Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evlsexpval Structured version   Visualization version   GIF version

Theorem evlsexpval 40299
Description: Polynomial evaluation builder for exponentiation. (Contributed by SN, 27-Jul-2024.)
Hypotheses
Ref Expression
evlsaddval.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
evlsaddval.p 𝑃 = (𝐼 mPoly 𝑈)
evlsaddval.u 𝑈 = (𝑆s 𝑅)
evlsaddval.k 𝐾 = (Base‘𝑆)
evlsaddval.b 𝐵 = (Base‘𝑃)
evlsaddval.i (𝜑𝐼𝑍)
evlsaddval.s (𝜑𝑆 ∈ CRing)
evlsaddval.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evlsaddval.a (𝜑𝐴 ∈ (𝐾m 𝐼))
evlsaddval.m (𝜑 → (𝑀𝐵 ∧ ((𝑄𝑀)‘𝐴) = 𝑉))
evlsexpval.g = (.g‘(mulGrp‘𝑃))
evlsexpval.f = (.g‘(mulGrp‘𝑆))
evlsexpval.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
evlsexpval (𝜑 → ((𝑁 𝑀) ∈ 𝐵 ∧ ((𝑄‘(𝑁 𝑀))‘𝐴) = (𝑁 𝑉)))

Proof of Theorem evlsexpval
StepHypRef Expression
1 evlsaddval.i . . . . 5 (𝜑𝐼𝑍)
2 evlsaddval.s . . . . 5 (𝜑𝑆 ∈ CRing)
3 evlsaddval.r . . . . 5 (𝜑𝑅 ∈ (SubRing‘𝑆))
4 evlsaddval.q . . . . . 6 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
5 evlsaddval.p . . . . . 6 𝑃 = (𝐼 mPoly 𝑈)
6 evlsaddval.u . . . . . 6 𝑈 = (𝑆s 𝑅)
7 eqid 2733 . . . . . 6 (𝑆s (𝐾m 𝐼)) = (𝑆s (𝐾m 𝐼))
8 evlsaddval.k . . . . . 6 𝐾 = (Base‘𝑆)
94, 5, 6, 7, 8evlsrhm 21326 . . . . 5 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑃 RingHom (𝑆s (𝐾m 𝐼))))
101, 2, 3, 9syl3anc 1369 . . . 4 (𝜑𝑄 ∈ (𝑃 RingHom (𝑆s (𝐾m 𝐼))))
11 rhmrcl1 19991 . . . 4 (𝑄 ∈ (𝑃 RingHom (𝑆s (𝐾m 𝐼))) → 𝑃 ∈ Ring)
12 eqid 2733 . . . . 5 (mulGrp‘𝑃) = (mulGrp‘𝑃)
1312ringmgp 19817 . . . 4 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
1410, 11, 133syl 18 . . 3 (𝜑 → (mulGrp‘𝑃) ∈ Mnd)
15 evlsexpval.n . . 3 (𝜑𝑁 ∈ ℕ0)
16 evlsaddval.m . . . 4 (𝜑 → (𝑀𝐵 ∧ ((𝑄𝑀)‘𝐴) = 𝑉))
1716simpld 494 . . 3 (𝜑𝑀𝐵)
18 evlsaddval.b . . . . 5 𝐵 = (Base‘𝑃)
1912, 18mgpbas 19754 . . . 4 𝐵 = (Base‘(mulGrp‘𝑃))
20 evlsexpval.g . . . 4 = (.g‘(mulGrp‘𝑃))
2119, 20mulgnn0cl 18748 . . 3 (((mulGrp‘𝑃) ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑀𝐵) → (𝑁 𝑀) ∈ 𝐵)
2214, 15, 17, 21syl3anc 1369 . 2 (𝜑 → (𝑁 𝑀) ∈ 𝐵)
23 eqid 2733 . . . . 5 (mulGrp‘(𝑆s (𝐾m 𝐼))) = (mulGrp‘(𝑆s (𝐾m 𝐼)))
244, 5, 12, 20, 6, 7, 23, 8, 18, 1, 2, 3, 15, 17evlspw 21331 . . . 4 (𝜑 → (𝑄‘(𝑁 𝑀)) = (𝑁(.g‘(mulGrp‘(𝑆s (𝐾m 𝐼))))(𝑄𝑀)))
2524fveq1d 6794 . . 3 (𝜑 → ((𝑄‘(𝑁 𝑀))‘𝐴) = ((𝑁(.g‘(mulGrp‘(𝑆s (𝐾m 𝐼))))(𝑄𝑀))‘𝐴))
26 eqid 2733 . . . 4 (Base‘(𝑆s (𝐾m 𝐼))) = (Base‘(𝑆s (𝐾m 𝐼)))
27 eqid 2733 . . . 4 (mulGrp‘𝑆) = (mulGrp‘𝑆)
28 eqid 2733 . . . 4 (.g‘(mulGrp‘(𝑆s (𝐾m 𝐼)))) = (.g‘(mulGrp‘(𝑆s (𝐾m 𝐼))))
29 evlsexpval.f . . . 4 = (.g‘(mulGrp‘𝑆))
302crngringd 19824 . . . 4 (𝜑𝑆 ∈ Ring)
31 ovexd 7330 . . . 4 (𝜑 → (𝐾m 𝐼) ∈ V)
3218, 26rhmf 19998 . . . . . 6 (𝑄 ∈ (𝑃 RingHom (𝑆s (𝐾m 𝐼))) → 𝑄:𝐵⟶(Base‘(𝑆s (𝐾m 𝐼))))
3310, 32syl 17 . . . . 5 (𝜑𝑄:𝐵⟶(Base‘(𝑆s (𝐾m 𝐼))))
3433, 17ffvelcdmd 6982 . . . 4 (𝜑 → (𝑄𝑀) ∈ (Base‘(𝑆s (𝐾m 𝐼))))
35 evlsaddval.a . . . 4 (𝜑𝐴 ∈ (𝐾m 𝐼))
