Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evlsexpval Structured version   Visualization version   GIF version

Theorem evlsexpval 40999
Description: Polynomial evaluation builder for exponentiation. (Contributed by SN, 27-Jul-2024.)
Hypotheses
Ref Expression
evlsaddval.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
evlsaddval.p 𝑃 = (𝐼 mPoly 𝑈)
evlsaddval.u 𝑈 = (𝑆s 𝑅)
evlsaddval.k 𝐾 = (Base‘𝑆)
evlsaddval.b 𝐵 = (Base‘𝑃)
evlsaddval.i (𝜑𝐼𝑍)
evlsaddval.s (𝜑𝑆 ∈ CRing)
evlsaddval.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evlsaddval.a (𝜑𝐴 ∈ (𝐾m 𝐼))
evlsaddval.m (𝜑 → (𝑀𝐵 ∧ ((𝑄𝑀)‘𝐴) = 𝑉))
evlsexpval.g = (.g‘(mulGrp‘𝑃))
evlsexpval.f = (.g‘(mulGrp‘𝑆))
evlsexpval.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
evlsexpval (𝜑 → ((𝑁 𝑀) ∈ 𝐵 ∧ ((𝑄‘(𝑁 𝑀))‘𝐴) = (𝑁 𝑉)))

Proof of Theorem evlsexpval
StepHypRef Expression
1 eqid 2732 . . . 4 (mulGrp‘𝑃) = (mulGrp‘𝑃)
2 evlsaddval.b . . . 4 𝐵 = (Base‘𝑃)
31, 2mgpbas 19954 . . 3 𝐵 = (Base‘(mulGrp‘𝑃))
4 evlsexpval.g . . 3 = (.g‘(mulGrp‘𝑃))
5 evlsaddval.i . . . . 5 (𝜑𝐼𝑍)
6 evlsaddval.s . . . . 5 (𝜑𝑆 ∈ CRing)
7 evlsaddval.r . . . . 5 (𝜑𝑅 ∈ (SubRing‘𝑆))
8 evlsaddval.q . . . . . 6 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
9 evlsaddval.p . . . . . 6 𝑃 = (𝐼 mPoly 𝑈)
10 evlsaddval.u . . . . . 6 𝑈 = (𝑆s 𝑅)
11 eqid 2732 . . . . . 6 (𝑆s (𝐾m 𝐼)) = (𝑆s (𝐾m 𝐼))
12 evlsaddval.k . . . . . 6 𝐾 = (Base‘𝑆)
138, 9, 10, 11, 12evlsrhm 21582 . . . . 5 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑃 RingHom (𝑆s (𝐾m 𝐼))))
145, 6, 7, 13syl3anc 1371 . . . 4 (𝜑𝑄 ∈ (𝑃 RingHom (𝑆s (𝐾m 𝐼))))
15 rhmrcl1 20207 . . . 4 (𝑄 ∈ (𝑃 RingHom (𝑆s (𝐾m 𝐼))) → 𝑃 ∈ Ring)
161ringmgp 20022 . . . 4 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
1714, 15, 163syl 18 . . 3 (𝜑 → (mulGrp‘𝑃) ∈ Mnd)
18 evlsexpval.n . . 3 (𝜑𝑁 ∈ ℕ0)
19 evlsaddval.m . . . 4 (𝜑 → (𝑀𝐵 ∧ ((𝑄𝑀)‘𝐴) = 𝑉))
2019simpld 495 . . 3 (𝜑𝑀𝐵)
213, 4, 17, 18, 20mulgnn0cld 18949 . 2 (𝜑 → (𝑁 𝑀) ∈ 𝐵)
22 eqid 2732 . . . . 5 (mulGrp‘(𝑆s (𝐾m 𝐼))) = (mulGrp‘(𝑆s (𝐾m 𝐼)))
238, 9, 1, 4, 10, 11, 22, 12, 2, 5, 6, 7, 18, 20evlspw 21587 . . . 4 (𝜑 → (𝑄‘(𝑁 𝑀)) = (𝑁(.g‘(mulGrp‘(𝑆s (𝐾m 𝐼))))(𝑄𝑀)))
2423fveq1d 6881 . . 3 (𝜑 → ((𝑄‘(𝑁 𝑀))‘𝐴) = ((𝑁(.g‘(mulGrp‘(𝑆s (𝐾m 𝐼))))(𝑄𝑀))‘𝐴))
25 eqid 2732 . . . 4 (Base‘(𝑆s (𝐾m 𝐼))) = (Base‘(𝑆s (𝐾m 𝐼)))
26 eqid 2732 . . . 4 (mulGrp‘𝑆) = (mulGrp‘𝑆)
27 eqid 2732 . . . 4 (.g‘(mulGrp‘(𝑆s (𝐾m 𝐼)))) = (.g‘(mulGrp‘(𝑆s (𝐾m 𝐼))))
28 evlsexpval.f . . . 4 = (.g‘(mulGrp‘𝑆))
296crngringd 20029 . . . 4 (𝜑𝑆 ∈ Ring)
30 ovexd 7429 . . . 4 (𝜑 → (𝐾m 𝐼) ∈ V)
312, 25rhmf 20215 . . . . . 6 (𝑄 ∈ (𝑃 RingHom (𝑆s (𝐾m 𝐼))) → 𝑄:𝐵⟶(Base‘(𝑆s (𝐾m 𝐼))))
3214, 31syl 17 . . . . 5 (𝜑𝑄:𝐵⟶(Base‘(𝑆s (𝐾m 𝐼))))
3332, 20ffvelcdmd 7073 . . . 4 (𝜑 → (𝑄𝑀) ∈ (Base‘(𝑆s (𝐾m 𝐼))))
34 evlsaddval.a . . . 4 (𝜑𝐴 ∈ (𝐾m 𝐼))
