MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt12f Structured version   Visualization version   GIF version

Theorem cnmpt12f 22725
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt11.a (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
cnmpt1t.b (𝜑 → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿))
cnmpt12f.f (𝜑𝐹 ∈ ((𝐾 ×t 𝐿) Cn 𝑀))
Assertion
Ref Expression
cnmpt12f (𝜑 → (𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝐽 Cn 𝑀))
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥   𝑥,𝐽   𝑥,𝑀   𝑥,𝑋   𝑥,𝐾   𝑥,𝐿
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem cnmpt12f
StepHypRef Expression
1 df-ov 7258 . . 3 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
21mpteq2i 5175 . 2 (𝑥𝑋 ↦ (𝐴𝐹𝐵)) = (𝑥𝑋 ↦ (𝐹‘⟨𝐴, 𝐵⟩))
3 cnmptid.j . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
4 cnmpt11.a . . . 4 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
5 cnmpt1t.b . . . 4 (𝜑 → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿))
63, 4, 5cnmpt1t 22724 . . 3 (𝜑 → (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐿)))
7 cnmpt12f.f . . 3 (𝜑𝐹 ∈ ((𝐾 ×t 𝐿) Cn 𝑀))
83, 6, 7cnmpt11f 22723 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐹‘⟨𝐴, 𝐵⟩)) ∈ (𝐽 Cn 𝑀))
92, 8eqeltrid 2843 1 (𝜑 → (𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝐽 Cn 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cop 4564  cmpt 5153  cfv 6418  (class class class)co 7255  TopOnctopon 21967   Cn ccn 22283   ×t ctx 22619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575  df-topgen 17071  df-top 21951  df-topon 21968  df-bases 22004  df-cn 22286  df-tx 22621
This theorem is referenced by:  cnmpt12  22726  cnmpt1plusg  23146  istgp2  23150  clsnsg  23169  tgpt0  23178  cnmpt1vsca  23253  cnmpt1ds  23911  fsumcn  23939  expcn  23941  divccn  23942  cncfmpt2f  23984  cdivcncf  23990  iirevcn  23999  iihalf1cn  24001  iihalf2cn  24003  icchmeo  24010  evth  24028  evth2  24029  pcoass  24093  cnmpt1ip  24316  dvcnvlem  25045  plycn  25327  psercn2  25487  atansopn  25987  efrlim  26024  ipasslem7  29099  occllem  29566  hmopidmchi  30414  cvxpconn  33104  cvmlift2lem2  33166  cvmlift2lem3  33167  cvmliftphtlem  33179  sinccvglem  33530  knoppcnlem10  34609  broucube  35738  areacirclem2  35793  fprodcnlem  43030
  Copyright terms: Public domain W3C validator