367, 26, 23, 27, 28, 29, 30, 31, 15, 34, 35pwsexpg 40291 . . 3 (𝜑 → ((𝑁(.g‘(mulGrp‘(𝑆s (𝐾m 𝐼))))(𝑄𝑀))‘𝐴) = (𝑁 ((𝑄𝑀)‘𝐴)))
3716simprd 495 . . . 4 (𝜑 → ((𝑄𝑀)‘𝐴) = 𝑉)
3837oveq2d 7311 . . 3 (𝜑 → (𝑁 ((𝑄𝑀)‘𝐴)) = (𝑁 𝑉))
3925, 36, 383eqtrd 2777 . 2 (𝜑 → ((𝑄‘(𝑁 𝑀))‘𝐴) = (𝑁 𝑉))
4022, 39jca 511 1 (𝜑 → ((𝑁 𝑀) ∈ 𝐵 ∧ ((𝑄‘(𝑁 𝑀))‘𝐴) = (𝑁 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2101  Vcvv 3434  wf 6443  cfv 6447  (class class class)co 7295  m cmap 8635  0cn0 12261  Basecbs 16940  s cress 16969  s cpws 17185  Mndcmnd 18413  .gcmg 18728  mulGrpcmgp 19748  Ringcrg 19811  CRingccrg 19812   RingHom crh 19984  SubRingcsubrg 20048   mPoly cmpl 21137   evalSub ces 21308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-rep 5212  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608  ax-cnex 10955  ax-resscn 10956  ax-1cn 10957  ax-icn 10958  ax-addcl 10959  ax-addrcl 10960  ax-mulcl 10961  ax-mulrcl 10962  ax-mulcom 10963  ax-addass 10964  ax-mulass 10965  ax-distr 10966  ax-i2m1 10967  ax-1ne0 10968  ax-1rid 10969  ax-rnegex 10970  ax-rrecex 10971  ax-cnre 10972  ax-pre-lttri 10973  ax-pre-lttrn 10974  ax-pre-ltadd 10975  ax-pre-mulgt0 10976
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3222  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4842  df-int 4883  df-iun 4929  df-iin 4930  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-se 5547  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-isom 6456  df-riota 7252  df-ov 7298  df-oprab 7299  df-mpo 7300  df-of 7553  df-ofr 7554  df-om 7733  df-1st 7851  df-2nd 7852  df-supp 7998  df-frecs 8117  df-wrecs 8148  df-recs 8222  df-rdg 8261  df-1o 8317  df-er 8518  df-map 8637  df-pm 8638  df-ixp 8706  df-en 8754  df-dom 8755  df-sdom 8756  df-fin 8757  df-fsupp 9157  df-sup 9229  df-oi 9297  df-card 9725  df-pnf 11039  df-mnf 11040  df-xr 11041  df-ltxr 11042  df-le 11043  df-sub 11235  df-neg 11236  df-nn 12002  df-2 12064  df-3 12065  df-4 12066  df-5 12067  df-6 12068  df-7 12069  df-8 12070  df-9 12071  df-n0 12262  df-z 12348  df-dec 12466  df-uz 12611  df-fz 13268  df-fzo 13411  df-seq 13750  df-hash 14073  df-struct 16876  df-sets 16893  df-slot 16911  df-ndx 16923  df-base 16941  df-ress 16970  df-plusg 17003  df-mulr 17004  df-sca 17006  df-vsca 17007  df-ip 17008  df-tset 17009  df-ple 17010  df-ds 17012  df-hom 17014  df-cco 17015  df-0g 17180  df-gsum 17181  df-prds 17186  df-pws 17188  df-mre 17323  df-mrc 17324  df-acs 17326  df-mgm 18354  df-sgrp 18403  df-mnd 18414  df-mhm 18458  df-submnd 18459  df-grp 18608  df-minusg 18609  df-sbg 18610  df-mulg 18729  df-subg 18780  df-ghm 18860  df-cntz 18951  df-cmn 19416  df-abl 19417  df-mgp 19749  df-ur 19766  df-srg 19770  df-ring 19813  df-cring 19814  df-rnghom 19987  df-subrg 20050  df-lmod 20153  df-lss 20222  df-lsp 20262  df-assa 21088  df-asp 21089  df-ascl 21090  df-psr 21140  df-mvr 21141  df-mpl 21142  df-evls 21310
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator