MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt12f Structured version   Visualization version   GIF version

Theorem cnmpt12f 22271
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt11.a (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
cnmpt1t.b (𝜑 → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿))
cnmpt12f.f (𝜑𝐹 ∈ ((𝐾 ×t 𝐿) Cn 𝑀))
Assertion
Ref Expression
cnmpt12f (𝜑 → (𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝐽 Cn 𝑀))
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥   𝑥,𝐽   𝑥,𝑀   𝑥,𝑋   𝑥,𝐾   𝑥,𝐿
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem cnmpt12f
StepHypRef Expression
1 df-ov 7138 . . 3 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
21mpteq2i 5122 . 2 (𝑥𝑋 ↦ (𝐴𝐹𝐵)) = (𝑥𝑋 ↦ (𝐹‘⟨𝐴, 𝐵⟩))
3 cnmptid.j . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
4 cnmpt11.a . . . 4 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
5 cnmpt1t.b . . . 4 (𝜑 → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿))
63, 4, 5cnmpt1t 22270 . . 3 (𝜑 → (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐿)))
7 cnmpt12f.f . . 3 (𝜑𝐹 ∈ ((𝐾 ×t 𝐿) Cn 𝑀))
83, 6, 7cnmpt11f 22269 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐹‘⟨𝐴, 𝐵⟩)) ∈ (𝐽 Cn 𝑀))
92, 8eqeltrid 2894 1 (𝜑 → (𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝐽 Cn 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  cop 4531  cmpt 5110  cfv 6324  (class class class)co 7135  TopOnctopon 21515   Cn ccn 21829   ×t ctx 22165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-map 8391  df-topgen 16709  df-top 21499  df-topon 21516  df-bases 21551  df-cn 21832  df-tx 22167
This theorem is referenced by:  cnmpt12  22272  cnmpt1plusg  22692  istgp2  22696  clsnsg  22715  tgpt0  22724  cnmpt1vsca  22799  cnmpt1ds  23447  fsumcn  23475  expcn  23477  divccn  23478  cncfmpt2f  23520  cdivcncf  23526  iirevcn  23535  iihalf1cn  23537  iihalf2cn  23539  icchmeo  23546  evth  23564  evth2  23565  pcoass  23629  cnmpt1ip  23851  dvcnvlem  24579  plycn  24858  psercn2  25018  atansopn  25518  efrlim  25555  ipasslem7  28619  occllem  29086  hmopidmchi  29934  cvxpconn  32602  cvmlift2lem2  32664  cvmlift2lem3  32665  cvmliftphtlem  32677  sinccvglem  33028  knoppcnlem10  33954  broucube  35091  areacirclem2  35146  fprodcnlem  42241
  Copyright terms: Public domain W3C validator