| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > evlvvvallem | Structured version Visualization version GIF version | ||
| Description: Lemma for theorems using evlvvval 42546. Version of evlsvvvallem2 42535 using df-evl 22047. (Contributed by SN, 11-Mar-2025.) |
| Ref | Expression |
|---|---|
| evlvvvallem.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| evlvvvallem.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| evlvvvallem.b | ⊢ 𝐵 = (Base‘𝑃) |
| evlvvvallem.k | ⊢ 𝐾 = (Base‘𝑅) |
| evlvvvallem.m | ⊢ 𝑀 = (mulGrp‘𝑅) |
| evlvvvallem.w | ⊢ ↑ = (.g‘𝑀) |
| evlvvvallem.x | ⊢ · = (.r‘𝑅) |
| evlvvvallem.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| evlvvvallem.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| evlvvvallem.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| evlvvvallem.a | ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
| Ref | Expression |
|---|---|
| evlvvvallem | ⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) finSupp (0g‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlvvvallem.d | . 2 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 2 | eqid 2734 | . 2 ⊢ (𝐼 mPoly (𝑅 ↾s 𝐾)) = (𝐼 mPoly (𝑅 ↾s 𝐾)) | |
| 3 | eqid 2734 | . 2 ⊢ (𝑅 ↾s 𝐾) = (𝑅 ↾s 𝐾) | |
| 4 | eqid 2734 | . 2 ⊢ (Base‘(𝐼 mPoly (𝑅 ↾s 𝐾))) = (Base‘(𝐼 mPoly (𝑅 ↾s 𝐾))) | |
| 5 | evlvvvallem.k | . 2 ⊢ 𝐾 = (Base‘𝑅) | |
| 6 | evlvvvallem.m | . 2 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 7 | evlvvvallem.w | . 2 ⊢ ↑ = (.g‘𝑀) | |
| 8 | evlvvvallem.x | . 2 ⊢ · = (.r‘𝑅) | |
| 9 | evlvvvallem.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 10 | evlvvvallem.r | . 2 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 11 | 10 | crngringd 20211 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 12 | 5 | subrgid 20541 | . . 3 ⊢ (𝑅 ∈ Ring → 𝐾 ∈ (SubRing‘𝑅)) |
| 13 | 11, 12 | syl 17 | . 2 ⊢ (𝜑 → 𝐾 ∈ (SubRing‘𝑅)) |
| 14 | evlvvvallem.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 15 | 5 | ressid 17267 | . . . . . . . 8 ⊢ (𝑅 ∈ CRing → (𝑅 ↾s 𝐾) = 𝑅) |
| 16 | 10, 15 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑅 ↾s 𝐾) = 𝑅) |
| 17 | 16 | oveq2d 7429 | . . . . . 6 ⊢ (𝜑 → (𝐼 mPoly (𝑅 ↾s 𝐾)) = (𝐼 mPoly 𝑅)) |
| 18 | evlvvvallem.p | . . . . . 6 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 19 | 17, 18 | eqtr4di 2787 | . . . . 5 ⊢ (𝜑 → (𝐼 mPoly (𝑅 ↾s 𝐾)) = 𝑃) |
| 20 | 19 | fveq2d 6890 | . . . 4 ⊢ (𝜑 → (Base‘(𝐼 mPoly (𝑅 ↾s 𝐾))) = (Base‘𝑃)) |
| 21 | evlvvvallem.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 22 | 20, 21 | eqtr4di 2787 | . . 3 ⊢ (𝜑 → (Base‘(𝐼 mPoly (𝑅 ↾s 𝐾))) = 𝐵) |
| 23 | 14, 22 | eleqtrrd 2836 | . 2 ⊢ (𝜑 → 𝐹 ∈ (Base‘(𝐼 mPoly (𝑅 ↾s 𝐾)))) |
| 24 | evlvvvallem.a | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) | |
| 25 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 23, 24 | evlsvvvallem2 42535 | 1 ⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) finSupp (0g‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {crab 3419 class class class wbr 5123 ↦ cmpt 5205 ◡ccnv 5664 “ cima 5668 ‘cfv 6541 (class class class)co 7413 ↑m cmap 8848 Fincfn 8967 finSupp cfsupp 9383 ℕcn 12248 ℕ0cn0 12509 Basecbs 17229 ↾s cress 17252 .rcmulr 17274 0gc0g 17455 Σg cgsu 17456 .gcmg 19054 mulGrpcmgp 20105 Ringcrg 20198 CRingccrg 20199 SubRingcsubrg 20537 mPoly cmpl 21880 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-om 7870 df-1st 7996 df-2nd 7997 df-supp 8168 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-fsupp 9384 df-oi 9532 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-uz 12861 df-fz 13530 df-fzo 13677 df-seq 14025 df-hash 14352 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-mulr 17287 df-sca 17289 df-vsca 17290 df-tset 17292 df-0g 17457 df-gsum 17458 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-grp 18923 df-minusg 18924 df-mulg 19055 df-subg 19110 df-cntz 19304 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-cring 20201 df-subrg 20538 df-psr 21883 df-mpl 21885 |
| This theorem is referenced by: evlselv 42560 |
| Copyright terms: Public domain | W3C validator |