3511, 25, 22, 26, 27, 28, 29, 30, 18, 33, 34pwsexpg 20099 . . 3 (𝜑 → ((𝑁(.g‘(mulGrp‘(𝑆s (𝐾m 𝐼))))(𝑄𝑀))‘𝐴) = (𝑁 ((𝑄𝑀)‘𝐴)))
3619simprd 496 . . . 4 (𝜑 → ((𝑄𝑀)‘𝐴) = 𝑉)
3736oveq2d 7410 . . 3 (𝜑 → (𝑁 ((𝑄𝑀)‘𝐴)) = (𝑁 𝑉))
3824, 35, 373eqtrd 2776 . 2 (𝜑 → ((𝑄‘(𝑁 𝑀))‘𝐴) = (𝑁 𝑉))
3921, 38jca 512 1 (𝜑 → ((𝑁 𝑀) ∈ 𝐵 ∧ ((𝑄‘(𝑁 𝑀))‘𝐴) = (𝑁 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  wf 6529  cfv 6533  (class class class)co 7394  m cmap 8805  0cn0 12456  Basecbs 17128  s cress 17157  s cpws 17376  Mndcmnd 18604  .gcmg 18924  mulGrpcmgp 19948  Ringcrg 20016  CRingccrg 20017   RingHom crh 20200  SubRingcsubrg 20310   mPoly cmpl 21392   evalSub ces 21564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709  ax-cnex 11150  ax-resscn 11151  ax-1cn 11152  ax-icn 11153  ax-addcl 11154  ax-addrcl 11155  ax-mulcl 11156  ax-mulrcl 11157  ax-mulcom 11158  ax-addass 11159  ax-mulass 11160  ax-distr 11161  ax-i2m1 11162  ax-1ne0 11163  ax-1rid 11164  ax-rnegex 11165  ax-rrecex 11166  ax-cnre 11167  ax-pre-lttri 11168  ax-pre-lttrn 11169  ax-pre-ltadd 11170  ax-pre-mulgt0 11171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-se 5626  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7350  df-ov 7397  df-oprab 7398  df-mpo 7399  df-of 7654  df-ofr 7655  df-om 7840  df-1st 7959  df-2nd 7960  df-supp 8131  df-frecs 8250  df-wrecs 8281  df-recs 8355  df-rdg 8394  df-1o 8450  df-er 8688  df-map 8807  df-pm 8808  df-ixp 8877  df-en 8925  df-dom 8926  df-sdom 8927  df-fin 8928  df-fsupp 9347  df-sup 9421  df-oi 9489  df-card 9918  df-pnf 11234  df-mnf 11235  df-xr 11236  df-ltxr 11237  df-le 11238  df-sub 11430  df-neg 11431  df-nn 12197  df-2 12259  df-3 12260  df-4 12261  df-5 12262  df-6 12263  df-7 12264  df-8 12265  df-9 12266  df-n0 12457  df-z 12543  df-dec 12662  df-uz 12807  df-fz 13469  df-fzo 13612  df-seq 13951  df-hash 14275  df-struct 17064  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17129  df-ress 17158  df-plusg 17194  df-mulr 17195  df-sca 17197  df-vsca 17198  df-ip 17199  df-tset 17200  df-ple 17201  df-ds 17203  df-hom 17205  df-cco 17206  df-0g 17371  df-gsum 17372  df-prds 17377  df-pws 17379  df-mre 17514  df-mrc 17515  df-acs 17517  df-mgm 18545  df-sgrp 18594  df-mnd 18605  df-mhm 18649  df-submnd 18650  df-grp 18799  df-minusg 18800  df-sbg 18801  df-mulg 18925  df-subg 18977  df-ghm 19058  df-cntz 19149  df-cmn 19616  df-abl 19617  df-mgp 19949  df-ur 19966  df-srg 19970  df-ring 20018  df-cring 20019  df-rnghom 20203  df-subrg 20312  df-lmod 20424  df-lss 20494  df-lsp 20534  df-assa 21343  df-asp 21344  df-ascl 21345  df-psr 21395  df-mvr 21396  df-mpl 21397  df-evls 21566
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator