![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > evlvvvallem | Structured version Visualization version GIF version |
Description: Lemma for theorems using evlvvval 42576. Version of evlsvvvallem2 42565 using df-evl 22126. (Contributed by SN, 11-Mar-2025.) |
Ref | Expression |
---|---|
evlvvvallem.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
evlvvvallem.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
evlvvvallem.b | ⊢ 𝐵 = (Base‘𝑃) |
evlvvvallem.k | ⊢ 𝐾 = (Base‘𝑅) |
evlvvvallem.m | ⊢ 𝑀 = (mulGrp‘𝑅) |
evlvvvallem.w | ⊢ ↑ = (.g‘𝑀) |
evlvvvallem.x | ⊢ · = (.r‘𝑅) |
evlvvvallem.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
evlvvvallem.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
evlvvvallem.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
evlvvvallem.a | ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
Ref | Expression |
---|---|
evlvvvallem | ⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) finSupp (0g‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evlvvvallem.d | . 2 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
2 | eqid 2737 | . 2 ⊢ (𝐼 mPoly (𝑅 ↾s 𝐾)) = (𝐼 mPoly (𝑅 ↾s 𝐾)) | |
3 | eqid 2737 | . 2 ⊢ (𝑅 ↾s 𝐾) = (𝑅 ↾s 𝐾) | |
4 | eqid 2737 | . 2 ⊢ (Base‘(𝐼 mPoly (𝑅 ↾s 𝐾))) = (Base‘(𝐼 mPoly (𝑅 ↾s 𝐾))) | |
5 | evlvvvallem.k | . 2 ⊢ 𝐾 = (Base‘𝑅) | |
6 | evlvvvallem.m | . 2 ⊢ 𝑀 = (mulGrp‘𝑅) | |
7 | evlvvvallem.w | . 2 ⊢ ↑ = (.g‘𝑀) | |
8 | evlvvvallem.x | . 2 ⊢ · = (.r‘𝑅) | |
9 | evlvvvallem.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
10 | evlvvvallem.r | . 2 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
11 | 10 | crngringd 20273 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) |
12 | 5 | subrgid 20599 | . . 3 ⊢ (𝑅 ∈ Ring → 𝐾 ∈ (SubRing‘𝑅)) |
13 | 11, 12 | syl 17 | . 2 ⊢ (𝜑 → 𝐾 ∈ (SubRing‘𝑅)) |
14 | evlvvvallem.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
15 | 5 | ressid 17299 | . . . . . . . 8 ⊢ (𝑅 ∈ CRing → (𝑅 ↾s 𝐾) = 𝑅) |
16 | 10, 15 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑅 ↾s 𝐾) = 𝑅) |
17 | 16 | oveq2d 7454 | . . . . . 6 ⊢ (𝜑 → (𝐼 mPoly (𝑅 ↾s 𝐾)) = (𝐼 mPoly 𝑅)) |
18 | evlvvvallem.p | . . . . . 6 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
19 | 17, 18 | eqtr4di 2795 | . . . . 5 ⊢ (𝜑 → (𝐼 mPoly (𝑅 ↾s 𝐾)) = 𝑃) |
20 | 19 | fveq2d 6918 | . . . 4 ⊢ (𝜑 → (Base‘(𝐼 mPoly (𝑅 ↾s 𝐾))) = (Base‘𝑃)) |
21 | evlvvvallem.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
22 | 20, 21 | eqtr4di 2795 | . . 3 ⊢ (𝜑 → (Base‘(𝐼 mPoly (𝑅 ↾s 𝐾))) = 𝐵) |
23 | 14, 22 | eleqtrrd 2844 | . 2 ⊢ (𝜑 → 𝐹 ∈ (Base‘(𝐼 mPoly (𝑅 ↾s 𝐾)))) |
24 | evlvvvallem.a | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) | |
25 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 23, 24 | evlsvvvallem2 42565 | 1 ⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) finSupp (0g‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {crab 3436 class class class wbr 5151 ↦ cmpt 5234 ◡ccnv 5692 “ cima 5696 ‘cfv 6569 (class class class)co 7438 ↑m cmap 8874 Fincfn 8993 finSupp cfsupp 9408 ℕcn 12273 ℕ0cn0 12533 Basecbs 17254 ↾s cress 17283 .rcmulr 17308 0gc0g 17495 Σg cgsu 17496 .gcmg 19107 mulGrpcmgp 20161 Ringcrg 20260 CRingccrg 20261 SubRingcsubrg 20595 mPoly cmpl 21953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-se 5646 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-isom 6578 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-of 7704 df-om 7895 df-1st 8022 df-2nd 8023 df-supp 8194 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-er 8753 df-map 8876 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-fsupp 9409 df-oi 9557 df-card 9986 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-5 12339 df-6 12340 df-7 12341 df-8 12342 df-9 12343 df-n0 12534 df-z 12621 df-uz 12886 df-fz 13554 df-fzo 13701 df-seq 14049 df-hash 14376 df-struct 17190 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-ress 17284 df-plusg 17320 df-mulr 17321 df-sca 17323 df-vsca 17324 df-tset 17326 df-0g 17497 df-gsum 17498 df-mgm 18675 df-sgrp 18754 df-mnd 18770 df-grp 18976 df-minusg 18977 df-mulg 19108 df-subg 19163 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-subrg 20596 df-psr 21956 df-mpl 21958 |
This theorem is referenced by: evlselv 42590 |
Copyright terms: Public domain | W3C validator |