![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > evlsvvvallem | Structured version Visualization version GIF version |
Description: Lemma for evlsvvval 41708 akin to psrbagev2 22001. (Contributed by SN, 6-Mar-2025.) |
Ref | Expression |
---|---|
evlsvvvallem.d | β’ π· = {β β (β0 βm πΌ) β£ (β‘β β β) β Fin} |
evlsvvvallem.k | β’ πΎ = (Baseβπ) |
evlsvvvallem.m | β’ π = (mulGrpβπ) |
evlsvvvallem.w | β’ β = (.gβπ) |
evlsvvvallem.i | β’ (π β πΌ β π) |
evlsvvvallem.s | β’ (π β π β CRing) |
evlsvvvallem.a | β’ (π β π΄ β (πΎ βm πΌ)) |
evlsvvvallem.b | β’ (π β π΅ β π·) |
Ref | Expression |
---|---|
evlsvvvallem | β’ (π β (π Ξ£g (π£ β πΌ β¦ ((π΅βπ£) β (π΄βπ£)))) β πΎ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evlsvvvallem.m | . . 3 β’ π = (mulGrpβπ) | |
2 | evlsvvvallem.k | . . 3 β’ πΎ = (Baseβπ) | |
3 | 1, 2 | mgpbas 20064 | . 2 β’ πΎ = (Baseβπ) |
4 | eqid 2727 | . . 3 β’ (1rβπ) = (1rβπ) | |
5 | 1, 4 | ringidval 20107 | . 2 β’ (1rβπ) = (0gβπ) |
6 | evlsvvvallem.s | . . 3 β’ (π β π β CRing) | |
7 | 1 | crngmgp 20165 | . . 3 β’ (π β CRing β π β CMnd) |
8 | 6, 7 | syl 17 | . 2 β’ (π β π β CMnd) |
9 | evlsvvvallem.i | . 2 β’ (π β πΌ β π) | |
10 | evlsvvvallem.w | . . . 4 β’ β = (.gβπ) | |
11 | 6 | crngringd 20170 | . . . . . 6 β’ (π β π β Ring) |
12 | 1 | ringmgp 20163 | . . . . . 6 β’ (π β Ring β π β Mnd) |
13 | 11, 12 | syl 17 | . . . . 5 β’ (π β π β Mnd) |
14 | 13 | adantr 480 | . . . 4 β’ ((π β§ π£ β πΌ) β π β Mnd) |
15 | evlsvvvallem.b | . . . . . 6 β’ (π β π΅ β π·) | |
16 | evlsvvvallem.d | . . . . . . 7 β’ π· = {β β (β0 βm πΌ) β£ (β‘β β β) β Fin} | |
17 | 16 | psrbagf 21831 | . . . . . 6 β’ (π΅ β π· β π΅:πΌβΆβ0) |
18 | 15, 17 | syl 17 | . . . . 5 β’ (π β π΅:πΌβΆβ0) |
19 | 18 | ffvelcdmda 7088 | . . . 4 β’ ((π β§ π£ β πΌ) β (π΅βπ£) β β0) |
20 | evlsvvvallem.a | . . . . . 6 β’ (π β π΄ β (πΎ βm πΌ)) | |
21 | elmapi 8857 | . . . . . 6 β’ (π΄ β (πΎ βm πΌ) β π΄:πΌβΆπΎ) | |
22 | 20, 21 | syl 17 | . . . . 5 β’ (π β π΄:πΌβΆπΎ) |
23 | 22 | ffvelcdmda 7088 | . . . 4 β’ ((π β§ π£ β πΌ) β (π΄βπ£) β πΎ) |
24 | 3, 10, 14, 19, 23 | mulgnn0cld 19034 | . . 3 β’ ((π β§ π£ β πΌ) β ((π΅βπ£) β (π΄βπ£)) β πΎ) |
25 | 24 | fmpttd 7119 | . 2 β’ (π β (π£ β πΌ β¦ ((π΅βπ£) β (π΄βπ£))):πΌβΆπΎ) |
26 | 9 | mptexd 7230 | . . 3 β’ (π β (π£ β πΌ β¦ ((π΅βπ£) β (π΄βπ£))) β V) |
27 | fvexd 6906 | . . 3 β’ (π β (1rβπ) β V) | |
28 | 25 | ffund 6720 | . . 3 β’ (π β Fun (π£ β πΌ β¦ ((π΅βπ£) β (π΄βπ£)))) |
