![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmpt12f | Structured version Visualization version GIF version |
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmptid.j | β’ (π β π½ β (TopOnβπ)) |
cnmpt11.a | β’ (π β (π₯ β π β¦ π΄) β (π½ Cn πΎ)) |
cnmpt1t.b | β’ (π β (π₯ β π β¦ π΅) β (π½ Cn πΏ)) |
cnmpt12f.f | β’ (π β πΉ β ((πΎ Γt πΏ) Cn π)) |
Ref | Expression |
---|---|
cnmpt12f | β’ (π β (π₯ β π β¦ (π΄πΉπ΅)) β (π½ Cn π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7414 | . . 3 β’ (π΄πΉπ΅) = (πΉββ¨π΄, π΅β©) | |
2 | 1 | mpteq2i 5252 | . 2 β’ (π₯ β π β¦ (π΄πΉπ΅)) = (π₯ β π β¦ (πΉββ¨π΄, π΅β©)) |
3 | cnmptid.j | . . 3 β’ (π β π½ β (TopOnβπ)) | |
4 | cnmpt11.a | . . . 4 β’ (π β (π₯ β π β¦ π΄) β (π½ Cn πΎ)) | |
5 | cnmpt1t.b | . . . 4 β’ (π β (π₯ β π β¦ π΅) β (π½ Cn πΏ)) | |
6 | 3, 4, 5 | cnmpt1t 23389 | . . 3 β’ (π β (π₯ β π β¦ β¨π΄, π΅β©) β (π½ Cn (πΎ Γt πΏ))) |
7 | cnmpt12f.f | . . 3 β’ (π β πΉ β ((πΎ Γt πΏ) Cn π)) | |
8 | 3, 6, 7 | cnmpt11f 23388 | . 2 β’ (π β (π₯ β π β¦ (πΉββ¨π΄, π΅β©)) β (π½ Cn π)) |
9 | 2, 8 | eqeltrid 2835 | 1 β’ (π β (π₯ β π β¦ (π΄πΉπ΅)) β (π½ Cn π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2104 β¨cop 4633 β¦ cmpt 5230 βcfv 6542 (class class class)co 7411 TopOnctopon 22632 Cn ccn 22948 Γt ctx 23284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-map 8824 df-topgen 17393 df-top 22616 df-topon 22633 df-bases 22669 df-cn 22951 df-tx 23286 |
This theorem is referenced by: cnmpt12 23391 cnmpt1plusg 23811 istgp2 23815 clsnsg 23834 tgpt0 23843 cnmpt1vsca 23918 cnmpt1ds 24578 fsumcn 24608 expcn 24610 expcnOLD 24612 divccnOLD 24613 cncfmpt2f 24655 cdivcncf 24661 iirevcn 24671 iihalf1cnOLD 24674 iihalf2cn 24676 iihalf2cnOLD 24677 icchmeo 24685 icchmeoOLD 24686 evth 24705 evth2 24706 pcoass 24771 cnmpt1ip 24995 dvcnvlem 25728 plycnOLD 26011 psercn2 26171 atansopn 26673 efrlim 26710 ipasslem7 30356 occllem 30823 hmopidmchi 31671 cvxpconn 34531 cvmlift2lem2 34593 cvmlift2lem3 34594 cvmliftphtlem 34606 sinccvglem 34955 knoppcnlem10 35681 broucube 36825 areacirclem2 36880 fprodcnlem 44613 |
Copyright terms: Public domain | W3C validator |