Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > evlsexpval | Structured version Visualization version GIF version |
Description: Polynomial evaluation builder for exponentiation. (Contributed by SN, 27-Jul-2024.) |
Ref | Expression |
---|---|
evlsaddval.q | ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) |
evlsaddval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑈) |
evlsaddval.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
evlsaddval.k | ⊢ 𝐾 = (Base‘𝑆) |
evlsaddval.b | ⊢ 𝐵 = (Base‘𝑃) |
evlsaddval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑍) |
evlsaddval.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
evlsaddval.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
evlsaddval.a | ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
evlsaddval.m | ⊢ (𝜑 → (𝑀 ∈ 𝐵 ∧ ((𝑄‘𝑀)‘𝐴) = 𝑉)) |
evlsexpval.g | ⊢ ∙ = (.g‘(mulGrp‘𝑃)) |
evlsexpval.f | ⊢ ↑ = (.g‘(mulGrp‘𝑆)) |
evlsexpval.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
evlsexpval | ⊢ (𝜑 → ((𝑁 ∙ 𝑀) ∈ 𝐵 ∧ ((𝑄‘(𝑁 ∙ 𝑀))‘𝐴) = (𝑁 ↑ 𝑉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evlsaddval.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝑍) | |
2 | evlsaddval.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
3 | evlsaddval.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
4 | evlsaddval.q | . . . . . 6 ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) | |
5 | evlsaddval.p | . . . . . 6 ⊢ 𝑃 = (𝐼 mPoly 𝑈) | |
6 | evlsaddval.u | . . . . . 6 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
7 | eqid 2738 | . . . . . 6 ⊢ (𝑆 ↑s (𝐾 ↑m 𝐼)) = (𝑆 ↑s (𝐾 ↑m 𝐼)) | |
8 | evlsaddval.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝑆) | |
9 | 4, 5, 6, 7, 8 | evlsrhm 21208 | . . . . 5 ⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼)))) |
10 | 1, 2, 3, 9 | syl3anc 1369 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼)))) |
11 | rhmrcl1 19878 | . . . 4 ⊢ (𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼))) → 𝑃 ∈ Ring) | |
12 | eqid 2738 | . . . . 5 ⊢ (mulGrp‘𝑃) = (mulGrp‘𝑃) | |
13 | 12 | ringmgp 19704 | . . . 4 ⊢ (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd) |
14 | 10, 11, 13 | 3syl 18 | . . 3 ⊢ (𝜑 → (mulGrp‘𝑃) ∈ Mnd) |
15 | evlsexpval.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
16 | evlsaddval.m | . . . 4 ⊢ (𝜑 → (𝑀 ∈ 𝐵 ∧ ((𝑄‘𝑀)‘𝐴) = 𝑉)) | |
17 | 16 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝐵) |
18 | evlsaddval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑃) | |
19 | 12, 18 | mgpbas 19641 | . . . 4 ⊢ 𝐵 = (Base‘(mulGrp‘𝑃)) |
20 | evlsexpval.g | . . . 4 ⊢ ∙ = (.g‘(mulGrp‘𝑃)) | |
21 | 19, 20 | mulgnn0cl 18635 | . . 3 ⊢ (((mulGrp‘𝑃) ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ 𝐵) → (𝑁 ∙ 𝑀) ∈ 𝐵) |
22 | 14, 15, 17, 21 | syl3anc 1369 | . 2 ⊢ (𝜑 → (𝑁 ∙ 𝑀) ∈ 𝐵) |
23 | eqid 2738 | . . . . 5 ⊢ (mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))) = (mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))) | |
24 | 4, 5, 12, 20, 6, 7, 23, 8, 18, 1, 2, 3, 15, 17 | evlspw 21213 | . . . 4 ⊢ (𝜑 → (𝑄‘(𝑁 ∙ 𝑀)) = (𝑁(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑄‘𝑀))) |
25 | 24 | fveq1d 6758 | . . 3 ⊢ (𝜑 → ((𝑄‘(𝑁 ∙ 𝑀))‘𝐴) = ((𝑁(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑄‘𝑀))‘𝐴)) |
26 | eqid 2738 | . . . 4 ⊢ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼))) = (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼))) | |
27 | eqid 2738 | . . . 4 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
28 | eqid 2738 | . . . 4 ⊢ (.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) = (.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) | |
29 | evlsexpval.f | . . . 4 ⊢ ↑ = (.g‘(mulGrp‘𝑆)) | |
30 | 2 | crngringd 19711 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ Ring) |
31 | ovexd 7290 | . . . 4 ⊢ (𝜑 → (𝐾 ↑m 𝐼) ∈ V) | |
32 | 18, 26 | rhmf 19885 | . . . . . 6 ⊢ (𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼))) → 𝑄:𝐵⟶(Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
33 | 10, 32 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑄:𝐵⟶(Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
34 | 33, 17 | ffvelrnd 6944 | . . . 4 ⊢ (𝜑 → (𝑄‘𝑀) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
35 | evlsaddval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) | |
36 | 7, 26, 23, 27, 28, 29, 30, 31, 15, 34, 35 | pwsexpg 40193 | . . 3 ⊢ (𝜑 → ((𝑁(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑄‘𝑀))‘𝐴) = (𝑁 ↑ ((𝑄‘𝑀)‘𝐴))) |
37 | 16 | simprd 495 | . . . 4 ⊢ (𝜑 → ((𝑄‘𝑀)‘𝐴) = 𝑉) |
38 | 37 | oveq2d 7271 | . . 3 ⊢ (𝜑 → (𝑁 ↑ ((𝑄‘𝑀)‘𝐴)) = (𝑁 ↑ 𝑉)) |
39 | 25, 36, 38 | 3eqtrd 2782 | . 2 ⊢ (𝜑 → ((𝑄‘(𝑁 ∙ 𝑀))‘𝐴) = (𝑁 ↑ 𝑉)) |
40 | 22, 39 | jca 511 | 1 ⊢ (𝜑 → ((𝑁 ∙ 𝑀) ∈ 𝐵 ∧ ((𝑄‘(𝑁 ∙ 𝑀))‘𝐴) = (𝑁 ↑ 𝑉))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 ℕ0cn0 12163 Basecbs 16840 ↾s cress 16867 ↑s cpws 17074 Mndcmnd 18300 .gcmg 18615 mulGrpcmgp 19635 Ringcrg 19698 CRingccrg 19699 RingHom crh 19871 SubRingcsubrg 19935 mPoly cmpl 21019 evalSub ces 21190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-ofr 7512 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-hom 16912 df-cco 16913 df-0g 17069 df-gsum 17070 df-prds 17075 df-pws 17077 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-ghm 18747 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-srg 19657 df-ring 19700 df-cring 19701 df-rnghom 19874 df-subrg 19937 df-lmod 20040 df-lss 20109 df-lsp 20149 df-assa 20970 df-asp 20971 df-ascl 20972 df-psr 21022 df-mvr 21023 df-mpl 21024 df-evls 21192 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |