![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > evlsvvvallem | Structured version Visualization version GIF version |
Description: Lemma for evlsvvval 41132 akin to psrbagev2 21631. (Contributed by SN, 6-Mar-2025.) |
Ref | Expression |
---|---|
evlsvvvallem.d | β’ π· = {β β (β0 βm πΌ) β£ (β‘β β β) β Fin} |
evlsvvvallem.k | β’ πΎ = (Baseβπ) |
evlsvvvallem.m | β’ π = (mulGrpβπ) |
evlsvvvallem.w | β’ β = (.gβπ) |
evlsvvvallem.i | β’ (π β πΌ β π) |
evlsvvvallem.s | β’ (π β π β CRing) |
evlsvvvallem.a | β’ (π β π΄ β (πΎ βm πΌ)) |
evlsvvvallem.b | β’ (π β π΅ β π·) |
Ref | Expression |
---|---|
evlsvvvallem | β’ (π β (π Ξ£g (π£ β πΌ β¦ ((π΅βπ£) β (π΄βπ£)))) β πΎ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evlsvvvallem.m | . . 3 β’ π = (mulGrpβπ) | |
2 | evlsvvvallem.k | . . 3 β’ πΎ = (Baseβπ) | |
3 | 1, 2 | mgpbas 19987 | . 2 β’ πΎ = (Baseβπ) |
4 | eqid 2732 | . . 3 β’ (1rβπ) = (1rβπ) | |
5 | 1, 4 | ringidval 20000 | . 2 β’ (1rβπ) = (0gβπ) |
6 | evlsvvvallem.s | . . 3 β’ (π β π β CRing) | |
7 | 1 | crngmgp 20057 | . . 3 β’ (π β CRing β π β CMnd) |
8 | 6, 7 | syl 17 | . 2 β’ (π β π β CMnd) |
9 | evlsvvvallem.i | . 2 β’ (π β πΌ β π) | |
10 | evlsvvvallem.w | . . . 4 β’ β = (.gβπ) | |
11 | 6 | crngringd 20062 | . . . . . 6 β’ (π β π β Ring) |
12 | 1 | ringmgp 20055 | . . . . . 6 β’ (π β Ring β π β Mnd) |
13 | 11, 12 | syl 17 | . . . . 5 β’ (π β π β Mnd) |
14 | 13 | adantr 481 | . . . 4 β’ ((π β§ π£ β πΌ) β π β Mnd) |
15 | evlsvvvallem.b | . . . . . 6 β’ (π β π΅ β π·) | |
16 | evlsvvvallem.d | . . . . . . 7 β’ π· = {β β (β0 βm πΌ) β£ (β‘β β β) β Fin} | |
17 | 16 | psrbagf 21462 | . . . . . 6 β’ (π΅ β π· β π΅:πΌβΆβ0) |
18 | 15, 17 | syl 17 | . . . . 5 β’ (π β π΅:πΌβΆβ0) |
19 | 18 | ffvelcdmda 7083 | . . . 4 β’ ((π β§ π£ β πΌ) β (π΅βπ£) β β0) |
20 | evlsvvvallem.a | . . . . . 6 β’ (π β π΄ β (πΎ βm πΌ)) | |
21 | elmapi 8839 | . . . . . 6 β’ (π΄ β (πΎ βm πΌ) β π΄:πΌβΆπΎ) | |
22 | 20, 21 | syl 17 | . . . . 5 β’ (π β π΄:πΌβΆπΎ) |
23 | 22 | ffvelcdmda 7083 | . . . 4 β’ ((π β§ π£ β πΌ) β (π΄βπ£) β πΎ) |
24 | 3, 10, 14, 19, 23 | mulgnn0cld 18969 | . . 3 β’ ((π β§ π£ β πΌ) β ((π΅βπ£) β (π΄βπ£)) β πΎ) |
25 | 24 | fmpttd 7111 | . 2 β’ (π β (π£ β πΌ β¦ ((π΅βπ£) β (π΄βπ£))):πΌβΆπΎ) |
26 | 9 | mptexd 7222 | . . 3 β’ (π β (π£ β πΌ β¦ ((π΅βπ£) β (π΄βπ£))) β V) |
