Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pcorevcl | Structured version Visualization version GIF version |
Description: Closure for a reversed path. (Contributed by Mario Carneiro, 12-Feb-2015.) |
Ref | Expression |
---|---|
pcorev.1 | ⊢ 𝐺 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) |
Ref | Expression |
---|---|
pcorevcl | ⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐺 ∈ (II Cn 𝐽) ∧ (𝐺‘0) = (𝐹‘1) ∧ (𝐺‘1) = (𝐹‘0))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pcorev.1 | . . 3 ⊢ 𝐺 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) | |
2 | iitopon 24087 | . . . . 5 ⊢ II ∈ (TopOn‘(0[,]1)) | |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝐹 ∈ (II Cn 𝐽) → II ∈ (TopOn‘(0[,]1))) |
4 | iirevcn 24138 | . . . . 5 ⊢ (𝑥 ∈ (0[,]1) ↦ (1 − 𝑥)) ∈ (II Cn II) | |
5 | 4 | a1i 11 | . . . 4 ⊢ (𝐹 ∈ (II Cn 𝐽) → (𝑥 ∈ (0[,]1) ↦ (1 − 𝑥)) ∈ (II Cn II)) |
6 | id 22 | . . . 4 ⊢ (𝐹 ∈ (II Cn 𝐽) → 𝐹 ∈ (II Cn 𝐽)) | |
7 | 3, 5, 6 | cnmpt11f 22860 | . . 3 ⊢ (𝐹 ∈ (II Cn 𝐽) → (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) ∈ (II Cn 𝐽)) |
8 | 1, 7 | eqeltrid 2841 | . 2 ⊢ (𝐹 ∈ (II Cn 𝐽) → 𝐺 ∈ (II Cn 𝐽)) |
9 | 0elunit 13247 | . . 3 ⊢ 0 ∈ (0[,]1) | |
10 | oveq2 7315 | . . . . . 6 ⊢ (𝑥 = 0 → (1 − 𝑥) = (1 − 0)) | |
11 | 1m0e1 12140 | . . . . . 6 ⊢ (1 − 0) = 1 | |
12 | 10, 11 | eqtrdi 2792 | . . . . 5 ⊢ (𝑥 = 0 → (1 − 𝑥) = 1) |
13 | 12 | fveq2d 6808 | . . . 4 ⊢ (𝑥 = 0 → (𝐹‘(1 − 𝑥)) = (𝐹‘1)) |
14 | fvex 6817 | . . . 4 ⊢ (𝐹‘1) ∈ V | |
15 | 13, 1, 14 | fvmpt 6907 | . . 3 ⊢ (0 ∈ (0[,]1) → (𝐺‘0) = (𝐹‘1)) |
16 | 9, 15 | mp1i 13 | . 2 ⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐺‘0) = (𝐹‘1)) |
17 | 1elunit 13248 | . . 3 ⊢ 1 ∈ (0[,]1) | |
18 | oveq2 7315 | . . . . . 6 ⊢ (𝑥 = 1 → (1 − 𝑥) = (1 − 1)) | |
19 | 1m1e0 12091 | . . . . . 6 ⊢ (1 − 1) = 0 | |
20 | 18, 19 | eqtrdi 2792 | . . . . 5 ⊢ (𝑥 = 1 → (1 − 𝑥) = 0) |
21 | 20 | fveq2d 6808 | . . . 4 ⊢ (𝑥 = 1 → (𝐹‘(1 − 𝑥)) = (𝐹‘0)) |
22 | fvex 6817 | . . . 4 ⊢ (𝐹‘0) ∈ V | |
23 | 21, 1, 22 | fvmpt 6907 | . . 3 ⊢ (1 ∈ (0[,]1) → (𝐺‘1) = (𝐹‘0)) |
24 | 17, 23 | mp1i 13 | . 2 ⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐺‘1) = (𝐹‘0)) |
25 | 8, 16, 24 | 3jca 1128 | 1 ⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐺 ∈ (II Cn 𝐽) ∧ (𝐺‘0) = (𝐹‘1) ∧ (𝐺‘1) = (𝐹‘0))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ↦ cmpt 5164 ‘cfv 6458 (class class class)co 7307 0cc0 10917 1c1 10918 − cmin 11251 [,]cicc 13128 TopOnctopon 22104 Cn ccn 22420 IIcii 24083 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-pre-sup 10995 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-iin 4934 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-om 7745 df-1st 7863 df-2nd 7864 df-supp 8009 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-2o 8329 df-er 8529 df-map 8648 df-ixp 8717 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-fsupp 9173 df-fi 9214 df-sup 9245 df-inf 9246 df-oi 9313 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-n0 12280 df-z 12366 df-dec 12484 df-uz 12629 df-q 12735 df-rp 12777 df-xneg 12894 df-xadd 12895 df-xmul 12896 df-ioo 13129 df-icc 13132 df-fz 13286 df-fzo 13429 df-seq 13768 df-exp 13829 df-hash 14091 df-cj 14855 df-re 14856 df-im 14857 df-sqrt 14991 df-abs 14992 df-struct 16893 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-ress 16987 df-plusg 17020 df-mulr 17021 df-starv 17022 df-sca 17023 df-vsca 17024 df-ip 17025 df-tset 17026 df-ple 17027 df-ds 17029 df-unif 17030 df-hom 17031 df-cco 17032 df-rest 17178 df-topn 17179 df-0g 17197 df-gsum 17198 df-topgen 17199 df-pt 17200 df-prds 17203 df-xrs 17258 df-qtop 17263 df-imas 17264 df-xps 17266 df-mre 17340 df-mrc 17341 df-acs 17343 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-submnd 18476 df-mulg 18746 df-cntz 18968 df-cmn 19433 df-psmet 20634 df-xmet 20635 df-met 20636 df-bl 20637 df-mopn 20638 df-cnfld 20643 df-top 22088 df-topon 22105 df-topsp 22127 df-bases 22141 df-cn 22423 df-cnp 22424 df-tx 22758 df-hmeo 22951 df-xms 23518 df-ms 23519 df-tms 23520 df-ii 24085 |
This theorem is referenced by: pcorev2 24236 pcophtb 24237 pi1grplem 24257 pi1inv 24260 pi1xfr 24263 pi1xfrcnvlem 24264 pi1xfrcnv 24265 sconnpht2 33245 |
Copyright terms: Public domain | W3C validator |