MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crng12d Structured version   Visualization version   GIF version

Theorem crng12d 20180
Description: Commutative/associative law that swaps the first two factors in a triple product in a commutative ring. See also mul12d 11331. (Contributed by SN, 8-Mar-2025.)
Hypotheses
Ref Expression
crng12d.b 𝐵 = (Base‘𝑅)
crng12d.t · = (.r𝑅)
crng12d.r (𝜑𝑅 ∈ CRing)
crng12d.1 (𝜑𝑋𝐵)
crng12d.2 (𝜑𝑌𝐵)
crng12d.3 (𝜑𝑍𝐵)
Assertion
Ref Expression
crng12d (𝜑 → (𝑋 · (𝑌 · 𝑍)) = (𝑌 · (𝑋 · 𝑍)))

Proof of Theorem crng12d
StepHypRef Expression
1 crng12d.b . . . 4 𝐵 = (Base‘𝑅)
2 crng12d.t . . . 4 · = (.r𝑅)
3 crng12d.r . . . 4 (𝜑𝑅 ∈ CRing)
4 crng12d.1 . . . 4 (𝜑𝑋𝐵)
5 crng12d.2 . . . 4 (𝜑𝑌𝐵)
61, 2, 3, 4, 5crngcomd 20177 . . 3 (𝜑 → (𝑋 · 𝑌) = (𝑌 · 𝑋))
76oveq1d 7369 . 2 (𝜑 → ((𝑋 · 𝑌) · 𝑍) = ((𝑌 · 𝑋) · 𝑍))
83crngringd 20168 . . 3 (𝜑𝑅 ∈ Ring)
9 crng12d.3 . . 3 (𝜑𝑍𝐵)
101, 2, 8, 4, 5, 9ringassd 20179 . 2 (𝜑 → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍)))
111, 2, 8, 5, 4, 9ringassd 20179 . 2 (𝜑 → ((𝑌 · 𝑋) · 𝑍) = (𝑌 · (𝑋 · 𝑍)))
127, 10, 113eqtr3d 2776 1 (𝜑 → (𝑋 · (𝑌 · 𝑍)) = (𝑌 · (𝑋 · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cfv 6488  (class class class)co 7354  Basecbs 17124  .rcmulr 17166  CRingccrg 20156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-plusg 17178  df-sgrp 18631  df-mnd 18647  df-cmn 19698  df-mgp 20063  df-ring 20157  df-cring 20158
This theorem is referenced by:  erler  33241  rloccring  33246  rprmasso2  33500  1arithufdlem3  33520  mhphf  42718
  Copyright terms: Public domain W3C validator