| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmpt12f | Structured version Visualization version GIF version | ||
| Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnmptid.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| cnmpt11.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) |
| cnmpt1t.b | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐿)) |
| cnmpt12f.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐾 ×t 𝐿) Cn 𝑀)) |
| Ref | Expression |
|---|---|
| cnmpt12f | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝐽 Cn 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7390 | . . 3 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
| 2 | 1 | mpteq2i 5203 | . 2 ⊢ (𝑥 ∈ 𝑋 ↦ (𝐴𝐹𝐵)) = (𝑥 ∈ 𝑋 ↦ (𝐹‘〈𝐴, 𝐵〉)) |
| 3 | cnmptid.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 4 | cnmpt11.a | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) | |
| 5 | cnmpt1t.b | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐿)) | |
| 6 | 3, 4, 5 | cnmpt1t 23552 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) ∈ (𝐽 Cn (𝐾 ×t 𝐿))) |
| 7 | cnmpt12f.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((𝐾 ×t 𝐿) Cn 𝑀)) | |
| 8 | 3, 6, 7 | cnmpt11f 23551 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐹‘〈𝐴, 𝐵〉)) ∈ (𝐽 Cn 𝑀)) |
| 9 | 2, 8 | eqeltrid 2832 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝐽 Cn 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 〈cop 4595 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 TopOnctopon 22797 Cn ccn 23111 ×t ctx 23447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-map 8801 df-topgen 17406 df-top 22781 df-topon 22798 df-bases 22833 df-cn 23114 df-tx 23449 |
| This theorem is referenced by: cnmpt12 23554 cnmpt1plusg 23974 istgp2 23978 clsnsg 23997 tgpt0 24006 cnmpt1vsca 24081 cnmpt1ds 24731 fsumcn 24761 expcn 24763 expcnOLD 24765 divccnOLD 24766 cncfmpt2f 24808 cdivcncf 24814 iirevcn 24824 iihalf1cnOLD 24827 iihalf2cn 24829 iihalf2cnOLD 24830 icchmeo 24838 icchmeoOLD 24839 evth 24858 evth2 24859 pcoass 24924 cnmpt1ip 25147 dvcnvlem 25880 plycnOLD 26167 psercn2OLD 26333 atansopn 26842 efrlim 26879 efrlimOLD 26880 ipasslem7 30765 occllem 31232 hmopidmchi 32080 cvxpconn 35229 cvmlift2lem2 35291 cvmlift2lem3 35292 cvmliftphtlem 35304 sinccvglem 35659 broucube 37648 areacirclem2 37703 |
| Copyright terms: Public domain | W3C validator |