df-mrc 17513  df-acs 17515  df-mgm 18543  df-sgrp 18592  df-mnd 18603  df-submnd 18648  df-mulg 18923  df-cntz 19147  df-cmn 19614  df-psmet 20870  df-xmet 20871  df-met 20872  df-bl 20873  df-mopn 20874  df-cnfld 20879  df-top 22325  df-topon 22342  df-topsp 22364  df-bases 22378  df-cn 22660  df-cnp 22661  df-tx 22995  df-hmeo 23188  df-xms 23755  df-ms 23756  df-tms 23757  df-ii 24322
This theorem is referenced by:  pcorev2  24473  pcophtb  24474  pi1grplem  24494  pi1inv  24497  pi1xfr  24500  pi1xfrcnvlem  24501  pi1xfrcnv  24502  sconnpht2  34060
  Copyright terms: Public domain W3C validator