Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evl0 Structured version   Visualization version   GIF version

Theorem evl0 42545
Description: The zero polynomial evaluates to zero. (Contributed by SN, 23-Nov-2024.)
Hypotheses
Ref Expression
evl0.q 𝑄 = (𝐼 eval 𝑅)
evl0.b 𝐵 = (Base‘𝑅)
evl0.w 𝑊 = (𝐼 mPoly 𝑅)
evl0.o 𝑂 = (0g𝑅)
evl0.0 0 = (0g𝑊)
evl0.i (𝜑𝐼𝑉)
evl0.r (𝜑𝑅 ∈ CRing)
Assertion
Ref Expression
evl0 (𝜑 → (𝑄0 ) = ((𝐵m 𝐼) × {𝑂}))

Proof of Theorem evl0
StepHypRef Expression
1 evl0.w . . . 4 𝑊 = (𝐼 mPoly 𝑅)
2 eqid 2729 . . . 4 (algSc‘𝑊) = (algSc‘𝑊)
3 evl0.o . . . 4 𝑂 = (0g𝑅)
4 evl0.0 . . . 4 0 = (0g𝑊)
5 evl0.i . . . 4 (𝜑𝐼𝑉)
6 evl0.r . . . . 5 (𝜑𝑅 ∈ CRing)
76crngringd 20155 . . . 4 (𝜑𝑅 ∈ Ring)
81, 2, 3, 4, 5, 7mplascl0 42542 . . 3 (𝜑 → ((algSc‘𝑊)‘𝑂) = 0 )
98fveq2d 6862 . 2 (𝜑 → (𝑄‘((algSc‘𝑊)‘𝑂)) = (𝑄0 ))
10 evl0.q . . 3 𝑄 = (𝐼 eval 𝑅)
11 evl0.b . . 3 𝐵 = (Base‘𝑅)
1211, 3ring0cl 20176 . . . 4 (𝑅 ∈ Ring → 𝑂𝐵)
137, 12syl 17 . . 3 (𝜑𝑂𝐵)
1410, 1, 11, 2, 5, 6, 13evlsca 22005 . 2 (𝜑 → (𝑄‘((algSc‘𝑊)‘𝑂)) = ((𝐵m 𝐼) × {𝑂}))
159, 14eqtr3d 2766 1 (𝜑 → (𝑄0 ) = ((𝐵m 𝐼) × {𝑂}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {csn 4589   × cxp 5636  cfv 6511  (class class class)co 7387  m cmap 8799  Basecbs 17179  0gc0g 17402  Ringcrg 20142  CRingccrg 20143  algSccascl 21761   mPoly cmpl 21815   eval cevl 21980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-srg 20096  df-ring 20144  df-cring 20145  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-lmod 20768  df-lss 20838  df-lsp 20878  df-assa 21762  df-asp 21763  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-evls 21981  df-evl 21982
This theorem is referenced by:  prjcrv0  42621
  Copyright terms: Public domain W3C validator