Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evlvvvallem Structured version   Visualization version   GIF version

Theorem evlvvvallem 42615
Description: Lemma for theorems using evlvvval 42614. Version of evlsvvvallem2 42603 using df-evl 22010. (Contributed by SN, 11-Mar-2025.)
Hypotheses
Ref Expression
evlvvvallem.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
evlvvvallem.p 𝑃 = (𝐼 mPoly 𝑅)
evlvvvallem.b 𝐵 = (Base‘𝑃)
evlvvvallem.k 𝐾 = (Base‘𝑅)
evlvvvallem.m 𝑀 = (mulGrp‘𝑅)
evlvvvallem.w = (.g𝑀)
evlvvvallem.x · = (.r𝑅)
evlvvvallem.i (𝜑𝐼𝑉)
evlvvvallem.r (𝜑𝑅 ∈ CRing)
evlvvvallem.f (𝜑𝐹𝐵)
evlvvvallem.a (𝜑𝐴 ∈ (𝐾m 𝐼))
Assertion
Ref Expression
evlvvvallem (𝜑 → (𝑏𝐷 ↦ ((𝐹𝑏) · (𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣)))))) finSupp (0g𝑅))
Distinct variable groups:   𝐵,   ,𝐼,𝑣   𝜑,𝑏,𝑣   𝑣,𝐵   𝑅,𝑏,,𝑣   𝐾,𝑏,,𝑣   𝐹,𝑏   𝐷,𝑏,𝑣
Allowed substitution hints:   𝜑()   𝐴(𝑣,,𝑏)   𝐵(𝑏)   𝐷()   𝑃(𝑣,,𝑏)   · (𝑣,,𝑏)   (𝑣,,𝑏)   𝐹(𝑣,)   𝐼(𝑏)   𝑀(𝑣,,𝑏)   𝑉(𝑣,,𝑏)

Proof of Theorem evlvvvallem
StepHypRef Expression
1 evlvvvallem.d . 2 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
2 eqid 2731 . 2 (𝐼 mPoly (𝑅s 𝐾)) = (𝐼 mPoly (𝑅s 𝐾))
3 eqid 2731 . 2 (𝑅s 𝐾) = (𝑅s 𝐾)
4 eqid 2731 . 2 (Base‘(𝐼 mPoly (𝑅s 𝐾))) = (Base‘(𝐼 mPoly (𝑅s 𝐾)))
5 evlvvvallem.k . 2 𝐾 = (Base‘𝑅)
6 evlvvvallem.m . 2 𝑀 = (mulGrp‘𝑅)
7 evlvvvallem.w . 2 = (.g𝑀)
8 evlvvvallem.x . 2 · = (.r𝑅)
9 evlvvvallem.i . 2 (𝜑𝐼𝑉)
10 evlvvvallem.r . 2 (𝜑𝑅 ∈ CRing)
1110crngringd 20164 . . 3 (𝜑𝑅 ∈ Ring)
125subrgid 20488 . . 3 (𝑅 ∈ Ring → 𝐾 ∈ (SubRing‘𝑅))
1311, 12syl 17 . 2 (𝜑𝐾 ∈ (SubRing‘𝑅))
14 evlvvvallem.f . . 3 (𝜑𝐹𝐵)
155ressid 17155 . . . . . . . 8 (𝑅 ∈ CRing → (𝑅s 𝐾) = 𝑅)
1610, 15syl 17 . . . . . . 7 (𝜑 → (𝑅s 𝐾) = 𝑅)
1716oveq2d 7362 . . . . . 6 (𝜑 → (𝐼 mPoly (𝑅s 𝐾)) = (𝐼 mPoly 𝑅))
18 evlvvvallem.p . . . . . 6 𝑃 = (𝐼 mPoly 𝑅)
1917, 18eqtr4di 2784 . . . . 5 (𝜑 → (𝐼 mPoly (𝑅s 𝐾)) = 𝑃)
2019fveq2d 6826 . . . 4 (𝜑 → (Base‘(𝐼 mPoly (𝑅s 𝐾))) = (Base‘𝑃))
21 evlvvvallem.b . . . 4 𝐵 = (Base‘𝑃)
2220, 21eqtr4di 2784 . . 3 (𝜑 → (Base‘(𝐼 mPoly (𝑅s 𝐾))) = 𝐵)
2314, 22eleqtrrd 2834 . 2 (𝜑𝐹 ∈ (Base‘(𝐼 mPoly (𝑅s 𝐾))))
24 evlvvvallem.a . 2 (𝜑𝐴 ∈ (𝐾m 𝐼))
251, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 23, 24evlsvvvallem2 42603 1 (𝜑 → (𝑏𝐷 ↦ ((𝐹𝑏) · (𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣)))))) finSupp (0g𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  {crab 3395   class class class wbr 5089  cmpt 5170  ccnv 5613  cima 5617  cfv 6481  (class class class)co 7346  m cmap 8750  Fincfn 8869   finSupp cfsupp 9245  cn 12125  0cn0 12381  Basecbs 17120  s cress 17141  .rcmulr 17162  0gc0g 17343   Σg cgsu 17344  .gcmg 18980  mulGrpcmgp 20058  Ringcrg 20151  CRingccrg 20152  SubRingcsubrg 20484   mPoly cmpl 21843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-tset 17180  df-0g 17345  df-gsum 17346  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-mulg 18981  df-subg 19036  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-subrg 20485  df-psr 21846  df-mpl 21848
This theorem is referenced by:  evlselv  42628
  Copyright terms: Public domain W3C validator