MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt12f Structured version   Visualization version   GIF version

Theorem cnmpt12f 23169
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
cnmpt11.a (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾))
cnmpt1t.b (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ 𝐡) ∈ (𝐽 Cn 𝐿))
cnmpt12f.f (πœ‘ β†’ 𝐹 ∈ ((𝐾 Γ—t 𝐿) Cn 𝑀))
Assertion
Ref Expression
cnmpt12f (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ (𝐴𝐹𝐡)) ∈ (𝐽 Cn 𝑀))
Distinct variable groups:   π‘₯,𝐹   πœ‘,π‘₯   π‘₯,𝐽   π‘₯,𝑀   π‘₯,𝑋   π‘₯,𝐾   π‘₯,𝐿
Allowed substitution hints:   𝐴(π‘₯)   𝐡(π‘₯)

Proof of Theorem cnmpt12f
StepHypRef Expression
1 df-ov 7411 . . 3 (𝐴𝐹𝐡) = (πΉβ€˜βŸ¨π΄, 𝐡⟩)
21mpteq2i 5253 . 2 (π‘₯ ∈ 𝑋 ↦ (𝐴𝐹𝐡)) = (π‘₯ ∈ 𝑋 ↦ (πΉβ€˜βŸ¨π΄, 𝐡⟩))
3 cnmptid.j . . 3 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
4 cnmpt11.a . . . 4 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾))
5 cnmpt1t.b . . . 4 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ 𝐡) ∈ (𝐽 Cn 𝐿))
63, 4, 5cnmpt1t 23168 . . 3 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ ⟨𝐴, 𝐡⟩) ∈ (𝐽 Cn (𝐾 Γ—t 𝐿)))
7 cnmpt12f.f . . 3 (πœ‘ β†’ 𝐹 ∈ ((𝐾 Γ—t 𝐿) Cn 𝑀))
83, 6, 7cnmpt11f 23167 . 2 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ (πΉβ€˜βŸ¨π΄, 𝐡⟩)) ∈ (𝐽 Cn 𝑀))
92, 8eqeltrid 2837 1 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ (𝐴𝐹𝐡)) ∈ (𝐽 Cn 𝑀))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2106  βŸ¨cop 4634   ↦ cmpt 5231  β€˜cfv 6543  (class class class)co 7408  TopOnctopon 22411   Cn ccn 22727   Γ—t ctx 23063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-map 8821  df-topgen 17388  df-top 22395  df-topon 22412  df-bases 22448  df-cn 22730  df-tx 23065
This theorem is referenced by:  cnmpt12  23170  cnmpt1plusg  23590  istgp2  23594  clsnsg  23613  tgpt0  23622  cnmpt1vsca  23697  cnmpt1ds  24357  fsumcn  24385  expcn  24387  divccn  24388  cncfmpt2f  24430  cdivcncf  24436  iirevcn  24445  iihalf1cn  24447  iihalf2cn  24449  icchmeo  24456  evth  24474  evth2  24475  pcoass  24539  cnmpt1ip  24763  dvcnvlem  25492  plycn  25774  psercn2  25934  atansopn  26434  efrlim  26471  ipasslem7  30084  occllem  30551  hmopidmchi  31399  cvxpconn  34228  cvmlift2lem2  34290  cvmlift2lem3  34291  cvmliftphtlem  34303  sinccvglem  34652  gg-expcn  35159  gg-iihalf2cn  35163  gg-icchmeo  35165  knoppcnlem10  35373  broucube  36517  areacirclem2  36572  fprodcnlem  44305
  Copyright terms: Public domain W3C validator