MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt12f Structured version   Visualization version   GIF version

Theorem cnmpt12f 23391
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
cnmpt11.a (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾))
cnmpt1t.b (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ 𝐡) ∈ (𝐽 Cn 𝐿))
cnmpt12f.f (πœ‘ β†’ 𝐹 ∈ ((𝐾 Γ—t 𝐿) Cn 𝑀))
Assertion
Ref Expression
cnmpt12f (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ (𝐴𝐹𝐡)) ∈ (𝐽 Cn 𝑀))
Distinct variable groups:   π‘₯,𝐹   πœ‘,π‘₯   π‘₯,𝐽   π‘₯,𝑀   π‘₯,𝑋   π‘₯,𝐾   π‘₯,𝐿
Allowed substitution hints:   𝐴(π‘₯)   𝐡(π‘₯)

Proof of Theorem cnmpt12f
StepHypRef Expression
1 df-ov 7415 . . 3 (𝐴𝐹𝐡) = (πΉβ€˜βŸ¨π΄, 𝐡⟩)
21mpteq2i 5253 . 2 (π‘₯ ∈ 𝑋 ↦ (𝐴𝐹𝐡)) = (π‘₯ ∈ 𝑋 ↦ (πΉβ€˜βŸ¨π΄, 𝐡⟩))
3 cnmptid.j . . 3 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
4 cnmpt11.a . . . 4 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾))
5 cnmpt1t.b . . . 4 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ 𝐡) ∈ (𝐽 Cn 𝐿))
63, 4, 5cnmpt1t 23390 . . 3 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ ⟨𝐴, 𝐡⟩) ∈ (𝐽 Cn (𝐾 Γ—t 𝐿)))
7 cnmpt12f.f . . 3 (πœ‘ β†’ 𝐹 ∈ ((𝐾 Γ—t 𝐿) Cn 𝑀))
83, 6, 7cnmpt11f 23389 . 2 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ (πΉβ€˜βŸ¨π΄, 𝐡⟩)) ∈ (𝐽 Cn 𝑀))
92, 8eqeltrid 2836 1 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ (𝐴𝐹𝐡)) ∈ (𝐽 Cn 𝑀))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2105  βŸ¨cop 4634   ↦ cmpt 5231  β€˜cfv 6543  (class class class)co 7412  TopOnctopon 22633   Cn ccn 22949   Γ—t ctx 23285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7978  df-2nd 7979  df-map 8825  df-topgen 17394  df-top 22617  df-topon 22634  df-bases 22670  df-cn 22952  df-tx 23287
This theorem is referenced by:  cnmpt12  23392  cnmpt1plusg  23812  istgp2  23816  clsnsg  23835  tgpt0  23844  cnmpt1vsca  23919  cnmpt1ds  24579  fsumcn  24609  expcn  24611  expcnOLD  24613  divccnOLD  24614  cncfmpt2f  24656  cdivcncf  24662  iirevcn  24672  iihalf1cnOLD  24675  iihalf2cn  24677  iihalf2cnOLD  24678  icchmeo  24686  icchmeoOLD  24687  evth  24706  evth2  24707  pcoass  24772  cnmpt1ip  24996  dvcnvlem  25729  plycnOLD  26012  psercn2  26172  atansopn  26674  efrlim  26711  ipasslem7  30357  occllem  30824  hmopidmchi  31672  cvxpconn  34532  cvmlift2lem2  34594  cvmlift2lem3  34595  cvmliftphtlem  34607  sinccvglem  34956  knoppcnlem10  35682  broucube  36826  areacirclem2  36881  fprodcnlem  44614
  Copyright terms: Public domain W3C validator