| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > evlsexpval | Structured version Visualization version GIF version | ||
| Description: Polynomial evaluation builder for exponentiation. (Contributed by SN, 27-Jul-2024.) |
| Ref | Expression |
|---|---|
| evlsaddval.q | ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) |
| evlsaddval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑈) |
| evlsaddval.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| evlsaddval.k | ⊢ 𝐾 = (Base‘𝑆) |
| evlsaddval.b | ⊢ 𝐵 = (Base‘𝑃) |
| evlsaddval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑍) |
| evlsaddval.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| evlsaddval.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| evlsaddval.a | ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
| evlsaddval.m | ⊢ (𝜑 → (𝑀 ∈ 𝐵 ∧ ((𝑄‘𝑀)‘𝐴) = 𝑉)) |
| evlsexpval.g | ⊢ ∙ = (.g‘(mulGrp‘𝑃)) |
| evlsexpval.f | ⊢ ↑ = (.g‘(mulGrp‘𝑆)) |
| evlsexpval.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| evlsexpval | ⊢ (𝜑 → ((𝑁 ∙ 𝑀) ∈ 𝐵 ∧ ((𝑄‘(𝑁 ∙ 𝑀))‘𝐴) = (𝑁 ↑ 𝑉))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . 4 ⊢ (mulGrp‘𝑃) = (mulGrp‘𝑃) | |
| 2 | evlsaddval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 3 | 1, 2 | mgpbas 20110 | . . 3 ⊢ 𝐵 = (Base‘(mulGrp‘𝑃)) |
| 4 | evlsexpval.g | . . 3 ⊢ ∙ = (.g‘(mulGrp‘𝑃)) | |
| 5 | evlsaddval.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝑍) | |
| 6 | evlsaddval.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 7 | evlsaddval.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
| 8 | evlsaddval.q | . . . . . 6 ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) | |
| 9 | evlsaddval.p | . . . . . 6 ⊢ 𝑃 = (𝐼 mPoly 𝑈) | |
| 10 | evlsaddval.u | . . . . . 6 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 11 | eqid 2736 | . . . . . 6 ⊢ (𝑆 ↑s (𝐾 ↑m 𝐼)) = (𝑆 ↑s (𝐾 ↑m 𝐼)) | |
| 12 | evlsaddval.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝑆) | |
| 13 | 8, 9, 10, 11, 12 | evlsrhm 22051 | . . . . 5 ⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 14 | 5, 6, 7, 13 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 15 | rhmrcl1 20441 | . . . 4 ⊢ (𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼))) → 𝑃 ∈ Ring) | |
| 16 | 1 | ringmgp 20204 | . . . 4 ⊢ (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd) |
| 17 | 14, 15, 16 | 3syl 18 | . . 3 ⊢ (𝜑 → (mulGrp‘𝑃) ∈ Mnd) |
| 18 | evlsexpval.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 19 | evlsaddval.m | . . . 4 ⊢ (𝜑 → (𝑀 ∈ 𝐵 ∧ ((𝑄‘𝑀)‘𝐴) = 𝑉)) | |
| 20 | 19 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝐵) |
| 21 | 3, 4, 17, 18, 20 | mulgnn0cld 19083 | . 2 ⊢ (𝜑 → (𝑁 ∙ 𝑀) ∈ 𝐵) |
| 22 | eqid 2736 | . . . . 5 ⊢ (mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))) = (mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))) | |
| 23 | 8, 9, 1, 4, 10, 11, 22, 12, 2, 5, 6, 7, 18, 20 | evlspw 22056 | . . . 4 ⊢ (𝜑 → (𝑄‘(𝑁 ∙ 𝑀)) = (𝑁(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑄‘𝑀))) |
| 24 | 23 | fveq1d 6883 | . . 3 ⊢ (𝜑 → ((𝑄‘(𝑁 ∙ 𝑀))‘𝐴) = ((𝑁(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑄‘𝑀))‘𝐴)) |
| 25 | eqid 2736 | . . . 4 ⊢ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼))) = (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼))) | |
| 26 | eqid 2736 | . . . 4 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
| 27 | eqid 2736 | . . . 4 ⊢ (.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) = (.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) | |
| 28 | evlsexpval.f | . . . 4 ⊢ ↑ = (.g‘(mulGrp‘𝑆)) | |
| 29 | 6 | crngringd 20211 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ Ring) |
| 30 | ovexd 7445 | . . . 4 ⊢ (𝜑 → (𝐾 ↑m 𝐼) ∈ V) | |
| 31 | 2, 25 | rhmf 20450 | . . . . . 6 ⊢ (𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼))) → 𝑄:𝐵⟶(Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 32 | 14, 31 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑄:𝐵⟶(Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 33 | 32, 20 | ffvelcdmd 7080 | . . . 4 ⊢ (𝜑 → (𝑄‘𝑀) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 34 | evlsaddval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) | |
| 35 | 11, 25, 22, 26, 27, 28, 29, 30, 18, 33, 34 | pwsexpg 20294 | . . 3 ⊢ (𝜑 → ((𝑁(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑄‘𝑀))‘𝐴) = (𝑁 ↑ ((𝑄‘𝑀)‘𝐴))) |
| 36 | 19 | simprd 495 | . . . 4 ⊢ (𝜑 → ((𝑄‘𝑀)‘𝐴) = 𝑉) |
| 37 | 36 | oveq2d 7426 | . . 3 ⊢ (𝜑 → (𝑁 ↑ ((𝑄‘𝑀)‘𝐴)) = (𝑁 ↑ 𝑉)) |
| 38 | 24, 35, 37 | 3eqtrd 2775 | . 2 ⊢ (𝜑 → ((𝑄‘(𝑁 ∙ 𝑀))‘𝐴) = (𝑁 ↑ 𝑉)) |
| 39 | 21, 38 | jca 511 | 1 ⊢ (𝜑 → ((𝑁 ∙ 𝑀) ∈ 𝐵 ∧ ((𝑄‘(𝑁 ∙ 𝑀))‘𝐴) = (𝑁 ↑ 𝑉))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ↑m cmap 8845 ℕ0cn0 12506 Basecbs 17233 ↾s cress 17256 ↑s cpws 17465 Mndcmnd 18717 .gcmg 19055 mulGrpcmgp 20105 Ringcrg 20198 CRingccrg 20199 RingHom crh 20434 SubRingcsubrg 20534 mPoly cmpl 21871 evalSub ces 22035 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-ofr 7677 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-sup 9459 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-fzo 13677 df-seq 14025 df-hash 14354 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-hom 17300 df-cco 17301 df-0g 17460 df-gsum 17461 df-prds 17466 df-pws 17468 df-mre 17603 df-mrc 17604 df-acs 17606 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-mulg 19056 df-subg 19111 df-ghm 19201 df-cntz 19305 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-srg 20152 df-ring 20200 df-cring 20201 df-rhm 20437 df-subrng 20511 df-subrg 20535 df-lmod 20824 df-lss 20894 df-lsp 20934 df-assa 21818 df-asp 21819 df-ascl 21820 df-psr 21874 df-mvr 21875 df-mpl 21876 df-evls 22037 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |