Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evlsexpval Structured version   Visualization version   GIF version

Theorem evlsexpval 42554
Description: Polynomial evaluation builder for exponentiation. (Contributed by SN, 27-Jul-2024.)
Hypotheses
Ref Expression
evlsaddval.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
evlsaddval.p 𝑃 = (𝐼 mPoly 𝑈)
evlsaddval.u 𝑈 = (𝑆s 𝑅)
evlsaddval.k 𝐾 = (Base‘𝑆)
evlsaddval.b 𝐵 = (Base‘𝑃)
evlsaddval.i (𝜑𝐼𝑍)
evlsaddval.s (𝜑𝑆 ∈ CRing)
evlsaddval.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evlsaddval.a (𝜑𝐴 ∈ (𝐾m 𝐼))
evlsaddval.m (𝜑 → (𝑀𝐵 ∧ ((𝑄𝑀)‘𝐴) = 𝑉))
evlsexpval.g = (.g‘(mulGrp‘𝑃))
evlsexpval.f = (.g‘(mulGrp‘𝑆))
evlsexpval.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
evlsexpval (𝜑 → ((𝑁 𝑀) ∈ 𝐵 ∧ ((𝑄‘(𝑁 𝑀))‘𝐴) = (𝑁 𝑉)))

Proof of Theorem evlsexpval
StepHypRef Expression
1 eqid 2735 . . . 4 (mulGrp‘𝑃) = (mulGrp‘𝑃)
2 evlsaddval.b . . . 4 𝐵 = (Base‘𝑃)
31, 2mgpbas 20158 . . 3 𝐵 = (Base‘(mulGrp‘𝑃))
4 evlsexpval.g . . 3 = (.g‘(mulGrp‘𝑃))
5 evlsaddval.i . . . . 5 (𝜑𝐼𝑍)
6 evlsaddval.s . . . . 5 (𝜑𝑆 ∈ CRing)
7 evlsaddval.r . . . . 5 (𝜑𝑅 ∈ (SubRing‘𝑆))
8 evlsaddval.q . . . . . 6 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
9 evlsaddval.p . . . . . 6 𝑃 = (𝐼 mPoly 𝑈)
10 evlsaddval.u . . . . . 6 𝑈 = (𝑆s 𝑅)
11 eqid 2735 . . . . . 6 (𝑆s (𝐾m 𝐼)) = (𝑆s (𝐾m 𝐼))
12 evlsaddval.k . . . . . 6 𝐾 = (Base‘𝑆)
138, 9, 10, 11, 12evlsrhm 22130 . . . . 5 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑃 RingHom (𝑆s (𝐾m 𝐼))))
145, 6, 7, 13syl3anc 1370 . . . 4 (𝜑𝑄 ∈ (𝑃 RingHom (𝑆s (𝐾m 𝐼))))
15 rhmrcl1 20493 . . . 4 (𝑄 ∈ (𝑃 RingHom (𝑆s (𝐾m 𝐼))) → 𝑃 ∈ Ring)
161ringmgp 20257 . . . 4 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
1714, 15, 163syl 18 . . 3 (𝜑 → (mulGrp‘𝑃) ∈ Mnd)
18 evlsexpval.n . . 3 (𝜑𝑁 ∈ ℕ0)
19 evlsaddval.m . . . 4 (𝜑 → (𝑀𝐵 ∧ ((𝑄𝑀)‘𝐴) = 𝑉))
2019simpld 494 . . 3 (𝜑𝑀𝐵)
213, 4, 17, 18, 20mulgnn0cld 19126 . 2 (𝜑 → (𝑁 𝑀) ∈ 𝐵)
22 eqid 2735 . . . . 5 (mulGrp‘(𝑆s (𝐾m 𝐼))) = (mulGrp‘(𝑆s (𝐾m 𝐼)))
238, 9, 1, 4, 10, 11, 22, 12, 2, 5, 6, 7, 18, 20evlspw 22135 . . . 4 (𝜑 → (𝑄‘(𝑁 𝑀)) = (𝑁(.g‘(mulGrp‘(𝑆s (𝐾m 𝐼))))(𝑄𝑀)))
2423fveq1d 6909 . . 3 (𝜑 → ((𝑄‘(𝑁 𝑀))‘𝐴) = ((𝑁(.g‘(mulGrp‘(𝑆s (𝐾m 𝐼))))(𝑄𝑀))‘𝐴))
25 eqid 2735 . . . 4 (Base‘(𝑆s (𝐾m 𝐼))) = (Base‘(𝑆s (𝐾m 𝐼)))
26 eqid 2735 . . . 4 (mulGrp‘𝑆) = (mulGrp‘𝑆)
27 eqid 2735 . . . 4 (.g‘(mulGrp‘(𝑆s (𝐾m 𝐼)))) = (.g‘(mulGrp‘(𝑆s (𝐾m 𝐼))))
28 evlsexpval.f . . . 4 = (.g‘(mulGrp‘𝑆))
296crngringd 20264 . . . 4 (𝜑𝑆 ∈ Ring)
30 ovexd 7466 . . . 4 (𝜑 → (𝐾m 𝐼) ∈ V)
312, 25rhmf 20502 . . . . . 6 (𝑄 ∈ (𝑃 RingHom (𝑆s (𝐾m 𝐼))) → 𝑄:𝐵⟶(Base‘(𝑆s (𝐾m 𝐼))))
3214, 31syl 17 . . . . 5 (𝜑𝑄:𝐵⟶(Base‘(𝑆s (𝐾m 𝐼))))
3332, 20ffvelcdmd 7105 . . . 4 (𝜑 → (𝑄𝑀) ∈ (Base‘(𝑆s (𝐾m 𝐼))))
34 evlsaddval.a . . . 4 (𝜑𝐴 ∈ (𝐾m 𝐼))
3511, 25, 22, 26, 27, 28, 29, 30, 18, 33, 34pwsexpg 20343 . . 3 (𝜑 → ((𝑁(.g‘(mulGrp‘(𝑆s (𝐾m 𝐼))))(𝑄𝑀))‘𝐴) = (𝑁 ((𝑄𝑀)‘𝐴)))
3619simprd 495 . . . 4 (𝜑 → ((𝑄𝑀)‘𝐴) = 𝑉)
3736oveq2d 7447 . . 3 (𝜑 → (𝑁 ((𝑄𝑀)‘𝐴)) = (𝑁 𝑉))
3824, 35, 373eqtrd 2779 . 2 (𝜑 → ((𝑄‘(𝑁 𝑀))‘𝐴) = (𝑁 𝑉))
3921, 38jca 511 1 (𝜑 → ((𝑁 𝑀) ∈ 𝐵 ∧ ((𝑄‘(𝑁 𝑀))‘𝐴) = (𝑁 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  wf 6559  cfv 6563  (class class class)co 7431  m cmap 8865  0cn0 12524  Basecbs 17245  s cress 17274  s cpws 17493  Mndcmnd 18760  .gcmg 19098  mulGrpcmgp 20152  Ringcrg 20251  CRingccrg 20252   RingHom crh 20486  SubRingcsubrg 20586   mPoly cmpl 21944   evalSub ces 22114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-srg 20205  df-ring 20253  df-cring 20254  df-rhm 20489  df-subrng 20563  df-subrg 20587  df-lmod 20877  df-lss 20948  df-lsp 20988  df-assa 21891  df-asp 21892  df-ascl 21893  df-psr 21947  df-mvr 21948  df-mpl 21949  df-evls 22116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator