Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnmpt12f | Structured version Visualization version GIF version |
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmptid.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
cnmpt11.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) |
cnmpt1t.b | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐿)) |
cnmpt12f.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐾 ×t 𝐿) Cn 𝑀)) |
Ref | Expression |
---|---|
cnmpt12f | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝐽 Cn 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7287 | . . 3 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
2 | 1 | mpteq2i 5180 | . 2 ⊢ (𝑥 ∈ 𝑋 ↦ (𝐴𝐹𝐵)) = (𝑥 ∈ 𝑋 ↦ (𝐹‘〈𝐴, 𝐵〉)) |
3 | cnmptid.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
4 | cnmpt11.a | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) | |
5 | cnmpt1t.b | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐿)) | |
6 | 3, 4, 5 | cnmpt1t 22825 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) ∈ (𝐽 Cn (𝐾 ×t 𝐿))) |
7 | cnmpt12f.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((𝐾 ×t 𝐿) Cn 𝑀)) | |
8 | 3, 6, 7 | cnmpt11f 22824 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐹‘〈𝐴, 𝐵〉)) ∈ (𝐽 Cn 𝑀)) |
9 | 2, 8 | eqeltrid 2844 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝐽 Cn 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 〈cop 4568 ↦ cmpt 5158 ‘cfv 6437 (class class class)co 7284 TopOnctopon 22068 Cn ccn 22384 ×t ctx 22720 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-fv 6445 df-ov 7287 df-oprab 7288 df-mpo 7289 df-1st 7840 df-2nd 7841 df-map 8626 df-topgen 17163 df-top 22052 df-topon 22069 df-bases 22105 df-cn 22387 df-tx 22722 |
This theorem is referenced by: cnmpt12 22827 cnmpt1plusg 23247 istgp2 23251 clsnsg 23270 tgpt0 23279 cnmpt1vsca 23354 cnmpt1ds 24014 fsumcn 24042 expcn 24044 divccn 24045 cncfmpt2f 24087 cdivcncf 24093 iirevcn 24102 iihalf1cn 24104 iihalf2cn 24106 icchmeo 24113 evth 24131 evth2 24132 pcoass 24196 cnmpt1ip 24420 dvcnvlem 25149 plycn 25431 psercn2 25591 atansopn 26091 efrlim 26128 ipasslem7 29207 occllem 29674 hmopidmchi 30522 cvxpconn 33213 cvmlift2lem2 33275 cvmlift2lem3 33276 cvmliftphtlem 33288 sinccvglem 33639 knoppcnlem10 34691 broucube 35820 areacirclem2 35875 fprodcnlem 43147 |
Copyright terms: Public domain | W3C validator |