Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evlvvvallem Structured version   Visualization version   GIF version

Theorem evlvvvallem 42535
Description: Lemma for theorems using evlvvval 42534. Version of evlsvvvallem2 42523 using df-evl 21958. (Contributed by SN, 11-Mar-2025.)
Hypotheses
Ref Expression
evlvvvallem.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
evlvvvallem.p 𝑃 = (𝐼 mPoly 𝑅)
evlvvvallem.b 𝐵 = (Base‘𝑃)
evlvvvallem.k 𝐾 = (Base‘𝑅)
evlvvvallem.m 𝑀 = (mulGrp‘𝑅)
evlvvvallem.w = (.g𝑀)
evlvvvallem.x · = (.r𝑅)
evlvvvallem.i (𝜑𝐼𝑉)
evlvvvallem.r (𝜑𝑅 ∈ CRing)
evlvvvallem.f (𝜑𝐹𝐵)
evlvvvallem.a (𝜑𝐴 ∈ (𝐾m 𝐼))
Assertion
Ref Expression
evlvvvallem (𝜑 → (𝑏𝐷 ↦ ((𝐹𝑏) · (𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣)))))) finSupp (0g𝑅))
Distinct variable groups:   𝐵,   ,𝐼,𝑣   𝜑,𝑏,𝑣   𝑣,𝐵   𝑅,𝑏,,𝑣   𝐾,𝑏,,𝑣   𝐹,𝑏   𝐷,𝑏,𝑣
Allowed substitution hints:   𝜑()   𝐴(𝑣,,𝑏)   𝐵(𝑏)   𝐷()   𝑃(𝑣,,𝑏)   · (𝑣,,𝑏)   (𝑣,,𝑏)   𝐹(𝑣,)   𝐼(𝑏)   𝑀(𝑣,,𝑏)   𝑉(𝑣,,𝑏)

Proof of Theorem evlvvvallem
StepHypRef Expression
1 evlvvvallem.d . 2 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
2 eqid 2729 . 2 (𝐼 mPoly (𝑅s 𝐾)) = (𝐼 mPoly (𝑅s 𝐾))
3 eqid 2729 . 2 (𝑅s 𝐾) = (𝑅s 𝐾)
4 eqid 2729 . 2 (Base‘(𝐼 mPoly (𝑅s 𝐾))) = (Base‘(𝐼 mPoly (𝑅s 𝐾)))
5 evlvvvallem.k . 2 𝐾 = (Base‘𝑅)
6 evlvvvallem.m . 2 𝑀 = (mulGrp‘𝑅)
7 evlvvvallem.w . 2 = (.g𝑀)
8 evlvvvallem.x . 2 · = (.r𝑅)
9 evlvvvallem.i . 2 (𝜑𝐼𝑉)
10 evlvvvallem.r . 2 (𝜑𝑅 ∈ CRing)
1110crngringd 20131 . . 3 (𝜑𝑅 ∈ Ring)
125subrgid 20458 . . 3 (𝑅 ∈ Ring → 𝐾 ∈ (SubRing‘𝑅))
1311, 12syl 17 . 2 (𝜑𝐾 ∈ (SubRing‘𝑅))
14 evlvvvallem.f . . 3 (𝜑𝐹𝐵)
155ressid 17190 . . . . . . . 8 (𝑅 ∈ CRing → (𝑅s 𝐾) = 𝑅)
1610, 15syl 17 . . . . . . 7 (𝜑 → (𝑅s 𝐾) = 𝑅)
1716oveq2d 7385 . . . . . 6 (𝜑 → (𝐼 mPoly (𝑅s 𝐾)) = (𝐼 mPoly 𝑅))
18 evlvvvallem.p . . . . . 6 𝑃 = (𝐼 mPoly 𝑅)
1917, 18eqtr4di 2782 . . . . 5 (𝜑 → (𝐼 mPoly (𝑅s 𝐾)) = 𝑃)
2019fveq2d 6844 . . . 4 (𝜑 → (Base‘(𝐼 mPoly (𝑅s 𝐾))) = (Base‘𝑃))
21 evlvvvallem.b . . . 4 𝐵 = (Base‘𝑃)
2220, 21eqtr4di 2782 . . 3 (𝜑 → (Base‘(𝐼 mPoly (𝑅s 𝐾))) = 𝐵)
2314, 22eleqtrrd 2831 . 2 (𝜑𝐹 ∈ (Base‘(𝐼 mPoly (𝑅s 𝐾))))
24 evlvvvallem.a . 2 (𝜑𝐴 ∈ (𝐾m 𝐼))
251, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 23, 24evlsvvvallem2 42523 1 (𝜑 → (𝑏𝐷 ↦ ((𝐹𝑏) · (𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣)))))) finSupp (0g𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3402   class class class wbr 5102  cmpt 5183  ccnv 5630  cima 5634  cfv 6499  (class class class)co 7369  m cmap 8776  Fincfn 8895   finSupp cfsupp 9288  cn 12162  0cn0 12418  Basecbs 17155  s cress 17176  .rcmulr 17197  0gc0g 17378   Σg cgsu 17379  .gcmg 18975  mulGrpcmgp 20025  Ringcrg 20118  CRingccrg 20119  SubRingcsubrg 20454   mPoly cmpl 21791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-tset 17215  df-0g 17380  df-gsum 17381  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-mulg 18976  df-subg 19031  df-cntz 19225  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-subrg 20455  df-psr 21794  df-mpl 21796
This theorem is referenced by:  evlselv  42548
  Copyright terms: Public domain W3C validator