27 | fvexd 6903 | . . 3 β’ (π β (1rβπ) β V) | |
28 | 25 | ffund 6718 | . . 3 β’ (π β Fun (π£ β πΌ β¦ ((π΅βπ£) β (π΄βπ£)))) |
29 | 16 | psrbagfsupp 21464 | . . . 4 β’ (π΅ β π· β π΅ finSupp 0) |
30 | 15, 29 | syl 17 | . . 3 β’ (π β π΅ finSupp 0) |
31 | ssidd 4004 | . . . . . . 7 β’ (π β (π΅ supp 0) β (π΅ supp 0)) | |
32 | 0zd 12566 | . . . . . . 7 β’ (π β 0 β β€) | |
33 | 18, 31, 9, 32 | suppssr 8177 | . . . . . 6 β’ ((π β§ π£ β (πΌ β (π΅ supp 0))) β (π΅βπ£) = 0) |
34 | 33 | oveq1d 7420 | . . . . 5 β’ ((π β§ π£ β (πΌ β (π΅ supp 0))) β ((π΅βπ£) β (π΄βπ£)) = (0 β (π΄βπ£))) |
35 | eldifi 4125 | . . . . . . 7 β’ (π£ β (πΌ β (π΅ supp 0)) β π£ β πΌ) | |
36 | 35, 23 | sylan2 593 | . . . . . 6 β’ ((π β§ π£ β (πΌ β (π΅ supp 0))) β (π΄βπ£) β πΎ) |
37 | 3, 5, 10 | mulg0 18951 | . . . . . 6 β’ ((π΄βπ£) β πΎ β (0 β (π΄βπ£)) = (1rβπ)) |
38 | 36, 37 | syl 17 | . . . . 5 β’ ((π β§ π£ β (πΌ β (π΅ supp 0))) β (0 β (π΄βπ£)) = (1rβπ)) |
39 | 34, 38 | eqtrd 2772 | . . . 4 β’ ((π β§ π£ β (πΌ β (π΅ supp 0))) β ((π΅βπ£) β (π΄βπ£)) = (1rβπ)) |
40 | 39, 9 | suppss2 8181 | . . 3 β’ (π β ((π£ β πΌ β¦ ((π΅βπ£) β (π΄βπ£))) supp (1rβπ)) β (π΅ supp 0)) |
41 | 26, 27, 28, 30, 40 | fsuppsssuppgd 41061 | . 2 β’ (π β (π£ β πΌ β¦ ((π΅βπ£) β (π΄βπ£))) finSupp (1rβπ)) |
42 | 3, 5, 8, 9, 25, 41 | gsumcl 19777 | 1 β’ (π β (π Ξ£g (π£ β πΌ β¦ ((π΅βπ£) β (π΄βπ£)))) β πΎ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 {crab 3432 Vcvv 3474 β cdif 3944 class class class wbr 5147 β¦ cmpt 5230 β‘ccnv 5674 β cima 5678 βΆwf 6536 βcfv 6540 (class class class)co 7405 supp csupp 8142 βm cmap 8816 Fincfn 8935 finSupp cfsupp 9357 0cc0 11106 βcn 12208 β0cn0 12468 β€cz 12554 Basecbs 17140 Ξ£g cgsu 17382 Mndcmnd 18621 .gcmg 18944 CMndccmn 19642 mulGrpcmgp 19981 1rcur 19998 Ringcrg 20049 CRingccrg 20050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 df-seq 13963 df-hash 14287 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-plusg 17206 df-0g 17383 df-gsum 17384 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mulg 18945 df-cntz 19175 df-cmn 19644 df-mgp 19982 df-ur 19999 df-ring 20051 df-cring 20052 |
This theorem is referenced by: evlsvvvallem2 41131 evlsvvval 41132 evlsbagval 41135 evlselv 41156 evlsmhpvvval 41164 mhphf 41166 |
Copyright terms: Public domain | W3C validator |