29 | 16 | psrbagfsupp 21833 | . . . 4 β’ (π΅ β π· β π΅ finSupp 0) |
30 | 15, 29 | syl 17 | . . 3 β’ (π β π΅ finSupp 0) |
31 | ssidd 4001 | . . . . . . 7 β’ (π β (π΅ supp 0) β (π΅ supp 0)) | |
32 | 0zd 12586 | . . . . . . 7 β’ (π β 0 β β€) | |
33 | 18, 31, 9, 32 | suppssr 8192 | . . . . . 6 β’ ((π β§ π£ β (πΌ β (π΅ supp 0))) β (π΅βπ£) = 0) |
34 | 33 | oveq1d 7429 | . . . . 5 β’ ((π β§ π£ β (πΌ β (π΅ supp 0))) β ((π΅βπ£) β (π΄βπ£)) = (0 β (π΄βπ£))) |
35 | eldifi 4122 | . . . . . . 7 β’ (π£ β (πΌ β (π΅ supp 0)) β π£ β πΌ) | |
36 | 35, 23 | sylan2 592 | . . . . . 6 β’ ((π β§ π£ β (πΌ β (π΅ supp 0))) β (π΄βπ£) β πΎ) |
37 | 3, 5, 10 | mulg0 19014 | . . . . . 6 β’ ((π΄βπ£) β πΎ β (0 β (π΄βπ£)) = (1rβπ)) |
38 | 36, 37 | syl 17 | . . . . 5 β’ ((π β§ π£ β (πΌ β (π΅ supp 0))) β (0 β (π΄βπ£)) = (1rβπ)) |
39 | 34, 38 | eqtrd 2767 | . . . 4 β’ ((π β§ π£ β (πΌ β (π΅ supp 0))) β ((π΅βπ£) β (π΄βπ£)) = (1rβπ)) |
40 | 39, 9 | suppss2 8197 | . . 3 β’ (π β ((π£ β πΌ β¦ ((π΅βπ£) β (π΄βπ£))) supp (1rβπ)) β (π΅ supp 0)) |
41 | 26, 27, 28, 30, 40 | fsuppsssuppgd 41641 | . 2 β’ (π β (π£ β πΌ β¦ ((π΅βπ£) β (π΄βπ£))) finSupp (1rβπ)) |
42 | 3, 5, 8, 9, 25, 41 | gsumcl 19854 | 1 β’ (π β (π Ξ£g (π£ β πΌ β¦ ((π΅βπ£) β (π΄βπ£)))) β πΎ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1534 β wcel 2099 {crab 3427 Vcvv 3469 β cdif 3941 class class class wbr 5142 β¦ cmpt 5225 β‘ccnv 5671 β cima 5675 βΆwf 6538 βcfv 6542 (class class class)co 7414 supp csupp 8157 βm cmap 8834 Fincfn 8953 finSupp cfsupp 9375 0cc0 11124 βcn 12228 β0cn0 12488 β€cz 12574 Basecbs 17165 Ξ£g cgsu 17407 Mndcmnd 18679 .gcmg 19007 CMndccmn 19719 mulGrpcmgp 20058 1rcur 20105 Ringcrg 20157 CRingccrg 20158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8716 df-map 8836 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-fsupp 9376 df-oi 9519 df-card 9948 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-nn 12229 df-2 12291 df-n0 12489 df-z 12575 df-uz 12839 df-fz 13503 df-fzo 13646 df-seq 13985 df-hash 14308 df-sets 17118 df-slot 17136 df-ndx 17148 df-base 17166 df-plusg 17231 df-0g 17408 df-gsum 17409 df-mgm 18585 df-sgrp 18664 df-mnd 18680 df-mulg 19008 df-cntz 19252 df-cmn 19721 df-mgp 20059 df-ur 20106 df-ring 20159 df-cring 20160 |
This theorem is referenced by: evlsvvvallem2 41707 evlsvvval 41708 evlsbagval 41711 evlselv 41732 evlsmhpvvval 41740 mhphf 41742 |
Copyright terms: Public domain | W3C validator |